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Abstract
Capturing time and frequency relationships of time series signals offers an inherent barrier for automatic human activity

recognition (HAR) fromwearable sensor data. Extracting spatiotemporal context from the feature space of the sensor reading

sequence is challenging for the current recurrent, convolutional, or hybrid activity recognition models. The overall classifi-

cation accuracy also gets affected by large size feature maps that these models generate. To this end, in this work, we have put

forth a hybrid architecture for wearable sensor data-basedHAR.We initially useContinuousWavelet Transform to encode the

time series of sensor data as multi-channel images. Then, we utilize a Spatial Attention-aided Convolutional Neural Network

(CNN) to extract higher-dimensional features. To find themost essential features for recognizing human activities, we develop

a novel feature selection (FS)method. In order to identify the fitness of the features for the FS,we first employ three filter-based

methods: Mutual Information (MI), Relief-F, and minimum redundancy maximum relevance (mRMR). The best set of

features is then chosen by removing the lower-ranked features using a modified version of the Genetic Algorithm (GA). The

K-Nearest Neighbors (KNN) classifier is then used to categorize human activities.We conduct comprehensive experiments on

five well-known, publicly accessible HAR datasets, namely UCI-HAR, WISDM, MHEALTH, PAMAP2, and HHAR. Our

model significantly outperforms the state-of-the-art models in terms of classification performance. We also observe an

improvement in overall recognition accuracy with the use of GA-based FS technique with a lower number of features. The

source code of the paper is publicly available here.

Keywords Human activity recognition � Continuous wavelet transform � Deep learning � Spatial attention �
Genetic Algorithm � Feature selection � Filter method

1 Introduction

Human activity recognition (HAR) is an emerging topic of

research in the larger fields of ambient computing and

context-aware computing. Recognizing daily life activities

is becoming increasingly important in pervasive computing

with lots of applications like intelligent surveillance sys-

tems [1], healthcare [2], abnormal behavior detection [3],

human–computer interaction [4, 5], aid to elderly people to

improve the quality of their lives, etc. HAR frameworks

provide a way to sense, recognize, and classify specific

movements or activities of a person using the data obtained

from various sensors. A typical supervised HAR frame-

work can be divided into basic blocks consisting of sensor

data accusation, dividing the raw data into fixed-size

windows, feature extraction, and finally classification. Each

and every activity is represented by one or more fixed-size

feature vectors extracted in the feature extraction step.

These feature vectors are used for training the classifier.

Based on the usages of the sensor, HAR can be mainly

categorized into vision-based HAR and wearable sensor-

based HAR. The vision-based technique recognizes and

classifies activities by analyzing video or images [6, 7]

captured using a camera. Though vision-based techniques

have a mature theoretical basis, these techniques have
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various limitations like ambient light, camera position,

potential obstacles, and invasion of privacy issues, which

make them difficult in real-life applications. Wearable

sensors and inertial sensors of smart devices nowadays

become the more promising ways of collecting human

activity data as these are easy to use, small in size, and non-

intrusiveness on subjects. Besides, these sensors have none/

low installation cost and low energy consumption. Smart-

phone and smartwatches have become a convenient option

for HAR as it comes with various embedded sensors like

accelerometer, gyroscope, magnetometer, compass, etc.

For the activity prediction tasks, generalizing any model

for different activities and sensors is a very challenging

task. Based on humans, the activity signal pattern may vary

significantly as different humans perform these activities

differently. Even the same activity can have different sig-

nal patterns as any specific human can do the same activity

differently at a different time. Similarly, different activities

can have similar signal patterns, which makes the activity

classification task more confusing and challenging.

In the recent past, researchers have introduced several

handcrafted feature extraction methods to extract various

spatiotemporal features from the raw sensor data. The

traditional supervised machine learning techniques—Sup-

port Vector Machine (SVM) [8–10], K-Nearest Neighbors

(KNN) [11–13], Decision Tree [14], Ensemble approach

[15, 16]—are used for classification. However, there are

certain limitations of this approach like the requirement of

domain expertise and rigorous data pre-processing. Also,

failing to establish a proper spatial and temporal relation-

ship among handcrafted features limits the flexibility of

these approaches.

Recently, deep learning techniques gain more popularity

among researchers. Ability to detect various features

automatically from the raw data and to learn various deeper

low levels of features gives deep learning techniques an

edge over the traditional machine learning techniques.

Several deep learning models are successfully applied in

different areas like natural language processing [17], image

segmentation [18], classification [19], etc. Specifically,

convolutional neural networks (CNNs) are well known for

producing outstanding results in image recognition

[20, 21]. However, reformulating features of time series

data as visual clues have raised much attention among

computer scientists [22]. The most successful way is to

describe features as visual cues [23]. Time series data can

be encoded into corresponding activity images using

supervisory and non-hyper-visual learning techniques in

computer vision to enable deep learning techniques,

specifically CNNs, to perform image recognition.

It is to be noted that a feature extraction procedure may

produce some irrelevant or redundant features which

increase the overall feature space. This is also true for the

feature vectors produced by the deep learning model.

Hence, these irrelevant features must be eliminated in order

to ensure a good classification accuracy and less compu-

tational time. A feature selection (FS) algorithm tries to

improve the performance of a learning algorithm and

decrease the time and space requirements. FS algorithms

can be divided into two categories: wrapper and filter. A

wrapper method uses a classifier to calculate the fitness of

each candidate solution (i.e., a subset of features) and

thereby select the subset of features that has the best fitness

score. On the other hand, filter-based methods rank the

features in order of their importance and eliminate the less

important features. Since filter methods do not need a

learning algorithm, they tend to perform faster than the

wrapper methods in general. However, wrapper methods

are known to generate better classification accuracy than

filter methods [24]. FS is an NP-hard problem as there can

be 2n possible solutions for a feature space containing ‘n’

no of features. Determining the best solution from all the

possible solutions is not a feasible option as the computa-

tional time required would be quite high. Hence, an alter-

native and feasible solution is to perform a guided search

over the entire feature space using a heuristic strategy. This

will not only decrease the computational time significantly

but also produce a near-optimal solution.

In this paper, we have proposed an architecture that

encodes sensor data into corresponding images and a model

that enables HAR to be carried out using a spatial attention-

aided CNN model in image recognition. However, the fea-

ture set, produced by this CNN model, is quite large in size.

To this end, we have proposed an FS approach for selecting

the optimal feature subset by eliminating the irrelevant fea-

ture attributes which also saves computational time and

memory. This implies that we have used the said CNNmodel

as the deep feature extractor only. For FS, a modified version

ofGenetic Algorithm (GA) [25] is used. Rather than utilizing

a time-consuming classifier in each iteration, we have uti-

lized three filter techniques specifically Mutual Information

(MI) (entropy based), ReliefF (distance based), and Mini-

mum Redundancy Maximum Relevance—mRMR (statistic

based). These three methods rank the features obtained from

the CNN model. We have re-ranked the features using the

mean of the ranks of the features given by three filter

methods. These ranks are used as the fitness of the candidate

solutions (i.e., chromosomes). We have also proposed a

guided mutation strategy which aims to increase the fitness

of the individual chromosomes. The reduced feature set is

then fed to the KNN classifier for predicting the accuracy of

the overall HAR model.

The key contributions of the proposed work are as

follows:
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1. We have proposed a unique image encoding frame-

work based on Continuous Wavelet Transform (CWT)

to represent the sensor data into the corresponding

spatiotemporal representation.

2. A spatial attention-aided CNN model is used to extract

image features from the encoded images.

3. In order to reduce computational overhead, we have

introduced a modified GA-based feature selection

framework that uses three filter-based methods to

determine the fitness of each candidate solution.

4. We have also proposed a guided mutation technique as

an improvement over random mutation to increase the

fitness score of each candidate solution.

The rest of the paper is structured as follows. Section 2

describes some relevant methods proposed by the other

researchers. Details of the proposed method are mentioned

in Sect. 3. In Sect. 4, we have reported the results of the

proposed model while evaluated on five benchmark HAR

datasets. In Sect. 5, we further discuss our findings.

Finally, we have concluded the paper in Sect. 6.

2 Related work

Deep learning-based models have achieved outstanding

results in a variety of fields including HAR as mentioned in

recent surveys [26, 27]. Many state-of-the-art models have

been developed using various deep learning techniques like

CNN, Recurrent Neural Network (RNN), etc.

CNN models showed lots of promise and achieved

higher recognition accuracy than other state-of-the-art

methods. Nair et al. [28] used the Temporal CNN archi-

tecture, a class of temporal models that used a hierarchy of

temporal convolutions, which was able to take variable-

length sequence data and learn long-term dependencies.

Münzner et al. [29] proposed a CNN-based sensor fusion

technique to solve the problems of normalization and

fusion of multimodal sensors. In [30–34], authors have

used various CNN architectures to improve the recognition

accuracy of HAR. Ensemble of CNN models is found in

[35–37] which aims to achieve better performance than the

individual models.

RNN, another deep learning technique, was also exten-

sively used by many researchers for HAR. RNN has the

special ability to learn sequences of spatial data. Like, long

short-term memory (LSTM)-based networks can learn

long-term dependencies from any sequences of data which

make it more applicable in wearable/inertial sensor-based

HAR. Preeti Agarwal and Mansaf Alam [38] developed a

lightweight model using shallow RNN combined with

LSTM for activity recognition. Authors in [39–42] used

LSTM-based architectures to learn spatiotemporal features

for the classification of human activities. Researchers also

proposed various hybrid models like the combination of

CNN-RNN [43], CNN-LSTM [44–48], LSTM-CNN [49],

CNN-GRU (Gated Recurrent Unit) [50], and achieved

significant improvement in recognition accuracy.

Inspired by the recent success of deep learning techniques

especially CNN in computer vision, encoding time series data

as images gain more acceptance among researchers. This

method allows the machine to visually recognize and classify

by learningvisual patterns and structures. ZhiguangWangand

TimOates [22] introduced two frameworks for encoding time

series data as images known asGramianAngular Field (GAF)

and Markov Transition Field (MTF). They used Tiled CNNs

to classify the single GAF and MTF images as well as the

compound GSF-MTF images. The authors in [51] found that

varied time series features are not evident in the temporal

domain but present in the frequency domain. As an alternative

graphical representation for time series classification, they

investigated the use of recurrence plots andproposedamethod

capable of extracting texture features from that graphical

representation and used those features to classify time series

data. In their work, Garcia-Ceja et al. [52] proposed a similar

approach. They modeled the physical activity as a set of

recurrence plots’ distance matrices to capture temporal pat-

terns in the signal. Afterward, a CNN was used to classify the

distance matrices and obtain the final prediction. In [53], the

authors experimentally found that image representation of

time series data introduces different feature type that was not

available in1D sensor data. Hence, they first encoded the

sensor signal as a 2D texture image using a recurrence plot to

visualize the recurrent nature of a trajectory through phase

space. Then, they used a CNN model to learn different levels

of features from the texture images. To address the variability

in the distinctive region scale and sequence length, Zhang

et al. [54] proposed two stages approach, where firstly they

encoded the sensor data usingMulti-scale Signed Recurrence

Plots (MS-RP), an improvement in recurrence plot, and then

applied a FullyConvolutionalNetworks andResNet to handle

these images. Hur et al. [55] proposed a novel encoding

technique for converting an inertial sensor signal into an

image with minimal distortion, namely Iss2Image (Inertial

sensor signal to Image). Iss2Image divided real-valued sensor

reading into three parts: integers, first two decimal places, and

the next two decimal places, and then encoded as a three-

channel image. Finally, a CNN model was used for image-

based activity classification. Another similar encoding tech-

nique was proposed by Daniel et al. in [56]. The proposed

INIM framework first encoded the sensor’s signal into 3D

RGB images and then used a residual network trained on the

ImageNet dataset [57] for activity recognition. Qin et al. [58]

introduced a novelmethod to encode time series data into two-

channel GAF images by unifying global and local time series

features. Then, they presented a fusion ResNet framework,

Neural Computing and Applications

123



which learned the generated GAF image pixels correspon-

dences between acceleration and angular velocity features.

Almost similarworkwas done by the authors in [59].Contrary

to the previous work, they used four different types of activity

images and made each one multimodal by convolving it with

two spatial domain filters: the Prewitt filter and the high-boost

filter. ResNet-18 was used to extract the deep features from

multi-modalities and fused by canonical correlation-based

fusion. Finally, a multi-class SVM was used for activity

recognition. In [60], the authors have implemented the idea of

transforming the 1D signal into 2D using Fast Fourier

Transform (FFT). This frequency-domain image was called

the spectrogram, which represents the composition of a signal

from several frequencies over time and acts as an input to a

three-layered CNN model for features extraction and classi-

fication. Lawal et al. [61] in their work encoded sensors signal

into spectrogram using Short-Time Fourier Transformation

(STFT). A simplified two-stream VGG-Net [20] like CNN

architecture was proposed for activity and location

recognition.

A few researchers have also tried to choose the relevant

features utilizing various FS-based techniques [62, 63] for

improving the overall accuracy in the field of activity

recognition. Buenaventura et al. [64] proposed aHARmodel

based on sensor fusion in smartphones which used a filter-

based method to rank the features. An enhanced HAR

method was proposed by Fan et al. [65] where Bee Swarm

Optimization (BSO) with a deep-Q-network was used. Dewi

et al. [66] performed a comparative study on HAR datasets

using four classifiers namely Random Forest (RF), SVM,

KNN, and Linear Discriminant Analysis (LDA) from which

it was concluded that RF has the highest accuracy. Nguyen

et al. [67] proposed a position-based FS method for body

sensors for daily activity recognition. Filter-based methods

were used to reduce the feature set followed by a correlation-

based optimization and a classifier to determine the overall

accuracy of the proposed method.

GA is one of the oldest and most widely used meta-

heuristic algorithms which have been explored by numer-

ous researchers in various domains such as image contrast

enhancement, class imbalance, stock price prediction,

image segmentation, medical diagnostic, image steganog-

raphy, feature selection, etc. Saitoh [68] proposed an image

contrast enhancement technique based on GA that assessed

an individual’s fitness by evaluating the intensity of spatial

edges included in the image. GA was used to search for a

solution in global space, and the original gray image was

converted to a contrast-enhanced image by observing the

relationship between the input and output gray levels. In

[69], an efficient image contrast enhancement using GA

and fuzzy intensification operator was proposed which

improved the visibility information of an image by

manipulating the image intensity information. A novel

oversampling approach was introduced by Arun et al. [70]

to address the class imbalance problem using GA. Syn-

thetic samples of the minority class are generated based on

the distribution measure which ensures that the samples are

efficient and diverse within each class. Experimental

results indicated that GA-based oversampling approach

improved the fault prediction performance and reduced the

false alarm rate. Ha et al. [71] proposed a novel under-

sampling method using GA for imbalanced data classifi-

cation. The performance of the prototype classifier was

maximized by minimizing the loss between distributions of

original and undersampled majority objects. A novel

method for stock market forecasting with Artificial Neural

Network (ANN) and GA was proposed by Sharma et al.

[72]. The dataset was partitioned into training, testing, and

validation sets, and the stock data of COVID-19 period

were used for model validation. Furthermore, in [73] a

combination of GA and LSTM was proposed for stock

prediction. In the initial step, GA was used to obtain ranked

important factors, and finally, the optimal factors along

with LSTM were used for prediction. Chun et al. [74]

proposed a robust image segmentation using GA with a

fuzzy measure. A fuzzy validity function was proposed

which measured the degree of separation and compactness

within the finely segmented regions. To maximize the

quality of regions obtained by split and merge processing, a

usable region segmentation was searched using GA. In

[75], an image segmentation method with GA was pro-

posed where GA was used for segmenting the images into

four gray classes. A cardiovascular disease prediction using

GA and neural network was proposed by Amma [76] where

the weights of the neural network were determined using

GA which provided a good set of weights in a few itera-

tions. Initially, the dataset was pre-processed followed by

training the system and storing the final weights which

were finally used for predicting the risk of cardiovascular

disease. Uyar et al. [77] proposed a GA-based trained

recurrent fuzzy neural network (RFNN) method for the

diagnosis of heart diseases. Hossain et al. [78] introduced a

secured image steganography method based on GA and

ballot transform for the integrity of important files over

internet. In addition to achieving a good accuracy, various

parameters such as precision, F-score, probability of mis-

classification error, mean square error, etc. were also

calculated.

Owing to the success of GA in solving various complex

optimization problems, many researchers have used GA for

the FS purpose which is a binary optimization problem.

Some areas where GA is used as an FS method are:

microstructural image classification [79], cancerous gene

identification [80], handwritten Devanagari numeral

recognition [81], handwritten Bangla word recognition

[82], handwritten Bangla, Devanagari and Roman numeral
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classification [83], video and sensor-based HAR [62], etc.

Rostami et al. [84] developed a novel community-based FS

method to group similar features into feature clusters. This

method predicted the number of feature clusters automat-

ically, hence eliminating the need to determine it before-

hand. GA is then applied to select the optimum subset of

features by defining an objective function with an impor-

tance value attached to each feature subset. In [85], a novel

cancer classification technique was proposed using deep

learning and GA. It was applied to determine and classify

the cancer types from the publicly available gene expres-

sion data. Tian et al. [86] proposed deep learning model

selection framework based on GA for visual data classifi-

cation. The process of identifying the most relevant and

useful features generated by pre-trained models for dif-

ferent tasks was automated by the framework. In [87], a

deep learning method was developed to classify different

brain activities along with GA to eliminate the redundant

features. Various deep learning models, namely X_axis

Classification Model (XCM), Y_axis Classification Model

(YCM), and Z_axis Classification Model (ZCM), were

used for this purpose. These models were used to classify

among the vision, movement, and forward brain activities

followed by an effective combination method based on GA

and Genetic Weighted Summation (GWS) rule. In 2019,

Ghosh et al. [88] introduced a combination of GA and PSO

for feature selection which utilized the exploitation ability

of GA with the exploration capacity of PSO. Guha et al.

[89] proposed a deluge-based GA to strengthen the

exploitational ability and performed good on the well-

known UCI datasets. In 2021, kilicarslan et al. [90] pro-

posed a hybrid model based on GA and deep learning for

nutritional anemia disease classification. GA was used to

optimize the hyperparameters of Stacked Autoencoder

(SAE) and CNN models. The proposed method achieved

an accuracy of 98.50% when applied on real anemia

dataset. Ince [91] proposed a deep learning and GA-based

intelligent and automatic content visualization system. The

method segmented the input image into panoptic image

instances and used these to generate new images using GA.

The results proved that the said method was efficient to

create visually enhanced content for digital use.

Motivations: From the above discussion, it can be con-

cluded that many researchers around the world have tried

to classify human activities by analyzing the activity

images. It can be observed that recognizing human activ-

ities from sensor data has always been an interesting and

challenging task. Some activities such as running and

walking are easy to recognize. However, there are some

complex activities which are relatively difficult to classify.

Developing an efficient activity recognition model can lead

to the development in many potential fields such as health,

sports, and understanding the psychological state of a

person. For this purpose, machine learning and deep

learning-based methods contributed significantly to the

development of competent HAR models. However, many

of these methods use heavy networks (mainly deep learn-

ing-based methods) and some even produced lower clas-

sification accuracy due the use of some irrelevant features.

On the contrary, FS-based techniques not only speed up the

process (i.e., take less computational time) but also

increase the classification accuracy significantly. However,

wrapper-based FS techniques which use a learning algo-

rithm are slower than filter-based methods. Keeping the

above facts in mind and to further speed up the process, a

modified version of GA method is proposed here, which

uses three filter-based methods to calculate the fitness of

the chromosomes that effectively acts as the fitness func-

tion of GA. The proposed method has been evaluated on

five publicly available datasets. It is observed that this

method is much faster than the traditional GA, and the

overall framework also outperforms many existing meth-

ods in terms of classification accuracy.

3 Proposed method

Here in this section, we first briefly discuss the proposed

activity image encoding technique. Then, we explore the

features extraction process from the encoded images.

Finally, we present the proposed novel FS technique used

for HAR. Figure 1 shows the working procedure of the

proposed framework.

3.1 Continuous wavelet transform

Wavelet transform has been applied in time–frequency

analysis and spatial domain signal analysis over the years,

and this is one of the most effective mathematical tools

used for signal processing. A wavelet transform is a signal

convolution with a set of functions derived from transla-

tions and dilations of a primary function. The primary

function is known to as the mother wavelet, and the

translated or dilated functions are referred to as wavelets.

A wavelet is a rapidly decaying wave-like oscillation

defined as function wðtÞ�L2ðRÞ with a zero mean and exists

for a finite duration, localized both time and frequency. By

scaling and translating this wavelet wðtÞ, we can produce a

family of wavelets by using Eq. (1) as

wa;b tð Þ ¼ 1
ffiffiffi

a
p w

t � b

a

� �

ð1Þ

where a; b�R and a[ 0. a is known as the scaling

parameter, and b is the transitional value. The wavelet
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transform of a continuous signal with respect to wavelet

function w tð Þ is defined as Eq. (2)

Wx a; bð Þ ¼
Z

þ1

�1

xðtÞw�
a;b tð Þdt ð2Þ

where x(t) is a time-domain signal; w�
a;b tð Þ is the complex

conjugate of mother wavelet. From Eqs. (1) and (2), we get

Eq. (3), which defines the CWT as

Xw a; bð Þ ¼ 1
ffiffiffi

a
p

Z þ1

�1
xðtÞw� t � b

a

� �

dt ð3Þ

CWT is nothing but the inner product of signal x(t) with a

continuouswaveletw tð Þ scaledbyparameteraand translatedby

value b. The pseudocode for the CWT is shown inAlgorithm-1.

The outputs of the CWT are CWT coefficients, which

reflect the similarity between the analyzed signal and the

wavelet. These coefficients can be represented as a 2D

image equivalent to the power spectrum, where time and

scale/frequency are the 2 dimensions. However, the CWT

coefficients depend on the choice of the mother wavelet.

One of the main advantages of wavelet transform is the

presence of a wide variety of wavelets to choose from that

best match the shape. In this work, we use the Gaussian

Derivative Wavelets, specifically fifth-order derivatives of

the function given in Eq. (4)

w tð Þ ¼ C exp�t2 ð4Þ

where C is the order-dependent normalization constant.

The fifth-order Gaussian Derivative wavelet is a real-

valued odd function, which is anti-symmetric around zero.

The shape of the fifth-order Gaussian Derivative wavelet

and various scaled wavelets is shown in Fig. 2.

As the wavelet is a real-valued function, hence the

imaginary part of the wavelet is zero.

3.2 Inertial sensor to image encoding using CWT

In order to encode the raw sensor time series data into an

image form, we use the 1D CWT, which takes 1D time

series as input and generates a 2D frequency-time domain

scalogram. This scalogram is nothing but the CWT coef-

ficients. Figure 3 depicts the image encoding process.

Performing CWT on the entire time series dataset is

practically infeasible. Hence, instead, we perform CWT on

each sample of size t � c where t is the number of times-

tamps and c is the total number of sensor channels. The

pseudocode for CWT-based image encoding technique is

given in Algorithm-2. The value of t and c varies from

dataset to dataset. Each of the channels in c is a 1D time

series and acts as the input to the CWT. We use t as the

scale parameter. For each such sensor channel, we get a

t � t scalogram as the output. Hence, for one sample, we

get a c-dimensional t � t scalogram where each dimension

corresponds to each sensor channel.

Fig. 1 Overall workflow of the proposed HAR framework
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Fig. 2 Fifth-order Gaussian Derivative wavelet and its scaled version

Fig. 3 Illustration of the image encoding process
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Based on the above-mentioned way, we encode each

and every activity of a dataset as a t � t � c-dimensional

image.

3.3 Features extraction using spatial attention-
aided CNN

A CNN is large a deep neural network that simulates and

understands stimuli as the visual cortex of the brain pro-

cesses. A typical CNN model can be thought of as a

combination of two components: the features extractor part

and the classification part. The hidden layers are the CNN’s

features extractor, which consists of a series of convolution

layers followed by pooling layers that try to detect complex

features and patterns belonging to the image of a particular

class by convolving with various filters followed by sub-

sampling. The classification part then utilizes these features

and computes the prediction probabilities as output. Even

though CNN performs very well in the image classification

task, sometimes the requirement of huge data for more

accurate prediction limits its use as a classifier. As a result,

in the current work, rather than using the CNN model as a

classifier, we only used it as a features extractor.

Figure 4 shows the architecture of the proposed feature

extractor. It mainly consists of a CNN having four con-

volution layers and spatial attention sub-networks. The

spatial attention sub-networks, which are variants of widely

used CNNs, use attention modules to fine-tune the feature

maps in each convolution layer, thereby enhancing CNN’s

learning ability.

Following each convolution layer, we have used a max-

pooling layer to lessen data variance and a dropout layer to

avoid over-fitting. Before the max-pooling layer, the

attention feature maps from the spatial attention sub-net-

work are added to re-calibrate the original features. This

layering scheme is repeated three times with a different

number of 3� 3 filters. All neurons of these convolution

layers have Re-LU (Rectified Linear Unit) as an activation

function to learn the nonlinear representation. The details

of the network architecture are given in Table 1.

At last, the output features are first flattened and then

pass through a fully connected layer, which generates a

1024-dimensional feature vector from the input image.

Fig. 4 Architecture of the proposed CNN-based feature extractor

Neural Computing and Applications

123



3.4 Spatial attention module

Recently, the attention mechanisms attract more and more

researchers’ interest and have been widely used with the

CNN and RNN models in many domains like computer

vision and image processing. This mechanism enables the

network to pay more focus to some discriminating regions

in certain time periods, which improves the learning ability

of the network. In this article, we design a class of attention

module to focus on where is an informative part present in

the encoded images.

The proposed spatial attention module generates a spa-

tial attention feature map by utilizing the inter-spatial

relationship of features. As shown in Fig. 5, a 1� 1 con-

volution layer is first used to fuse the information along the

channels, generating a 2D feature map Y�RH�W . Then, we

apply two 2D convolution layers to generate the spatial

attention features map Ysa�R
H�W�C. For these two 2D

convolution layers, the number of convolution filters varies

Table 1 Details of the CNN architecture used for the purpose of feature extraction. SAM here refers to Spatial Attention Module

Layer Type Filter

size

No. of

filters

Strider

Input 128� 128� 6 for UCI-HAR 128� 128� 12 for MHEALTH 80� 80� 6 for WISDM 128�
128� 27 for PAMAP2 128� 128� 3 for HHAR

– – –

conv2D_1 Conv2D ? ReLU 3x3 32 1x1

SAM_1 – – – –

Max_pooling2D_1 MaxPooling2D 2� 2 – –

Dropout_1 Dropout (20%) – – –

Conv2D_2 Conv2D ? ReLU 3� 3 64 1� 1

SAM_2 – – – –

Max_pooling2D_2 MaxPooling2D 2� 2

Dropout_2 Dropout (20%) – – –

Conv2D_3 Conv2D ? ReLU 3� 3 64 1� 1

SAM_3 – – – –

Max_pooling2D_3 MaxPooling2D 2� 2 – –

Dropout_3 Dropout (20%)

Conv2D_4 Conv2D ? ReLU 3� 3 128 1� 1

SAM_4 – – – –

Max_pooling2D_4 MaxPooling2D 2� 2 – –

Dropout_4 Dropout (20%) – – –

Flatten Flatten() – – –

Output Fully Connected Layer (1024 units) ? ReLU – – –

Fig. 5 Illustration of the Spatial Attention Module used in the present work
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from module to module. The details of spatial attention

module architecture are shown in Table 2.

We use Re-LU as the activation function for the con-

volution layers and padding operator to avoid the change in

spatial size. Finally, we use Ysa to re-calibrate Fl using

Eq. (5).

Fl
� �0

¼ Ysa þ Fl ð5Þ

where Fl is the features map from the previous convolution

layer. This Fl
� �0

acts as the input for the next CNN layer in

the network.

3.5 Feature selection

Feature extraction using CNN produces a large dimension

of features, which needs to be processed by the classifier.

Many a times, only a small subset of these features is

important. The remaining features are redundant or

insignificant and only tend to increase the computational

time and space. Moreover, the presence of these redundant

features also decreases the classification accuracy. To

address this issue, FS has been performed on the set of

features obtained from the said CNN model. In the pro-

posed method, we have used GA as the unsupervised FS

algorithm, and three different filter methods are used to

calculate the fitness of each chromosome in the population

of GA.

3.5.1 Filter methods

To calculate the fitness of the individual chromosomes, we

rely on three filter-based methods, namely MI, ReliefF, and

mRMR.

1. Mutual Information: MI [92] is used to measure the

nonlinear relations between two random variables. It is

used to quantify the quantity of data obtained from a

random variable by observing the other random

variable. It can be referred to as the reduction in

uncertainty of a random variable when the other

variable is known. Hence, a high MI value suggests a

large reduction in uncertainty while a low value

suggests less reduction. It can be calculated using

Eq. 6:

I X; Yð Þ ¼
P

y�Y

P

x�X PX;Y x; yð Þ � log PX;Y x; yð Þ
PX xð Þ � PY yð Þ

� �

ð6Þ

where PX;Y x; yð Þ denotes the joint probability density

function of X and Y and the marginal density functions

are denoted by PX xð Þ and PY yð Þ. The similarity the

joint distribution PX;Y x; yð Þ to the product of the fac-

tored marginal distributions is determined by MI. It

equals zero if and only if two random variables are

independent, and higher values indicate greater

dependency.

2. Relief-F: Relief was proposed by Kira and Rendell

[93] for binary class problems by using the Euclidean

distance measure. Relief-F algorithm is based on the

Relief algorithm, a filter method used in FS. Relief was

designed primarily for use in the problems of binary

classification with discrete or numerical features.

Relief assigns a relative weight/score to each feature

and acts as a filter method by eliminating the low-

ranked features. The feature score changes according to

the detection of feature value differences between

neighboring instance pairs. If a difference in feature

value is discovered with the same class (a ‘hit’) in a

neighboring instance pair, the feature score falls. On

the other hand, if a feature value difference is observed

with different class values (‘miss’) in a neighboring

instance pair, the feature score climbs. However, it is

limited to only two class problems. An extension of the

Relief-F algorithm can be used to solve multi-class

problems by searching for k closest misses in each

class and averaging their contributions for updating W,

weighted by each class’s prior probability. In the

contribution of weights to each feature, it takes the

average of k nearest hits and misses. This k can be

adjusted and set based on the dataset in question.

Furthermore, Relief-F can handle missing data by

employing a conditional probability of feature weights.

It is defined by the formula given in Eq. (7).

Table 2 Details of SAM used in

the present work. SAM refers to

Spatial Attention Module

Module Convolution Layer-1 Convolution Layer-2 Convolution Layer-3

Filter size No of filters Filter size No of filter Filter size No of filters

SAM-1 1� 1 1 3� 3 16 3� 3 32

SAM-2 1� 1 1 3� 3 32 3� 3 64

SAM-3 1� 1 1 3� 3 32 3� 3 64

SAM-4 1� 1 1 3� 3 64 3� 3 128
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W Xj

� �

¼ 1

nK

X

n

i¼1

X

K

l¼1

jxi;j � xMl
i;j j � jxi;j � xHl

i;j j
� �

ð7Þ

where xi;j, x
Ml
i;j or xHl

i;j denotes the j-th component of

sample xi, its l-th closest Miss xMl
i , or its l-th closest Hit

xHl
i , respectively. n is the total number of samples, and

K is the number of Misses or Hits considered for each

sample.

3. Minimum redundancy maximum relevance: mRMR

[94] is a filter ranking approach in FS that ranks

features according to correlation to the class and itself.

Preferably, features with a high correlation with the

class (output) and a low correlation between them-

selves are chosen. For continuous features, correlation

with the class (relevance) can be evaluated by the F-

statistic values and the correlation between features

(redundancy) can be determined using Pearson Corre-

lation Coefficient (PCC) values. A greedy search is

applied to select the features one by one as the final

goal is to maximize the objective function, which is

determined by relevance and redundancy. MID

(Mutual Information Difference) and MIQ (Mutual

Information Quotient) criteria are the two commonly

used types of the objective function which represent

the difference between relevance and redundancy, or

the quotient of relevance and redundancy. It is

calculated using the formula given in Eq. 8

scorei fð Þ ¼ F f ; targetð Þ
P

s�f0ði�1Þ jcorr f ; sð Þj= i� 1ð Þ ð8Þ

where i is the i-th iteration, f is the feature that is

evaluated, F is the F-static, f 0ði� 1Þ denotes the fea-

tures selected until i� 1 iterations, and corr is Pearson

correlation.

3.5.2 Genetic Algorithm: an overview

GA is a popular meta-heuristic evolutionary algorithm

which is used for solving complex optimization problems.

It is a nature-inspired algorithm with biological features

like selection, crossover, and mutation. GA comprises the

following steps—initial population creation, parent selec-

tion, crossover, mutation, and generation of child chro-

mosomes. Initially, a random population is generated with

a finite number of chromosomes, each filled with some

random values of fixed length. Parent chromosomes are

selected from this set of chromosomes which are further

used to create the child chromosomes after performing

crossover and mutation. A fitness function is defined to

evaluate the fitness of each chromosome. If the fitness

values of the child chromosomes surpass the fitness of

some existing chromosomes in the current population, they

replace the chromosomes having low fitness values. The

fitness measures the quality of the represented solution

obtained at each iteration. These processes are repeated

until the generation of the next set of chromosomes that go

through the same selection, crossover, and mutation pro-

cess, and eventually, the subsequent generations are gen-

erated through this method. Individuals with the least

fitness die as new generations form, making room for new

offspring. This leads to a near optimal solution after a fixed

number of iterations. A binary version of GA is used in FS,

with each chromosome represented as a vector of ‘0’s and

‘1’s. A ‘0’ indicates that the corresponding feature is not

selected, whereas a ‘1’ indicates that the corresponding

feature is selected.

3.5.3 Proposed GA variant

GA is one of the oldest and classical evolutionary algo-

rithms, inspired by nature. Over the years, various

researchers have utilized this algorithm in the field of FS

and optimization. It is proved to be one of the best-known

algorithms which provide a near-optimal subset of features

from the whole feature space. Exploration and exploitation

are performed by the key operators, i.e., crossover and

mutation. Numerous modifications have been suggested by

various researchers to improve GA and reach the near

optimal solution. The mutation in GA is decided by a

mutation probability which is quite random in nature.

Moreover, the fitness of each candidate solution is deter-

mined by a learning algorithm (i.e., a classifier) which is

often very time-consuming. Keeping the above facts in

mind, we propose a modified version of GA which esti-

mates the fitness of the candidate solutions by calculating

the aggregate of three filter-based methods, thereby

improving the computational time significantly. Also,

instead of random mutation, a different mutation method is

proposed which improves the fitness of the individual

candidate solution. A multi-point crossover is used and for

parent selection is done using Roulette wheel for better

exploitation. The pseudocode of the mutation technique is

described in Algorithm-3.
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3.5.4 Fitness function

Wrapper-based FS methods generally use a learning algo-

rithm (i.e., a classifier) to evaluate the fitness of the chro-

mosomes. Since GA is commonly used a wrapper-based

method, it follows the same logic; however, it increases the

computational time. To overcome this problem, the usage

of classifier is replaced by determining the score of each

feature vector (i.e., a chromosome) by the help of filter

methods, which aids in assessing the strength of each

chromosome in an unsupervised way.

A chromosome is a binary vector with ‘0’ indicating that

the feature is to be not taken and ‘1’ indicating that the

feature is to be taken. By using the three filter methods, we

get a filter value (i.e., a score) corresponding to each fea-

ture. The filter value of each feature is the average of the

value of the three filter methods. We can say that the

feature column with the maximum filter value is most

important while the feature with the minimum filter value

is least important. Hence, to calculate the score of each

individual chromosome, we take the mean of the filter

values of all the features which are currently ‘1.’ We have

described the pseudo-code of the fitness value calculation

in Algorithm-4.

In FS, we intend to increase the classification accuracy

of the problem under consideration and decrease the

number of features selected simultaneously. In order to do

so, we define a single objective function which estimates

the overall fitness of each chromosome (feature subset).

This objective function is defined in Eq. 9.

Fitnessoverall ¼ a� F þ 1� að Þ � jFj � jf j
jFj ð9Þ

where F is the fitness of the chromosome, a�½0; 1� repre-
sents the relative weightage between the fitness value and

number of features not selected, |F| is the number of fea-

tures in the given dataset, and |f| is the number of features

in the feature subset.

Since we aim to increase the fitness value and reduce the

number of features in the feature subset, our objective is to

increase the Fitness_overall value.

4 Experiments and results

We have performed experiments using five popular and

publicly available HAR datasets—UCI-HAR, WISDM,

MHEALTH, PAMAP2, and HHAR. This section contains

information about the datasets used, the performance

metrics, and the results obtained.
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4.1 Model implementation

The proposed model is built using the Keras API and the

Tensorflow backend. For the CWT part, we have used

PyWavelets [95], an open-source python wavelet transform

library. The experiments were performed on a laptop with

having AMD Ryzen 7 4800 H (2.90 GHz) processor with

16 GB of RAM and NVIDIA GeForce GTX 1660 Ti GPU

with 4 GB of VRAM. The PC is powered by a 64-bit

Windows 10 operating system.

The feature extractor model is trained under a super-

vised learning methodology. We have randomly initialized

all the weight and bias used for different layers. Adam

optimizer is used, and we have tried to minimize the sparse

categorical cross entropy losses. The CNN model is trained

for 150 epochs with a batch size of 32. Table 3 summarizes

the hyper-parameter details used to tuned our model.

For FS techniques, we have experimented with different

values of various hyper-parameters. Finally, for our pro-

posed method with FS, we have used 10 as the population

size, the value of crossover probability has been set to 0.6.

For the KNN classifier, we have set the k value equal to 5.

4.2 Database description

1. UCI-HAR [96]: It is a publicly available benchmark

dataset for HAR. The dataset was created by recording

activities of daily living (ADL) using the embedded

inertial sensors of a waist-mounted smartphone. Each

participant in a group of 30 volunteers ranging in age

from 19 to 48 years performed six activities: Walking,

Walking, Upstairs, Walking, Downstairs, Sitting,

Standing, and Laying wearing a Samsung Galaxy S II

smartphone on their waist. The experiments have been

video-recorded to label the data manually. Activity

details and corresponding class distribution are given

in Table 4. Total nine features (body acceleration, total

acceleration, and angular velocity signals in all

X, Y, Z-axis) were captured using the embedded

accelerometer and gyroscope at a constant sampling

rate of 50 Hz. The raw signals were first pre-processed

Table 3 Details about different hyper-parameters used during

experimentation

Stage Hyper-parameter Hyper-parameter value

Optimizer Adam

Features extraction Learning rate 0.001

Number of epochs 150/100

Batch size 32

Population size 10

Features selection Crossover probability 0.6

No. of iteration 20

Classification K value for K-NN 5

Table 4 Activity details of UCI-HAR dataset

Activity Description Class distribution (in %)

WALKING The subject walked outside at a brisk to moderate space at a speed of 4–5 km/h 16.72

WALKING_UPSTAIRS The subject ascended the staircase to a higher floor at a normal space 14.99

WALKING_DOWNSTAIRS The subject descended the staircase to a lower floor at a normal space 13.65

SITTING Sitting in a chair in whatever posture the subject feels comfortable 17.26

STANDING The subject was motionless and did nothing 18.51

LAYING The subject did nothing but lay still on a bed 18.87

Table 5 Activity details of WISDM dataset

Activity Description Class Distribution (in %)

Downstairs The subject descended a flight of stairs to a lower floor 9.1

Jogging Running outside at a pace appropriate for each subject 31.2

Sitting The subject was seated in a chair in a comfortable position 5.5

Standing The subject did nothing and remained still 4.4

Upstairs The subject moved up a floor by climbing a set of steps 11.2

Walking The subject moved outside in a straight line at a pace of 4–5 km/h 38.6
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by applying noise filters and then sampled using a

fixed-length overlapping sliding window of 2.56 s and

50% overlap (128 readings per window). The dataset

was randomly partitioned into two parts, where 70%

were used for training and the rest 30% for testing.

2. WISDM [97]: This dataset contains data collected

through controlled laboratory conditions in Fordham

University’s Wireless Sensor Data Mining laboratory.

The samples were captured using a smartphone-

embedded accelerometer, and the data collection

process was controlled using an application that was

executed on an android smartphone. The experiment

was carried out on 36 people, and each performed six

activities—Walking, Jogging, Sitting, Standing,

Upstairs, and Downstairs with an Android phone in

their front leg pocket. Table 5 displays a thorough

description of the activities and the corresponding class

distribution. The 3-axial accelerometer signals were

collected at a constant sampling rate of 20 Hz, i.e.,

each reading at every 50ms and a total of 20 readings

per second. For our proposed work, we first sampled

the raw signals using a fixed-length overlapping

window of 4 s and 50% overlap (80 readings per

window).

3. MHEALTH [98, 99]: The Mobile Health

(MHEALTH) dataset is a multi-modal wearable sensor

dataset. The dataset contained body motion and vital

signs recordings for 10 volunteers of diverse profiles.

Each volunteer performed 12 different physical activ-

ities (Standing Still, Lying Down, Walking, Climbing

Stairs, Cycling, Jogging, Running, etc.) wearing three

wearable sensors (accelerometer, gyroscope, and 2-led

electrocardiogram). The activity details and the class

distributions are shown in Table 6. The sensors were

attached to the chest, right wrist, and left ankle with

elastic straps. Using these sensors, various motions like

acceleration, angular velocity, magnetic field orienta-

tion were measured for better body dynamics while

performing different activities. All the sensor modal-

ities were recorded at a constant sampling rate of 50

Hz. For our proposed work, we consider only the

accelerometer and gyroscope sensors readings placed

on different body parts. We first sampled the raw

signals using a fixed-length overlapping window of

2.56 s and 50% overlap (128 readings per window).

4. PAMAP2 [100]: The hardware configuration for the

PAMAP2 dataset includes three Inertial Measurement

Units (IMUs) that are positioned above the wrist of the

dominant arm, over the chest, and at the ankle. The

dataset has been recorded at a frequency of 100 Hz.

The entire set of data includes a class of 9 people with

annotated human activities who had specific physical

descriptions. Most of the participants were men, and

their dominant hand was the right hand. In actuality,

PAMAP2 has only one left-handed and one female

subject, with ids 102 and 108, respectively. Each

individual was required to adhere to a protocol that

included 12 separate tasks. A detailed description of all

the activities and the class distribution are shown in

Table 7. There are almost 10 h of activity data in this

collection. After removing the anomalous data, we

have segmented the sensor data by a fixed-length

sliding window with 50% overlapping. We have then

randomly partitioned the dataset into two parts, where

70% are used for training and the remaining 30% for

testing.

5. HHAR [101]: The Heterogeneity Dataset for Human

Activity Recognition (HHAR) from Smartphone and

Table 6 Activity details of MHEALTH dataset

Activity Description Class distribution (in %)

climbing stairs The person moved up a floor by climbing a flight of stairs 8.95

Cycling The subject was cycling down a public street 8.95

Front elevation of arms The subject was raising the right hand up to 90 degree 8.58

Jogging The subject was running outside at a speed of 6–7 km/h 8.95

Jump front & back First, the subject leaped forward, and then, without turning, leaped back to starting position 3.02

Knees bending The subject slowly bent both knees and then raise the weight up 8.55

Lying down The subject didn’t move while lying motionless on a bed 8.95

Running The subject was moving forward at a speed of 9–10 km/h 8.95

Sitting & relaxing In a relaxed position, the individual was seated in a chair 8.95

Standing still The subject did nothing and remained still 8.95

Waist bends forward The subject stands steady and reached out to touch the leg with his/her hands 8.25

Walking The subject went at a speed of 4–5 km/h in a straight line 8.95
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Smartwatches is a dataset used for assessing the

performance of various HAR algorithms (classifica-

tion, automatic data segmentation, sensor fusion,

feature extraction, etc.) that use a variety of sensor

types. The collection includes readings from two

motion sensors, namely accelerometer and gyroscope,

frequently found in smartphones, that captured as users

carried smartwatches and smartphones while doing

some programmed tasks in any sequence. To reflect the

sensor heterogeneity which can be anticipated in actual

deployments, the dataset is compiled using a variety of

device models and use scenarios. This dataset recorded

6 different activities of 9 individuals using 6 types of

mobile devices (4 smartphones and 2 smartwatches).

Table 8 shows detailed description and class distribu-

tion of HHAR dataset. In our experiment, we have used

only the smartphone’s accelerometer data. We have

divided the sensor data into segments using a fixed-

length sliding window with 50% overlapping. The

dataset is then randomly divided into two sections,

with 30% being used for testing and the rest 70% being

used for training.

Table 9 presents the summarized information about the

five datasets. UCI-HAR, WISDM, and HHAR datasets

contain 6 activities, but the number of sensors is different.

The MHEALTH and PAMAP2 both datasets contain the 12

activities with more additional sensors. HHAR contains the

largest number of training and testing data, whereas

PAMAP2 contains more additional sensors compared to

the rest of the datasets.

4.3 Performance metrics

In this paper, we mainly use accuracy, precision, recall,

F1—score, and confusion matrix as the performance

measures. We have used micro-averaging score for calcu-

lating precision, recall, and F1—score. Accuracy is defined

as the proportion of correctly predicted samples to the total

number of samples. A True Positive (TP) outcome is one in

which the model correctly predicts the positive class. A

True Negative (TN), on the other hand, is an outcome in

Table 7 Activity details of PAMAP2 dataset

Activity Description Class distribution

(in %)

Nordic_walking The subject performed outside on asphaltic terrain, using asphalt pads on the walking poles 9.68

Ascending_stairs The subject covered a distance of five floors while going upstairs 6.04

Cycling The subject was riding a real bicycle with slow to moderate space 8.47

descending_stairs The subject covered a distance of five floors while going downstairs 5.40

Ironing The subject was ironing 1–2 shirts or T-shirts 12.28

Lying The subject was lying quietly while doing nothing, small movements were allowed 9.90

Rope_jumping The subjects used the method that worked best for them, which was typically the basic leap or the

alternate foot jump

2.54

Running The subject was jogging outside at a suitable speed 5.06

Sitting The subject was permitted to sit in a chair in whatever position that makes them feel comfortable and

to switch positions while they are there

9.54

Standing The subject was motionless and stood still 9.78

Vacuume_cleaning The subject was vacuum cleaning one or two office rooms 9.02

Walking The subject went at a speed of 4–5 km/h in a straight line 12.29

Table 8 Activity details of HHAR dataset

Activity Description Class distribution (in %)

Bike The subject was riding a motorcycle on a free road 16.36

Sit The subject was lounging comfortably in a chair 17.66

Stairsdown The subject went down a set of steps to a lower level 14.32

Stairsup The subject ascended a set of steps to move up a floor 15.80

Stand The subject showed no action and stood stationary 16.42

Walk The subject was moving straight ahead at a brisk to moderate speed 19.44

Neural Computing and Applications

123



which the model correctly predicts the negative class.

Similarly, a False Positive (FP) is an outcome in which the

model predicts the positive class incorrectly and a False

Negative (FN) is an outcome in which the model predicts

the negative class incorrectly. The accuracy can be calcu-

lated in terms of TP, TN, FN, and FP using Eq. (10).

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð10Þ

1. Precision: Precision is defined as the percentage of

positive samples identified correctly, based on the total

number of samples identified as positive. Precision can

be calculated using Eq. (11).

Precision ¼ TP

TPþ FP
ð11Þ

2. Recall: Recall is the proportion of positive samples

that are accurately identified out of all positive trials.

We can calculate the recall using Eq. (12).

Recall ¼ TP

TP þ FN
ð12Þ

3. F1-score: F1-score is a comprehensive approximation

of the model’s accuracy, and it is nothing but the

harmonic mean of precision and recall. It can be

calculated using Eq. (13).

F1-score ¼ 2� Precision� Recall

Precisionþ Recall
ð13Þ

4. Confusion matrix: Confusion matrix is a square

matrix that represents the overall performance of a

classification model. The rows of the confusion matrix

represent true class label instances, while the columns

represent predicted class label instances. This matrix’s

diagonal elements count the number of trials where the

predicted label equals the true label. The confusion

matrix is an important metric for visualizing the

model’s classification performance.

4.4 Results

To thoroughly measure the performance of the proposed

models, we first evaluate the method without FS and

compare it with the result found using the method with FS.

Table 10 summarizes the performance of our proposed

model without FS.

Use of the FS technique helps us reduce the number of

features, which also improves the overall accuracy of our

model. Table 11 provides the detailed performance metrics

obtained by our model using the FS method.

From Tables 10 and 11, it can be seen that the FS

technique reduces the size of the feature set by almost 1/3

of the original feature set in the majority of the cases. This

reduced feature set improves the recognition accuracy by

0.71% for UCI-HAR, 1.06% for WISDM, 0.18% for

MHEALTH, 0.76% for PAMAP2, and 0.88% for HHAR

datasets.

The accuracy and loss plots obtained using the feature

extractor model on the UCI-HAR dataset are shown in

Fig. 6, while the accuracy and loss plots for WISDM,

MHEALTH, PAMAP2, and HHAR datasets are shown in

Figs. 7, 8, 9, 10, respectively.

Table 9 Details of the datasets used

Dataset No. of

activities

Sensors Sampling rate (in

Hz)

No. of training

samples

No. of test

samples

UCI-HAR 6 Accelerometer, Gyroscope 50 7352 2947

WISDM 6 Accelerometer 20 5806 1452

MHEALTH 12 Accelerometer, Gyroscope, Magnetometer,

2-led ECG

50 4288 1073

PAMAP2 12 Accelerometer, Gyroscope, Magnetometer 100 21,249 9107

HHAR 6 Accelerometer, Gyroscope 50–200 123,365 52,872

Table 10 Performance details of

the proposed method without FS
Dataset No. of extracted features Accuracy (in %) Precision Recall F-1 score

UCI-HAR 1024 98.74 0.9874 0.9874 0.9874

WISDM 1024 98.34 0.9834 0.9834 0.9834

MHEALTH 1024 99.72 0.9972 0.9972 0.9972

PAMAP2 1024 97.55 0.9755 0.9755 0.9755

HHAR 1024 96.87 0.9687 0.9687 0.9687
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4.4.1 Evaluation on UCI-HAR dataset

Figure 11 shows the confusion matrices of the proposed

method without FS and with FS side by side.

On the UCI-HAR dataset before applying FS, out of

2947 test samples, a total of 2910 samples are correctly

classified by our model. After applying the FS technique,

the total number of correctly classified samples increases to

2931, and overall, the accuracy is improved from 98.74 to

99. 45%. If we compare Fig. 11a, b, we can see that FS

technique improves the discrimination between Standing

and Sitting. It also improves the recognition accuracy of

the walking activity class. Even after applying the FS, there

is still confusion between sitting and standing. The main

reason could be that the two exercises are comparable from

the perspective of movement sensors. Data from

accelerometers and gyroscopes alone are insufficient for

mining dipper discriminative information.

Fig. 6 a Accuracy plots for training and testing. b Loss plots for training and testing obtained using the feature extractor model on UCI-HAR

dataset

Fig. 7 a Accuracy plots for training and testing. b Loss plots for training and testing obtained using the feature extractor model on WISDM

dataset

Table 11 Performance details of

the proposed method with FS
Dataset Np. of selected features Accuracy (in %) Precision Recall F-1 score

UCI-HAR 242 99.45 0.9945 0.9945 0.9945

WISDM 380 99.38 0.9938 0.9938 0.9938

MHEALTH 307 99.90 0.9990 0.9990 0.9990

PAMAP2 332 98.29 0.9829 0.9829 0.9829

HHAR 515 97.72 0.9772 0.9772 0.9772
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Fig. 8 a Accuracy plots for training and testing. b Loss plots for training and testing obtained using the feature extractor model on MHEALTH

dataset

Fig. 9 a Accuracy plots for training and testing. b Loss plots for training and testing obtained using the feature extractor model on PAMAP2

dataset

Fig. 10 a Accuracy plots for training and testing. b Loss plots for training and testing obtained using the feature extractor model on HHAR

dataset
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4.4.2 Evaluation on WISDM dataset

When we have tested our trained model on the WISDM

dataset, the FS techniques improve the overall recognition

accuracy from 98.34 to 99.38%. Figure 12 represents

confusion matrices of our proposed method without and

with FS. If we compare the confusion matrices of Fig. 12,

it is clear that the reduced optimal features map generated

by the FS technique helps the classifier to recognize each

activity more accurately as the classifier makes less con-

fusion. In the case of WISDM, when we have tested our

trained model with 1452 number of new instances, FS

techniques increase the number of correctly classified

samples from 1428 to 1443.

4.4.3 Evaluation on MHEALTH dataset

In the case of MHEALTH dataset, we have tested

our proposed methods with a total of 1052 new samples.

Figure 13 depicts the confusion matrices of our proposed

method without FS and with FS. The confusion matrices

present in Fig. 13 show that though the model without FS

performed well, the model gets a little confused while

recognizing complex activities like knees bending and

Fig. 11 Confusion matrices for UCI-HAR on the model a without FS and b with FS

Fig. 12 Confusion matrices for WISDM on the model a without FS and b with FS
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waist bends forward. But FS technique reduces the number

of confusions and increases the overall accuracy from

99.72% to 99.90%.

4.4.4 Evaluation on PAMAP2 dataset

The confusion matrices of the proposed technique without

FS and with FS are shown side by side in Fig. 14. Prior to

using FS, the model obtains 97.55% classification accuracy

with a total of 8884 correctly classified samples when

tested on a total of 9107 newly created activity samples.

With a total of 8952 correctly identified samples, the model

achieves 98.29% classification accuracy after applying FS.

Even if the FS approach lessens miss-classification, the

model still confuses the activity class vacuum_cleaning

with other activity classes, as shown in Fig. 14a, b. The

complex nature of this activity class is mainly responsible

for the confusion.

Fig. 13 Confusion matrices for MHEALTH on the model a without FS and b with FS

Fig. 14 Confusion matrices for PAMAP2 on the model a without FS and b with FS
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4.4.5 Evaluation on HHAR dataset

With a total of 52,872 additional samples used to test our

proposed model on the HHAR dataset, the FS approach

increases the overall recognition accuracy from 96.87 to

97.72%. The confusion matrices of our suggested tech-

nique without and with FS are shown in Fig. 15. We can

observe by comparing Figs. 15a, b that the use of the FS

approach results in an increase in the number of correctly

identified samples from 51,219 to 51,669. Similar to the

PAMAP2 dataset, the proposed model still conflates dif-

ferent activity groups even though the FS approach helps to

reduce miss-classification. The primary factor may be that

the limited accelerometer data from a smartphone may not

be sufficient to discern these intricate actions.

4.5 Impact of FS hyper-parameters on model
performance

The classification model’s performance is greatly influ-

enced by the FS hyper-parameters. This section examines

the effect of key FS hyper-parameters such as population

size, crossover probability, and the number of iterations on

the model’s overall accuracy.

4.5.1 Effect of population Size

The population size is an important parameter that has a

direct impact on the ability to find the best solution in the

search space. Having a large population increases the

likelihood of obtaining an optimal solution. In this paper,

we have experimented with different population sizes,

beginning with 5 and increasing to 30 with a fixed interval

of 5. The population size vs accuracy graphs for the five

datasets are shown in Fig. 16. For UCI-HAR, WISDM and

MHEALTH datasets, the accuracy increases linearly and

reaches the global maximum when the population size is

10. As the population size increases, the accuracy follows a

zigzag pattern. For WISDM and MHEALTH, accuracy

reaches the minimum when the population size is 25. At

Fig. 15 Confusion matrices for HHAR on the model a without FS and b with FS

Fig. 16 Population size of GA versus accuracy graphs for all five

HAR datasets

Fig. 17 Crossover probability of GA versus accuracy graphs for all

five HAR datasets
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the same time, the accuracy does not vary much for

PAMAP2 and HHAR datasets. Hence, for our proposed

method, we have used 10 as the default population size.

4.5.2 Effect of crossover probability

Crossover is used as a genetic operator for producing new

candidate solutions from an existing population stochasti-

cally. The crossover probability is the likelihood that a

crossover will occur in specific mating. In this experiment,

we have varied the crossover probability as 0.1, 0.2 to 0.9

and tried to observe how the accuracy changes. Figure 17

depicts the relation of the crossover probabilities and the

accuracy. As we increase the crossover probability, the

change in accuracy varies differently for different datasets.

For UCI-HAR and MHEALTH datasets, initially, accuracy

decreases and then starts to increase as the crossover

probability increases. The accuracy reaches the minimum

when the crossover probability is 0.3 for UCI-HAR and 0.2

for MHEALTH. For the WISDM dataset, the accuracy first

follows a zigzag pattern followed by a sharp fall and

reaches the minimum when the crossover probability is 0.6.

Further increase in the crossover probability increases the

accuracy. The accuracy for the PAMAP2 dataset reaches

its lowest point at 0.4 before beginning to rise. The accu-

racy declines as the crossover probability rises further. On

the HHAR dataset, however, the accuracy does not change

significantly when the crossover probability rises.

4.5.3 Effect of number of iterations

Figure 18 depicts the change in accuracy as the number of

iterations of GA increases. The accuracy of this hyper-

parameter, like that of other hyper-parameters, varies

depending on the dataset. As we increase the number of

iterations from 5 to 30 with a uniform interval of 5, the

accuracy of the UCI-HAR dataset gradually increases and

reaches a maximum when the number of iterations is 30,

whereas for the WISDM and MHEALTH datasets, the

accuracy initially increases and then begins to decrease as

the number of iterations exceeds 15. When the number of

iterations exceeds 25, the accuracy begins to increase

again. The accuracy reaches its peak when the number of

iterations is set to 10 for the WISDM dataset and 15 for the

MHEALTH dataset. With more repetitions, the accuracy

for the PAMAP2 dataset grows in a zigzag pattern. In

contrast, the accuracy for the HHAR dataset first rises

gradually from 5 to 10. The accuracy starts to drop as soon

as any iteration is over 10, and it reaches its lowest point at

30. In our experiment, we have used 30 as the default

number of iterations.

4.6 Comparison with state-of-the-art methods

To assess the efficacy and generalizability of our proposed

model, we have compared it to a number of state-of-the-art

models.

The comparison results for the UCI-HAR, WISDM,

MHEALTH, PAMAP2, and HHAR datasets are shown in

Tables 12, 13, 14, 15 and 16, respectively. The comparison

is done based on the classification accuracy. The results

Fig. 18 No. of iteration versus accuracy graphs for all five HAR

datasets

Table 12 Performance comparison of the proposed model with past

methods for the UCI-HAR dataset

Model Accuracy (in %)

Wang et al [102] 91.65

Nair et al. [28] 94.60

Xia et al. [49] 95.78

Ronao et al. [32] 95.75

Dua et al. [50] 96.20

Challa et al. [103] 96.37

Ignatov et al. [104] 97.63

Proposed model without FS 98.74

Proposed model with FS 99.45

Table 13 Performance comparison of the proposed model with past

methods for the WISDM dataset

Model Accuracy (in %)

Sena et al. [105] 89.01

Ignatov et al. [104] 93.32

Lu et al. [106] 93.50

Xia et al. [49] 95.85

Challa et al. [103] 96.05

Mukherjee et al. [107] 97.20

Dua et al. [50] 97.21

Proposed model without FS 98.34

Proposed model with FS 99.38
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show that our proposed model without FS has achieved

higher recognition accuracy compared to most of the other

HAR models. The use of FS technique has improved

recognition accuracy even more. For all five datasets, our

proposed method with FS outperforms the state-of-the-art

algorithms considered here for comparison.

5 Discussion

The overall results shown in the previous section indicate

the effectiveness of our proposed models for HAR. The

proposed spatial attention module assists in extracting

high-quality features by focusing on the specific spa-

tiotemporal properties that the CWT-based encoding is

able to express in a better way. In this study, we also

analyze how well the FS process works, and we find that in

comparison with the initially extracted features, only a

limited number of important features are needed for rec-

ognizing human activities. In addition to speeding up the

computation, the reduced feature set improves recognition

accuracy to a significant margin (see Tables 10, 11 ). These

days HAR systems are used in a variety of industries, such

as sports analysis, health monitoring, and fall detection for

the elderly persons. In sports analysis, the team manage-

ment needs to analyze players’ physical ability and various

motion patterns to improve the quality of games. Similarly,

in the case of fall detection, an alarm needs to be generated

automatically so that a fall may be recognized. Hence, the

more accuracy we are able to achieve, the more dependable

the system will become. Although our proposed model

performs well in most of the cases, it is to be noted that in

some cases, it gets confused to distinguish similar activity

classes. The model also faces problems to distinguish

between activity groups that come with identical sensor

data patterns. For example, the model gets confused when

sees ’Walking’ with ‘Upstairs’ and ‘Downstairs.’ Simi-

larly, ‘Standing’ and ‘Sitting’ are the most confusing

activity classes as both are static activities and generate

almost similar signal patterns. Our model finds it difficult

to discriminate between ’’Walking’’ with ’’Nordic walk-

ing,’’ ’’Vacuum_cleaning’’ with ’’Ironing,’’ and ’’Upstairs’’

in the PAMAP2 dataset if we take dataset-specific activi-

ties into account. Similar to this, the proposed model for

the HHAR dataset frequently conflates the activity classes

’’stairup’’ and ’’stairdown,’’ as well as the activity classes

’’stairdown’’ and ’’walk.’’ Figure 15 shows that following

FS, the model misclassifies more ’’walk’’ activities as

’’bike,’’ ’’sit,’’ and ’’stand,’’ demonstrating that the FS

method does not necessarily decrease the misclassification

rate for the confusing cases.

6 Conclusion

Sensor-based HAR deals with the prediction of specific

movements or activities of a person based on the sensor

data. It has been an interesting research problem as it can

be used to obtain the identity of a person, their personality,

and psychological state. It can also be applied to identify

Table 14 Performance comparison of the proposed model with past

methods for the MHEALTH dataset

Model Accuracy (in %)

Chen et al. [108] 94.05

Nguyen et al. [109] 94.72

Lu et al. [106] 96.10

Sena et al. [105] 96.27

Qin et al. [58] 98.50

Uddin et al. [110] 99.00

Abdel et al. [111] 99.68

Proposed model without FS 99.72

Proposed model with FS 99.90

Table 15 Performance comparison of the proposed model with past

methods for the PAMAP2 dataset

Model Accuracy (in %)

Xu et al. [112] 93.50

Wang et al. [113] 94.76

Dua et al. [50] 95.27

Awal et al. [114] 95.40

Li et al. [115] 97.37

Baldominos et al. [116] 97.45

Yan et al. [117] 98.18

Proposed model without FS 97.55

Proposed model with FS 98.29

Table 16 Performance comparison of the proposed model with past

methods for the HHAR dataset

Model Accuracy (in %)

Lu et al. [118] 91.16

Bai et al. [119] 91.54

Ehatisham et al. [120] 96.10

Gudur et al. [121] 94.88

Qin et al. [58] 95.88

Abdel et al. [111] 97.17

Proposed model without FS 96.87

Proposed model with FS 97.72
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complex sport activities and medical domains such as

health monitoring systems. Due to its vast scope of prac-

tical applications, it is important to ensure that the model

fulfills the demanding challenges of the task and hence has

gained popularity among the research community in recent

times. In this paper, we have proposed a model for HAR

based on sensor data. We have used Spatial Attention-aided

CNN as the feature extractor and a novel FS technique for

selecting the most prominent features using a modified

version of the popular evolutionary algorithm called GA.

Our proposed method has been experimented on five public

datasets—UCI-HAR, WISDM, MHEALTH, PAMAP2,

and HHAR. It can be observed that the results obtained are

better than state-of-the-art methods. However, there are

still some major scopes of improvement to enhance the

overall performance of the method. In our future endeav-

ors, we intend to improve the classification accuracy with

fewer number of features by exploiting some other recent

meta-heuristic algorithms. We also plan to work on some

other human activity datasets like video based or still

image based and use some pre-trained CNN models to

obtain a good set of initial features.
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90. Kilicarslan S, Celik M, Şafak SAHIN (2021) Hybrid models

based on genetic algorithm and deep learning algorithms for

nutritional Anemia disease classification. Biomed Signal Pro-

cess Control 63:102231
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