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Abstract: The aim of this study was to elucidate the prevalence of blaCTX-M-27-producing Escherichia coli
and transmission mechanisms of blaCTX-M-27 from swine farms in China. A total of 333 E. coli
isolates were collected from two farms from 2013 to 2016. Thirty-two CTX-M-27-positive E. coli were
obtained, and all were multidrug-resistant. Pulsed field gel electrophoresis (PFGE) and multilocus
sequence typing (MLST) profiles indicated a wide range of strain types that carried blaCTX-M-27, and
the sequence type ST10 predominated. Conjugation, replicon typing, S1-PFGE and hybridization
experiments confirmed that 28 out of 32 CTX-M-27 positive isolates carried blaCTX-M-27 genes on
plasmids F18:A-:B10 (16) and F24:A-:B1 (12).The blaCTX-M-27 genes for 24 isolates were transmitted by
plasmids with sizes ranging from 40 to 155 kb. A comparative analysis with blaCTX-M-27-plasmids
indicated that the tra-trb region of F24:A-:B1 plasmids was destroyed by insertion of a complex region
(eight isolates) and a novel structure containing blaCTX-M-27 in the F18:A-:B10 plasmids (12 isolates).
The novel structure increased the stability of the blaCTX-M-27 gene in E. coli. This study indicated
that the predominant vehicle for blaCTX-M-27 transmission has diversified over time and that control
strategies to limit blaCTX-M-27 transmission in farm animals are necessary.

Keywords: blaCTX-M-27; Tn2; plasmid; Escherichia coli; ST10

1. Introduction

Production of extended-spectrum β-lactamases (ESBLs) is the principal mechanism
of resistance to cephalosporins. CTX-Ms was the largest group of ESBLs, and they have
become globally disseminated [1]. A recent study indicated that food-producing animals
represent an important source of blaCTX-M-producing E coli isolates [2]. CTX-M-15 and
CTX-M-14 are the most prevalent. Additionally, blaCTX-M-27 has been detected as increasing
rapidly in prevalence [1]. The detection of CTX-M-27 in Escherichia coli patient isolates
has been increasing, and is especially alarming because of its presence in clonal groups
such as ST10, ST69 and ST131 [3–6]. In particular, E. coli ST131 isolates are the primary
hosts responsible for CTX-M-27 transmission in E. coli from companion animals, the
environment, farm animals and animal products [3,7–13]. IncF plasmids and transposons
are frequently associated with transfer of blaCTX-M-27 in E. coli and are frequently associated
with IncF plasmids and transposons [14,15]. The pressure of antibiotics could facilitate
the evolution of the transmission mechanism of blaCTX-M. The prevalence of blaCTX-M-27 in
Salmonella isolated from food animals is also increasing, and transduction of blaCTX-M-27
in Salmonella isolated from pork has been recently demonstrated to be mediated by a
P1-like bacteriophage that had integrated a Tn1721-like structure [16]. A prospective study
utilizing salmonella and E. coli isolates from 2003 to 2014 indicated that blaCTX-M-27 could be
mobilized via a Tn1721-like structure between E. coli plasmids and P1-like bacteriophage
in salmonella [17].
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Intestinal carriage of CTX-M-producing bacteria (especially pathogenic bacteria)
in food-producing animals and retail meat or dairy products contaminated by CTX-M
β-lactamases might contribute to increased occurrence of infections with ESBL-producing
bacteria in humans [18]. The prevalent vehicle for blaCTX-M transmission has diversified
over time. This would lead to the further spread of the blaCTX-M-27 gene and further
highlights the importance of controlling the spread of blaCTX-M-27. In the current work
we investigated the prevalence and transmission mechanisms of CTX-M-27 E. coli from
swine in Guangdong province, China from 2013 to 2016. We identified a novel structure
containing blaCTX-M-27 that contributed to the stability of blaCTX-M-27 in E. coli.

2. Results and Discussion
2.1. Phenotypes of blaCTX-M-27-Carrying Isolates

We surveyed two swine farms in Guangdong province and confirmed the presence
of blaCTX-M-27 in 32 E. coli isolates including 62.5% (20) from farm 1 and 37.5% (12) from
farm 2 (Figure 1). CTX-M-27 has been only sporadically detected in E. coli isolates from
food-producing animals, and its prevalence has remained constant at <8% over the past
decade [17,19]. The prevalence of blaCTX-M-27 in our study (9.61%) was higher than in
previous studies. Importantly, all 32 CTX-M-27 isolates were multidrug-resistant (MDR)
strains (Table S1). The prevalence of ciprofloxacin-resistance in these isolates was 93.75%
compared with 77.78% from isolates in 2003 to 2009 in China on swine farms [17], and the
prevalence of ciprofloxacin resistance in blaCTX-M-14 or blaCTX-M-15-producing E. coli almost
above 80% [20,21]. Additionally, we detected QRDR (Quinolone Resistance Determining
Regions) mutations in gyrA (S83L and D87N) and parC (S80I) in high-level quinolone
resistant isolates (28), and 14 of these coharbored oqxAB (Figure 1). This was consistent
with a previous study where blood isolates of blaCTX-M-27-producing ST131 E. coli possessed
QRDR mutations that enabled high level resistance to quinolones [22]. Similarly, blaCTX-M-14,
blaCTX-M-55, blaCTX-M-15 and blaCTX-M-9-producing E. coli possessed QRDR mutations and
carried PMQR genes that enabled high level resistance to quinolones [23]. In contrast,
our isolates possessed a lower MICCIP range of 0.25 to 1 µg/mL but did not contain
QRDR mutations although either qnrS or oqxAB were present. This was consistent with a
previous study reporting that blaCTX-M-55-producing salmonella with an MICCIP in the 0.5
to 4 µg/mL range did not contain QRDR mutations but all contained qnrS [24]. In addition,
9/32 (28.1%) of our isolates coharbored mcr-1, and these exhibited resistance to colistin at
MIC = 8 µg/mL (Figure 1).

The coexistence or cotransfer of other resistance genes in CTX-M-producing E. coli
strains increases their probability of survival in the presence of other antibiotics, including
the cephalosporins [24–26]. Infections caused by MDR bacteria are becoming common and
represents a serious public health concern [27].

2.2. Molecular Typing Analysis

In our group of 32 CTX-M-27-producing E. coli isolates, we identified seven sequence
types (ST). The ST131 was previously found to be associated with blaCTX-M-27 in Japan,
North America and Europe [28–30]. However, ST131 was not present in any of our isolates.
We found that ST10 was most prevalent (50%, 16/32) followed by ST224 (28.1%, 9/32),
ST101 (9.4%, 3/32). ST10 and ST224 were detected on both farms. The isolates containing
ST46, ST162, ST93 and ST58 were represented by one isolate each (Figure 1). Recent
reports documented that ST10 and ST224 E. coli are primarily carriers of CTX-M-15, CTX-
M-14, CTX-M-1 and CTX-M-8 [31–37]. Our recent study identified ST8900 as the most
prevalent ST (Sequence Typing) in CTX-M-27-positive E. coli isolates obtained during
2003 to 2009 [17]. These results indicate that the dominant ST of blaCTX-M-27-producing
E. coli has changed. ST10 E. coli contributes to the distribution of the blaCTX-M-27 gene
on swine farms in China. Previous studies showed that although the epidemiology and
population dynamics of Global Extraintestinal Pathogenic E. coli (ExPEC) are complex,
ST10 was the major ST the ExPEC (Extraintestinal Pathogenic Escherichia coli) group, and
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has remained at a constant level. ST10 has now been linked to multidrug resistance gene
carriage or ESBL production [38]. Increased numbers of antibiotic resistance genes have
been found and are carried by pathogenic bacteria and this is a human health concern.
The 32 CTX-M-27 isolates we found could also be divided into 14 different PFGE clusters.
These data indicated that the transmission of blaCTX-M-27 among E. coli isolates occurred
via clonal expansion and horizontal transmission. The results of both clonal spread of
resistant strains and horizontal transmission of the resistance plasmids contributed to the
dissemination of blaCTX-M-27-positive salmonella or E. coli isolates were also obtained in
previous studies [16,17,39].
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to strain C600 by conjugation. *: Only the ΔISECP1-blaCTX-M-27-IS903B region was sequenced. Pulsed field gel electrophoresis 
(PFGE) patterns with a cutoff at 85% similarity (the dashed line) are considered to be the same PFGE cluster and are 
indicated as groups I–XIV respectively. 

2.2. Molecular Typing Analysis 
In our group of 32 CTX-M-27-producing E. coli isolates, we identified seven sequence 

types (ST). The ST131 was previously found to be associated with blaCTX-M-27 in Japan, 
North America and Europe [28–30]. However, ST131 was not present in any of our iso-
lates. We found that ST10 was most prevalent (50%, 16/32) followed by ST224 (28.1%, 
9/32), ST101 (9.4%, 3/32). ST10 and ST224 were detected on both farms. The isolates con-
taining ST46, ST162, ST93 and ST58 were represented by one isolate each (Figure 1). Re-
cent reports documented that ST10 and ST224 E. coli are primarily carriers of CTX-M-15, 
CTX-M-14, CTX-M-1 and CTX-M-8 [31–37]. Our recent study identified ST8900 as the 
most prevalent ST (Sequence Typing) in CTX-M-27-positive E. coli isolates obtained dur-
ing 2003 to 2009 [17]. These results indicate that the dominant ST of blaCTX-M-27-producing 
E. coli has changed. ST10 E. coli contributes to the distribution of the blaCTX-M-27 gene on 
swine farms in China. Previous studies showed that although the epidemiology and pop-
ulation dynamics of Global Extraintestinal Pathogenic E. coli (ExPEC) are complex, ST10 
was the major ST the ExPEC (Extraintestinal Pathogenic Escherichia coli) group, and has 
remained at a constant level. ST10 has now been linked to multidrug resistance gene car-
riage or ESBL production [38]. Increased numbers of antibiotic resistance genes have been 

Figure 1. Characteristics of 32 CTX-M-27-carrying E. coli isolated from 2013 to 2016 in Guangdong, China. The blaCTX-M-27

genes were all located on plasmids. Isolate names that are underlined indicate that blaCTX-M-27 plasmids could be transferred
to strain C600 by conjugation. *: Only the ∆ISECP1-blaCTX-M-27-IS903B region was sequenced. Pulsed field gel electrophoresis
(PFGE) patterns with a cutoff at 85% similarity (the dashed line) are considered to be the same PFGE cluster and are indicated
as groups I–XIV respectively.

2.3. Location and Genetic Context of the blaCTX-M-27 Gene

The genomic locations of the blaCTX-M-27 for our 32 isolates included F plasmids of
40–155 kb for 28 isolates and four were present on nontypeable incompatibility group
plasmids. Most of these endogenous plasmids (24. 75%) could be successfully transferred
to a laboratory strain E. coli C600 by conjugation. This was consistent with previous studies
reporting that IncF plasmids are frequently associated with blaCTX-M genes [17]. Plasmid
multilocus sequence typing (pMLST) of the IncF plasmids indicated only two plasmid
types: F18:A-:B10 (16) and F24:A-:B1 (12) (Figure 1).

The plasmid p1-8 (F18:A-:B10) was completely sequenced (155,669 bp), possessed
a G + C content of 51.56% and possessed a full complement of DNA transfer genes in
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the F18:A-:B10 backbone (Figure 2B). These transfer regions were highly similar to other
F plasmids and differed by the number of CAACAGCCG tandem repeats in the traD gene.
Our isolates all possessed only one of these repeats and were highly similar to that of a
blaCTX-M-55-harboring F18:A-:B1 plasmid pCREC-544_1 (NZ_CP024827.1) from a human
clinical isolate from Korea, and a blaNDM-5-harboring F18:A-:B58 plasmid pMTY18780-2
(NZ_AP023199.1) human isolate from Japan. IncF plasmids have been implicated as main
players for transmission of blaCTX-M-27 [40]. So, we estimate that F18:A-:Bx plasmids are
the primary vectors for animal to human transmission of most antibiotic resistance genes,
and this has significant health implications for both humans and animals.

The second plasmid pM8-1 (F24:A-:B1) we identified possessed DNA transfer genes
that had been altered by insertion of a 17,034 bp region that included TnAs3, IS5075, IS26,
intI1, mph and IS6100, as well as two IS26 copies in the same orientation. This insertion
destroyed traI and traN, and the entire trbH/F/G/B/A/E, traD/T/S/G/H/Q/F region
was lost (Figure 2). A similar disruption was previously documented for pHNAH9 that
lacked most parts of the tra-trb region due to multiple recombination events, and this
most likely accounted for its conjugation failure. Our F24:A-:B1 plasmids were highly
similar to pHNAH9 [41]. These results indicate that E. coli ST224 possessing F24:A-:B1
was disseminated prior to its acquisition of blaCTX-M-27, similar to the blaCTX-M-carrying
F1:A2:B20 plasmid in E. coli ST131-H30R1 [42].

The region (Figure 3a) containing blaCTX-M-27 (17354 bp) was present in both our
plasmid types, F18:A-:B10 and F24:A-:B1. This region was identical to the variable region
from pMRY15_117 (accession no: NZ_AP017618.1, Figure 3a). The insertion of ISEcp1-
blaCTX-M-27-IS903B in the tnpA transposition gene of Tn2 might be expected to prevent
transposition. However, IRTEM had been lost, although the IRtnp and the resolvase (res) sites
were intact. Therefore, it is possible that the TnpA function was provided by another Tn3-
like transposon and that this mediated movement of this interrupted Tn2 region [43]. Thus,
Tn2-mediated events contributed to the spread of blaCTX-M-27 in the F24:A-:B1 plasmids.

We also identified another genetic context contained within a 22,178 bp insertion
(Figure 3b). This was a novel structure associated with blaCTX-M-27. The region responsible
for blaCTX-M-27 transfer possessed a common background region ∆ISEcp1-blaCTX-M-27-IS903B
within the variable region. The region downstream of IS903B was the 312 bp ∆tnpA of Tn2
produced by the insertion of IS15DI and TnAs3 in pSCU-103 (CP054458.1) (Figure 3d) and
differed from p53_A (Figure 3e) (684 bp ∆tnpA/res/tnpR of Tn2). In p4_4.1 (CP023827.1)
(Figure 3c), the insertion of IS15 resulted in ∆tnpR/res/tnpA∆-iroN∆ inversion. The iroN
and Tn2 sequences were lost, and R1, R2, R3 and aadA5-qacE∆1-sul1 were all inverted in
p1-8, while intI1 and dfrA17 from In54 were lost (Figure 3b). Taken together, these results
indicate that Tn2 was incomplete and incapable of transfer of blaCTX-M-27 in these plasmids.
Therefore, F18:A-:B10 was one of the primary contributors to the spread of blaCTX-M-27
in E. coli for our swine isolates and resulted in greater stability of blaCTX-M-27 in clinical
isolates. This indicates that the blaCTX-M-27 gene was stable in vehicles and its natural
host. The plasmid can mediate its transmission in a wider range hosts, which poses a
serious threat to public health. The ISEcp1-like family has been shown to act as a promoter
region for high-level expression of different CTX-M enzymes in a previous study [44].
The conserved region responsible for transmission of blaCTX-M-27 was ISECP1-blaCTX-M-27-
IS903B. Since more complex structures that mediate transmission of blaCTX-M-27 have been
recently described, and a diversity of media promotes the transmission of blaCTX-M-27, it
may cause a serious threat to public health.

The F18:A-:B10 plasmids may make it easier for E. coli ST10 to acquire blaCTX-M-27, and
similar results have been reported for the MDR IncF group F1:A2:B20 plasmid in E. coli
ST131-H30R1 [42]. Our recent work revealed that blaCTX-M-27-plasmids isolated from 2003
to 2009 contained a genetic context with the Tn1721-like structure ∆ISEcp1B-blaCTX-M-27-
IS903D-iroN-∆map-Tn1721 [17]. In contrast, the present study indicated that the horizontal
transmission of blaCTX-M-27 was related to Tn2, so that the prevalent vehicle for blaCTX-M-27
transmission has diversified over time.
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3. Materials and Methods

A total of 333 E. coli isolates were isolated from swine swabs from Guangdong
province, China and were maintained in our laboratory. These were obtained between
June 2013 and September 2016 from farm 1 (95/236, 40.25%) and farm 2 (141/236, 59.75%).
The presence of the blaCTX-M-27 gene was confirmed by PCR (Polymerase Chain Reaction)
and DNA sequencing [45]. The minimum inhibitory concentration (MIC) of blaCTX-M-27-
positive isolates was determined for the following: ampicillin (AMP), ceftiofur (CTF),
cefotaxime (CTX), ceftazidime (CTZ), meropenem (MRO), florfenicol (FLF), chlorampheni-
col (CHL), gentamycin (GEN), streptomycin (STR), amikacin (AMI), apramycin (APR),
ciprofloxacin (CIP), nalidixic acid (NAL), dafloxacin (DF), olaquindox (OQX), tetracycline
(TET), fosfomycin (FOS), enrofloxacin (ENR) and kanamycin (KAN), determined by the
agar dilution method, and colistin (CL) was determined by the microdilution broth method.
Escherichia coli ATCC 25,922 was used as a quality control strain. The results were inter-
preted following Clinical and Laboratory Standards Institution (CLSI) guidelines (2015,
M100-S25) and veterinary CLSI (VET01-A4/VET01-S2).

All blaCTX-M-27 positive isolates were screened for the presence of the β-lactamase
genes (blaTEM, blaSHV, blaCTX-M-1G, blaCTX-M-9G), carbapenem resistance genes (blaIMP, blaVIM,
blaNDM, blaOXA) and PMQR genes (qnrA, qnrB, qnrC, qnrD, qnrS, oqxAB, aac(6‘)-Ib-cr, qepA)
using previously described primers and protocols [18]. The DNA sequences and deduced
amino acid sequences were compared with sequences available at GenBank using BLAST
(Basic Local Alignment Search Tool) https://blast.ncbi.nlm.nih.gov/Blast.cgi (blaCTX-M-27-
bearing plasmids from the NCBI nonredundant database were retrieved as of 15 February
2021). Mutations in the QRDR of the target genes gyrA, gyrB, parC, parE were confirmed by
PCR and sequencing, and compared with the E. coli K12 genome as a reference.

MLST was performed for blaCTX-M-27-producing isolates as previously reported [46].
The PCR and DNA sequence analysis of seven housekeeping genes (adk, fumC, gyrB,
icd, mdh, purA and recA) was performed, the allelic profiles were determined, and the
sequence type (ST) was assigned in accordance with http://mlst.warwick.ac.uk/mlst/
dbs/, (accessed on 15 February 2021). Pulsed field gel electrophoresis (PFGE) patterns with
the XbaI enzyme were analyzed in experiments following the method of Jiang et al. for
genetic relatedness of all blaCTX-M-27-harboring isolates [18].

E. coli C600 strain (streptomycin-resistant) was used as donor strain and clinical
blaCTX-M-27-producing strains were used as recipient strains to test the transferability of
the blaCTX-M-27 gene. Transconjugants were selected on MacConkey agar supplemented
with 1 mg/L cefotaxime and 2000 mg/L streptomycin [18]. PCR-based replicon typing
(PBRT) was performed on all transconjugants with blaCTX-M-27-carrying plasmids using
primers as previously described [47]. To determine the location of blaCTX–M–27, all the
transconjugants were subjected to pulsed-field gel electrophoresis (PFGE) with S1 nuclease
(Takara) and Southern transfer and probing with a digoxigenin-labelled probes specific for
the blaCTX-M-9G gene as described previously [16].

Genomic DNA samples from M8-1 and transconjugant C-1-8 were subjected to
250-bp paired-end whole-genome sequencing using the Illumina HiSeq system (Illumina,
San Diego, CA, USA), and the paired-end Illumina reads were assembled by SOAPdenovo
version 2.04 [48]. To obtain the complete sequence of p1-8, PCR and Sanger sequenc-
ing was applied to close all the suspected gaps. Sequence comparisons of M8-1 and
pMRY15_117 (NZ_AP017618.1) were performed using BLAST (http://blast.ncbi.nlm.nih.
gov (accessed on 15 February 2021)) and Mauve [49], and similar contigs were extracted
from the assemblies.

Specific primers used for further analysis of genomic context sequence on the other
plasmids carrying blaCTX-M-27 gene were designed using Primer Premier v5.0 (IS1-8-fw:
TCCGACACGATAGAAGGAAT/IS1-8-rev: TTGCCATCACGACTGTGC; ISM8-1-fw:
CCGTCAGAAGTAAGTTGGC/ISM8-1-rev: GTGGACTGTGGGTGATAAGA). Target
sequences were identified using PCR (30 cycles of denaturation at 94 ◦C for 30 s, an-
nealing at 55 ◦C (p1-8)/52.9 ◦C (pM8-1) for 30 s and extension at 72 ◦C for 4 min

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://mlst.warwick.ac.uk/mlst/dbs/
http://mlst.warwick.ac.uk/mlst/dbs/
http://blast.ncbi.nlm.nih.gov
http://blast.ncbi.nlm.nih.gov
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30 s. This was followed by an additional 10 min extension at 72 ◦C) and amplicon
identities were confirmed by Sanger sequencing [50]. Gene prediction and annota-
tion of contigs were performed using the RAST (Rapid Annotation using Subsys-
tem Technology) server (http://rast.nmpdr.org/ (accessed on 15 February 2021)) [51]
and BLAST was used for a manual review of results. The ISfinder program (https:
//www-is.biotoul.fr/ (accessed on 15 February 2021)) [52] and ResFinder (https://cge.
cbs.dtu.dk//services/ResFinder/ (accessed on 15 February 2021)) were used to iden-
tify mobile elements and resistance genes. The replicon types of plasmids were ana-
lyzed using the plasmid MLST database (http://pubmlst.org/plasmid/ (accessed on
15 February 2021)).

4. Conclusions

In this study we identified ST10 E. coli as one of the dominant vehicles for blaCTX-M-27
transmission in China. We report a novel structure containing blaCTX-M-27 that contributed
to the persistence of this gene in E. coli. This study identified multidrug-resistant IncF
group F18:A-:B10 plasmids that contributed to the spread of blaCTX-M-27 in E. coli. E. coli
ST224 possessing F24:A-:B1 were likely transmitted before acquiring blaCTX-M-27, and Tn2-
related events may have contributed to the spread of blaCTX-M-27 in F24:A-:B1 plasmids.
Additionally, the prevalent vehicle for blaCTX-M-27 transmission has diversified over time so
that that transmission of the blaCTX-M-27 gene in farm animals should be closely monitored.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10040387/s1, Table S1: Antimicrobial resistance of 32 CTX-M-27 producing
Escherichia coli from swine in china, Table S2: Primers used in this study.
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