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Increasingly, computed tomography~CT! offers higher resolution and faster acqui-
sition times. This has resulted in the opportunity to detect small lung nodules,
which may represent lung cancers at earlier and potentially more curable stages.
However, in the current clinical practice, hundreds of such thin-sectional CT im-
ages are generated for each patient and are evaluated by a radiologist in the tradi-
tional sense of looking at each image in the axial mode. This results in the potential
to miss small nodules and thus potentially miss a cancer. In this paper, we present
a computerized method for automated identification of small lung nodules on mul-
tislice CT~MSCT! images. The method consists of three steps:~i! separation of the
lungs from the other anatomic structures,~ii! detection of nodule candidates in the
extracted lungs, and~iii! reduction of false-positives among the detected nodule
candidates. A three-dimensional lung mask can be extracted by analyzing density
histogram of volumetric chest images followed by a morphological operation.
Higher density structures including nodules scattered throughout the lungs can be
identified by using a local density maximum algorithm. Information about nodules
such as size and compact shape are then incorporated into the algorithm to reduce
the detected nodule candidates which are not likely to be nodules. The method was
applied to the detection of computer simulated small lung nodules~2 to 7 mm in
diameter!and achieved a sensitivity of 84.2% with, on average, five false-positive
results per scan. The preliminary results demonstrate the potential of this technique
for assisting the detection of small nodules from chest MSCT images. ©2003
American College of Medical Physics.@DOI: 10.1120/1.1582411#

PACS number~s!: 87.57.2s, 87.90.1y

Key words: computer-aided detection~CAD!, computed tomography, lung nodule,
image processing, local density maximum

INTRODUCTION

Lung cancer is the leading cause of cancer death in both men and women in the USA. In 2
is estimated that there would be 169 400 newly diagnosed cases of lung cancer and 157 900
from this disease in the United States.1 More people die of lung cancer than of colon, breast, a
prostate cancers~the next three most deadly cancers! combined. Although surgery, radiatio
therapy, and chemotherapy have been used in the treatment of lung carcinoma, the fiv
survival rate for all stages combined is only 14%. This has not changed in the past three de
It is reported that the survival rate for localized cancer~stage I!is 49%. However, only 15% of
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lung cancers can be discovered that early.2 Assuming that intervention at early stages leads
higher survival rates, it is thus a major public health directive to improve the survival rate a
reduce the mortality of lung cancer through detection and intervention at an earlier and pote
more curable stage.

CT is considered to be the most accurate imaging modality available for early detectio
diagnosis of lung cancer.3–8 Multislice CT ~MSCT!, utilizing multiple detector row technology
has increased scanning speed. As a consequence, volumetric CT chest images can be acqu
a single breath hold, with 1–3 mm axial collimation. These thin sections can facilitate the d
tion of small nodules that may include lung cancers at early stages. However, hundreds
images per examination are difficult to interpret in the traditional axial mode, leading to a
false-negative rate for detecting small nodules. The reasons are multiple and are related
conspicuity of nodule itself~size, density, and location!, human error, and scanning techniq
~e.g., radiation dose, slice thickness!.

Although CT may be capable of depicting lung nodules as small as 1 mm,9 a three-dimensiona
~3D! computer simulated nodule study demonstrated the overall detection rate to be only 63
nodules 1–7 mm in diameter. As the size of the nodule decreased, the sensitivity fell and on
of nodules less than 3 mm and 1% of nodules less than 1.5 mm were detected.10 Furthermore,
retrospective analysis of CT scans constantly revealed undetected lung cancers on the
scans.11–13

Manipulation of volumetric CT data sets may improve a radiologist’s ability to detect s
lung nodules. For example, reconstruction of CT images with narrow interscan spacing14 and
interpretation of images using cine rather than film-based viewing technique15,16 have been re-
ported to improve small nodule detection. With the fast advancement of computer softwar
hardware, there is an urgent need to develop computer-assisted tools for the optimized de
and quantitative evaluation of the large number of small nodules identified by volumetric che
in both diagnostic and screening studies.

A number of computer-aided methods and systems for the automated detection of small n
from CT chest images have been developed over the years.17–26From the technical point of view
they can be divided into two groups of approaches: density-based and model-based appr
Considering the fact that lung nodules have relatively higher densities than those of lung
chyma, density-based detection methods employ techniques such as multiple thresholdin8,17,18

region-growing,19 locally adaptive thresholding in combination with region-growing,20 and fuzzy
clustering21 to identify nodule candidates in the lungs. False-positive results can then be re
from the detected nodule candidates by employinga priori knowledge of small lung nodules. Fo
the model-based detection approaches, the relatively compact shape of a small lung no
taken into account while establishing the models to identify nodules in the lungs. Technique
as ‘‘N-Quoit filter,’’ 22 template-matching,23 object-based deformation,24 and the anatomy-base
generic model25 have been proposed to identify sphere-shaped small nodules in the lungs.
attempts include automated detection of lung nodules by analysis of curved surface morpho26

and improvement of the nodule detection by subtracting bronchovascular structures from th
images.27 Due to the relatively small size of the existing CT lung nodule databases and the va
CT imaging acquisition protocols, it is hard to compare the detection performance amon
developed algorithms.

Because of the wide range of density distribution of lung nodules on CT images, the mu
thresholding technique in combination with the feature extraction and classification appears
a practical approach to effective and efficient nodule detection. In this paper, we prese
preliminary study on the development of an advanced multiple thresholding method for the
mated detection of small lung nodules. The method uses a three-step approach. The first s
automatically extract the lungs from MSCT images by analyzing the volumetric density h
gram, thresholding the original images, and subsequently applying a morphological opera
the resultant images. The second step is to identify higher density structures~e.g., nodules, ves
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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250 Zhao et al. : Automatic detection of small lung nodules on C T . . . 250
sels!spread throughout the extracted lungs using a local density maximum~LDM! algorithm. The
last step is to reduce false-positive results from the detected nodule candidates usinga priori
knowledge of the lung nodules. The detection method has been validated with computer sim
small lung nodules.

METHODS

A. Automated extraction of the lungs

The basis of the lung segmentation involves finding a threshold in the density histogram
chest images. One 3.75-mm-thick slice from a CT chest series~Lightspeed QX/i, GE Medical
Systems, Milwaukee, WI! and the corresponding volumetric density histogram are shown in
1. Typically, there are four peaks on the histogram, representing, from left to right, backgr
outside the body, lung parenchyma, fat, and muscle, respectively. Bones have higher dens
those of muscles but they have too few voxels to form a peak. A long, flat, and low valley bet
the peaks of the lung parenchyma~second peak from the left! and the fat~third peak from the left!
on the histogram indicates that the separation of the lung parenchyma from the soft tissues~fat and
muscles!and bones is insensitive to the density threshold set within the valley. A threshold
lying in the lung parenchyma-fat valley can be chosen after automatic determination of the
peaks. This threshold is then used to initially separate the lung parenchyma from the othe
tomic structures on the CT images.

Voxels having a density lower than the threshold value will be recognized as lung cand
and assigned the value of 1 and appear white in Fig. 2~b!, whereas other voxels are assigned t
value of 0 and appear black in Fig. 2~b!. Due to their low densities, both the lung parenchyma a
background will be classified as the ‘‘lung’’ on the resultant binary images. As the lung pa
chyma is usually completely isolated from the background by the chest wall, it can be re
determined by labeling 3D connected components~i.e., grouping geometrically connected voxe
that have the value of 1 and assigning an identical number to the voxels in each individual g!
and selecting the largest component that does not touch any margin of the images@Fig. 2~c!#. As
the apparent density of vessels and bronchial walls in the lung differ, structures with h
densities including some higher density nodules could be grouped into soft tissues and
leading to an incomplete extraction of the lung mask@Fig. 2~c!#. To obtain a complete, hollow-fre
lung mask, morphological closing is applied@Fig. 2~d!#. Spherical shape of the structural eleme

FIG. 1. ~Color!A single chest CT slice and the corresponding volumetric density histogram.~a!Anatomic structures of the
lungs are marked on the CT image.~b! A typical volumetric chest CT histogram with four density frequency-peaks on
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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is chosen for the morphological operator and the filter size is experimentally determined. W
3D mask, the lungs can be readily extracted from the original chest CT images@Fig. 2~e!#.

In the image processing steps gray level values rather than Hounsfield units are utilize
values of gray level obtained from the GE Lightspeed QX/i machine equate to Hounsfield
HU as follows: gray level5HU11024.

B. Detection of nodule candidates using a local density maximum algorithm

Blood vessels, bronchial walls, and nodules have density values higher than those of th
parenchyma on CT images. A 3D algorithm, local density maximum~LDM!, has been thus
developed for locating those higher density structures scattered throughout the lungs.

The algorithm can be intuitively explained with a one-dimensional example. Suppose the
in Fig. 3 is a density profile. The LDM algorithm begins to threshold it with an initial thresh
value that can be the maximal density value of the profile. Objects~an object is a group of
connected points with density values greater than the threshold! can be identified through labelin
connected components. Subsequently, the threshold level decreases in a stepwise manner
result more objects are identified. Local density maxima~local maxima!can be determined by
testing geometric overlap of the objects identified at the current threshold level with the
detected at the previous level. The detail of the LDM algorithm is given in the appendix.

Three-dimensional objects are determined at each threshold level by labeling 3D con
components. Geometrical overlapping of the objects identified at the consecutive threshold
are tested along each of the three directions~i.e., x, y, andz directions!, respectively.

Five parameters~i.e., the threshold step, threshold stop value, minimal density peak of
maximum, minimal size of local maximum, and the ratio specifying the change of object’s vo
to its surrounding box’s volume!are used in the algorithm. The minimal size is chosen base
the size range of nodule of interest as well as the CT in-plane resolution. The other para
control the density difference between a local maximum and its background. All paramete
determined experimentally. In this work, we chose 7~gray level!as the threshold step, 15~gray
value!as the threshold stop value, 12~gray level!as the density peak, 10~voxel! as the minimal
size, and 1/30 as the ratior.

FIG. 2. ~Color! Automatic extraction of the lungs from chest CT images.~a! Original image.~b! Thresholded image.
Threshold level52375 HU. ~c! Initial lung mask.~d! Complete lung mask.~e! Extracted lungs.
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003



ut the
ext

cal
d to,
e range
ough

e plane
former

eters are

ding

f

klike
e

is of

is of

with a

252 Zhao et al. : Automatic detection of small lung nodules on C T . . . 252
C. Reduction of false-positive results

Local maxima identified by the LDM may have any size and shape as the information abo
nodule size~except the smallest size! and shape are not integrated into the algorithm. The n
step is, therefore, to apply thea priori knowledge of small lung nodules to eliminate those lo
maxima which are not likely to be lung nodules. Such information includes, but is not limite
the size and shape of lung nodules that need to be detected. Only those that fall into the siz
of nodule of interest will be reserved for further consideration as nodules. In addition, alth
nodules on a CT slice may have similar appearance to blood vessels that run through th
perpendicularly, nodules and vessels have very distinct shapes in three dimensions. The
have a near spherical shape, whereas the latter have a tubular shape. The following param
thus defined in this work to distinguish nodules from non-nodules.

~1! R1 is defined as the ratio of the volume of the object to the volume of a modified boun
box of the object, i.e.,

R15number of object voxels/$@max~dx,dy!#@max~dx,dy!#dz%, ~1!

where,dx, dy, anddzare the maximal projection lengths~in pixel! of the object along the axes o
x, y, andz, respectively, and max(dx,dy)5dx, if dx>dy; otherwise, max(dx,dy)5dy. The volume
of the box containing an object is given by the denominator in Eq.~1! rather than bydx•dy
•dz. This allowsR1 to be able to distinguish between a compact-shaped object from a stic
object lying in the lungs at a small angle to either thex or y coordinate axis. Figure 4 explains th
modification of the bounding box of an object in two dimensions.

~2! R2 is defined as the ratio of the maximal projection length of the object along the ax
z to the maximal projection length of the object along the axis ofx or y, whichever is larger. The
nonisotropic characteristics of CT scan are taken into account by multiplying the length~in pixel!
with the corresponding pixel size~in mm!.

R25~dz!p-sizez /$@max~dx,dy!#p-sizex%, ~2!

wherep-sizez andp-sizex are the pixel size inz andx(y) directions, respectively.
~3! R3 is defined as the ratio of the maximal projection length of the object along the ax

x or y, whichever is larger to the maximal projection length of the object along the axis ofx or y,
whichever is smaller.

FIG. 3. ~Color! One-dimensional example of the detection of local maximum. Detected local maxima are marked
thin line and plateaus with a thick line.A is a newly detected object;C ~local maximum! replacesB; D is a local maximum,
whereasE is a plateau;F andG are two local maxima residing at the plateauH.
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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R35max~dx,dy!/min~dx,dy!, ~3!

where min(dx,dy)5dx, if dx,dy; otherwise, min(dx,dy)5dy.
An object~nodule candidate!will be considered as noncompact or not within the size rang

interest, and thus be deleted if the following expression is true:

R1,0.3iR2.5.0iR2,0.2iR3.1.5i$@~dx!p-sizex,2.0#

&& @~dy!p-sizey,2.0#%i$@~dx!p-sizex.15.0#&& @~dy!p-sizey.15.0#%, ~4!

wherei is the logicalOR and && is the logicalAND. The threshold values forR1, R2, andR3 are
determined experimentally.

The above-defined parameters and conditions ensure that the remaining objects have re
compact shapes in both three dimensions (R1) and two dimensions (R2 andR3) and fall into the
size range of nodule. Although nonisotropic characteristics of CT scanner is taken into ac
while calculatingR2, the threshold level ofR2 is deviated from 1~the closer the value ofR2 to
1, the more compact shape an object will possess!. This is because the partial volume artifa
alongz axis is larger than that alongx andy axes.

D. Nodule simulation

A computer simulation program generated a bank of lung nodules which were small sp
and ellipsoids of various sizes and densities. The size of nodules varied in diameter from
mm ~mean: 4.1 mm; std: 0.9 mm!; densities were between the average densities of the
parenchyma and soft tissues~mean:2233.1 HU; std:140.7 HU!; and shapes were sphere a
ellipsoid~the ratio of the long axis to the short one of an ellipsoid being,1.5!. Figure 5 shows the
size and density distributions of the simulated nodules.

Before adding the nodules onto CT images, the nodule images~a nodule image only contain
the nodule!were smoothed with a 3D Gaussian low-pass filter. Visually, we found that Gau
filter with a length of 5 voxels produced the most similar edge appearance of the simu
nodules to those of surrounding vessels that are perpendicular to the plane of the CT imag
to the nonisotropic resolutions of CT images, the chest images were first interpolated in
isotropic scale. Nodules were then added onto those isotropic images. The chest images co
simulated small nodules were then subsampled back to the original resolutions before the
detection algorithm was applied.

FIG. 4. ~Color! Explanation of the modification of an object’s bounding box in two dimensions. Objects in~a! and~b! have
very distinct shapes. If we use the bounding box to define the parameter ofR1, i.e.,R15number of object pixels/(dx* dy),
the two objects will have similar values ofR1. However, If we use a modified bounding box~c! to define the parameter o
R1, i.e.,R15number of object pixels/@max(dx,dy)# @max(dx,dy)#, the two objects will have distinct values ofR1.
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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Thirty to thirty-five such smoothed small nodules were then added onto each of eight n
noncontrast chest examinations. The protocol of these clinically acquired diagnostic image
120/140 kVp, 220/290 mAs, pitch of 3:1, and 3.75 mm collimation/3.75 reconstruction inte
Nodules were added throughout various parts of the lung fields, including in some cases, a
which they were ‘‘attached’’ to vessels. Geometrically, 20% of the nodules were distributed
peripheral zone of the lungs~within approximately 2 cm of the pleural surfaces!, 7% in the central
zone~within approximately 2 cm of the mediastinum!, and 73% in the middle zone~between the
peripheral and the central!. To simulate clinical practice with lung cancers or lung metasta
particular attention was paid so that small and low density nodules were placed in the peri
zone of the lungs and nodules that imitated the surrounding vessels running perpendi
through the CT planes were placed in the central and the middle zones of the lungs. Furthe
nodule densities, in general, should not be greater than those of adjacent vessels.

RESULTS

In total, 266 simulated small nodules were added onto eight normal chest CT scans, eac
having 60 to 80 slices. 251 nodules were detected by the LDM algorithm, corresponding
detection sensitivity of 94.4%. There were 906 false-positive nodules per case. After applyi
algorithm for the reduction of false-positive results, 224 nodules were retained, correspond
a final detection sensitivity of 84.2%. The average number of false-positives per case was r
to only 5 ~ranged 1 to 9!. Furthermore, 11.4% of the nodules placed in the central zone, 22.
the nodules placed in the peripheral zone, and 15.8% of the nodules placed in the middle z
the lungs were not detected by the algorithm. Among them2

3 were initially detected by the LDM
as local maxima~nodule candidates!but then deleted by the reduction of false-positives in the n
step.

Figures 6 and 7 show representative CT images with computer simulated nodules a
corresponding results to demonstrate the ability of the detection algorithm. Figure 6 prese
example where seven small nodules were added onto the image. The algorithm succe
detected all of them~circle!, including the two that were attached to vessels~arrows!. There was
no false-positive result on the image. Figure 7 shows another example with false-positive
and missed nodules. Four small nodules were added onto the image. Two of them were pl
imitate surrounding blood vessels that ran perpendicularly through the CT plane, and the oth
small and low-density nodules were placed in the peripheral zone of the lung. Three of th
added nodules were detected~circle!, one was missed~arrow!, and there were two falsely detecte
nodules~circle and open arrow!.

The algorithm, without any modification, was directly applied to a clinical subject with f
actual small lung nodules. The imaging protocol was different than the one used in the simu

FIG. 5. ~Color! Size and density distributions of the computer simulated lung nodules.~a! Nodule size distribution~mean:
4.1 mm; std: 0.9 mm!. ~b! Nodule density distribution~mean:2233.1 HU; std: 140.7 HU!.
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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255 Zhao et al. : Automatic detection of small lung nodules on C T . . . 255
study, i.e., 120 kVp, 150 mAs, 7.0 mm collimation and 7.0 reconstruction interval. Figure 8 s
the detection result. Three of the four nodules were successfully detected by the algorithm~circle!,
including one ground-glass opacity nodule~circle and arrow!and one nodule that was attached
the surrounding vessels~circle and arrow head!. There were nine false-positive results, and tw
them are shown in Fig. 8~diamonds!. One nodule was not detected~triangle!.

DISCUSSION

The essence of our detection method lies in its ability to automatically search for higher d
structures including nodules scattered in the lungs through sequentially declining threshold

FIG. 6. ~Color! Small nodule detection using the LDM algorithm. All inserted seven nodules were successfully de
~circles!, including the two that were attached to vessels~arrows!.

FIG. 7. ~Color! Small nodule detection using the LDM algorithm with two false-positive results. Three of the four ins
nodules were detected~circles!, one was missed~arrow!, and there were two falsely detected nodules~circles and open
arrows!.
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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This search of higher density structures can be terminated locally if any of the termination c
of identifying local maxima is met. Nodules having a wide range of density distribution can
be automatically identified from both homogeneous and heterogeneous lung parenchyma
plateau in which a nodule resides is defined locally. Furthermore, nodules that attach to ad
vessels can also be identified, as long as their densities are different to those of the vesse
contact points by a certain amount.

One limitation of a region-growing-based technique is that it may not detect lower de
nodules if seed points from where suspicious nodule regions start to grow do not include an
of those lower density nodules. Difficulties may also rise with a cluster-based technique
dealing with the lung nodules of a wide range of densities, i.e., of mixed attenuation. The no
may be falsely classified as blood vessels~for those nodules having higher density values! or as
lung parenchyma~for those nodules having lower density values!. One of the advantages of ou
method over the existing multiple thresholding detection technique is that objects detec
different threshold levels can be efficiently tracked and merged to a single one if they belo
each other. This is not possible with the existing technique,8,17,18 where objects detected at eac
given threshold level are all considered as nodule candidates and are subjected to the sub
feature extraction and classification for the reduction of false-positives. There exists a data
dancy in the feature extraction and classification of the existing technique as an object dete
a higher threshold level belongs to a part of the object detected at a lower threshold level,
geometrically overlap with each other. This redundancy will cause unnecessary computation
feature extraction and may create confusion in the classification. In our approach, the data
dancy can be avoided by identifying and merging identical objects detected at different thres

Potentially, there are two parts in the algorithm where the detection sensitivity and the r
false-positives may be affected. They are the identification of local maxima and the reduct
false-positives. To obtain a higher detection sensitivity and lower rate of false-positive re
lung nodules should be identified as local maxima~nodule candidates!as many as possible, whil
the effects of heterogeneity of lung parenchyma and vascular structures as well as noise sh
maximally suppressed. This is because if a nodule is not detected as a local maximum by th
algorithm, it will become a false-negative. On the other hand, all non-nodule local maxima th
not able to be eliminated by the reduction of false-positives will become false-positives. Eve

FIG. 8. ~Color!Application of the detection algorithm to a clinical case with actual lung nodules. Three of the four no
were detected~circles!, including one ground-glass opacity nodule~circle and arrow! and one nodule that was attached
the surrounding vessels~circle and arrow head!. One nodule was not detected~triangle!. There were nine false-positives
total and two of them are shown as examples~diamonds!.
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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nodule is recognized as a local maximum by the LDM algorithm, it may still be incorrectly r
out in the process of the reduction of false-positives~i.e., may also become a false-negativ!.
Obviously, in the reduction of false-positives among the detected nodule candidates the
balance between preserving nodules and eliminating non-nodules using the extracted featu
cautiously adjusting the algorithm’s parameters, a satisfactory detection performance c
achieved. In our simulation study, a detection sensitivity of 94.4% was reached with the
algorithm ~i.e., 94.4% of nodules were detected as local maxima!. However, a total number o
detected nodule candidates could be larger than 1000. After applying the extracted feat
reduce false-positives, the number of false-positives per case was reduced to 1–9~average: 5!.
However, the detection sensitivity dropped to 84.2%. It was reported in the Results sectio
two thirds of false-negatives~missed nodules!were initially detected by the LDM as loca
maxima. They were deleted later by the reduction of false-positives. This indicates that the
tion sensitivity may be increased by improving the strategies for the reduction of false-pos
The remaining false-positives are mainly caused by the heterogeneous density of vessels du
partial volume artifact of CT scanners. Those segments of vessels appearing with higher de
and possessing compact shapes may be recognized as nodule candidates. They cannot b
ruled out by using the extracted features, since they share common characteristics with n
However, they may be removed by including additional information about, for example, plat
density into the detection algorithm.

Unlike the radiologist’s detection of small lung nodules, vessels that are perpendicular
CT planes~i.e., they have nodulelike appearances in the plane! should not mislead the compute
interpretation. This is because the detection algorithm can distinguish between a spherica
nodule and a cylinder vascular structure by analyzing the 3D shapes. Theoretically, the
mance of a computer-aided detection method should not be affected by the nodule location
as the nodules are not attached to the surrounding structures that have identical or similar
distributions to those of the nodules. In our simulation study, the missing rates of the no
placed in the central and middle zones of the lungs were similar~11.4% versus 15.8%!. Small an
low density nodules were placed in the peripheral zone of the lungs, accounting for the
false-negative rate of the peripheral nodules~22.2%!. This may be improved by adapting th
feature thresholds in the reduction of false-positives.

In this preliminary study, computer simulated nodules were added onto clinically acquire
chest images to demonstrate the ability of our algorithm to detect small lung nodules. The
lated nodules were created with clinically relevant sizes and densities, and were placed thro
the lungs. Unlike evaluation of the visual detection performance where simulated nodule
strictly required to imitate real nodules, particularly to imitate nodule edge appearances, eva
of the performance of computer-aided detection algorithms may not require such strictly sim
ties between real and simulated nodules. For the detection algorithm developed in this
factors that are related to the nodules and may affect the algorithm’s performance are the
differences between a nodule and its surrounding background and the nodule shape. The al
is thus sensitive to image random noise caused by quantum mottle and structural dist
brought in by the CT reconstruction algorithm as they may change the nodule-lung paren
relationship. In the simulation study, random noise and structural distortions were unchan
the images containing the computer-generated nodules as the nodules were simply added
images. Therefore, the parameters of the LDM algorithm may not necessarily need to be m
when the algorithm is transferred from the simulation study to clinical studies. With regard t
nodule shape, sphere and ellipsoid were used to model the lung nodules in the simulation
since small lung nodules tend to be compact. Although the nodule shape has little effect
LDM algorithm, it does influence the performance of the reduction of the false-positives be
the latter utilizes the shape features to distinguish between nodules and non-nodules.
previous study on the segmentation of small lung nodules on volumetric CT images, we foun
the 3D shape compactness factor can be sensitive to the object~nodule!size, i.e., the value of the
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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compactness factor may become meaningless for small objects.28 This is because the fraction o
the number of object surface voxels to the number of entire object voxels increases as the
an object decreases. The object surface voxels are the voxels that cause errors in the estim
the 3D compactness factor. Instead of using the 3D shape compactness factor, we defined
2D and 3D ratios derived directly fromdx,dy, anddz, the maximal projection lengths of an obje
along the axes ofx, y, andz. We found these ratios practical and useful in the discrimination
small nodules from non-nodules. Another reason for employing these features is that the va
the features are already available from the output of the LDM algorithm, there is no ne
calculate them in the feature extraction. However, in reality, nodules may not be sphe
ellipsoids. Therefore, the features and the threshold levels set for discriminating nodules
non-nodules in the simulation study may need to be modified or improved so that the det
algorithm can work appropriately for clinical studies.

Nevertheless, without making any changes to the algorithm, a similar result of the det
sensitivity and false-positive rate was obtained when the detection algorithm was applie
clinical case with actual lung nodules. It is worth mentioning that the acquisition protocol o
images containing the actual lung nodules was different from the one used in the simulation
Particularly, the images were acquired with different slice thicknesses~simulation images versu
clinical case: 3.75 mm versus 7.0 mm!. In addition, the detected actual nodules all had specula
shapes, including a ground-glass opacity nodule and a nodule that was attached to the surr
vessels. One nodule was not detected because only small part of it was detected as a
candidate by the LDM algorithm. It was then eliminated in the process of reducing false-pos
as it did not meet the size criterion of being a nodule.

To achieve high detection sensitivity and, in the meanwhile, to keep the number of
positives as low as possible, modifications or even redefinitions of the parameters used
detection algorithm are expected when the algorithm is further validated with a large clinica
set, particularly when the image data sets are acquired under different imaging protocols.
theless, there is an inevitable dilemma, as a high detection sensitivity can be only achieved
cost of an increasing number of false-positive results.

The LDM algorithm is designed to detect solid lung nodules on CT images. It should also
for part-solid nodules as long as the solid part~s! of the nodule exceeds a certain size. It may f
to detect nonsolid nodules. Furthermore, if a nodule is attached to a blood vessel and ther
density difference between the nodule and the vessel at their contact points, the nodule may
able to be detected by this algorithm. This requires further improvement of the algorith
developing additional features that allow to identify a compact part~i.e., nodule!from an object
~e.g., vessel with a nodule attached!.

CONCLUSION

We have developed an advanced computerized method for the automated detection o
nodules on chest MSCT images. This method uses a three-step approach, consisting of au
extraction of the lungs, detection of higher density structures in the extracted lungs, and el
tion of false-positive results among the detected nodule candidates. The method has been v
with computer generated small lung nodules~2 to 7 mm! and achieved a detection sensitivity
84.2%. There were, on average, five false-positive nodules per case. Our preliminary study
the potential of the method for assisting the detection of small lung nodules on MSCT ima

APPENDIX: THE LDM ALGORITHM

The detail of searching for local maxima~nodule candidates!is described in the following.
Suppose that obji

c , i 51, . . . ,nc are the objects detected at the current threshold level, and oj
p ,

j 51, . . . ,np are the objects detected at the previous threshold level. If for a given obji
Journal of Applied Clinical Medical Physics, Vol. 4, No. 3, Summer 2003
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detected at the current threshold level there existsm objects detected at the previous thresho
level such that obji

c$objkl

p ; kl<np ; l 50,1, . . . ,m; i 51, . . . ,nc , then the following three situa

tions need to be considered.
~i! If m50, i.e., the current object has no overlap with any of the previous objects. The cu

object is thus regarded as a new object detected at the current threshold level~e.g., objectA in Fig.
3!.

~ii! If m51, which specifies that the current object overlaps only one of the previous ob
this object will replace the previous one~e.g., objectC replaces objectB!. However, there is one
exception. We define a ratio parameterr 5r1/r2, wherer1 is the ratio of the volume of the curren
object to that of its bounding box andr2 is the ratio of the volume of the previous object to th
of its bounding box. If the ratior drops drastically, the current object will be interpreted a
plateau~objectE! on which the previously detected one~D! will be identified as a local maximum
if it meets the following two criteria for being a local maximum. Explicitly, its size and den
must be larger than a predefined minimal size and minimal density peak height correspon

~iii! If m.1, which indicates that the current object overlaps more than one previous o
should any of the previous objects meet the criteria of being a local maximum, it will be re
nized as a local maximum~F andG! and the current object becomes a plateau~H!. Otherwise, it
will be treated either as in case~ii! if only one of the previous objects meets the criteria of be
a local maximum or as in case~i! if none of the previous objects meets the criteria.

The process of searching for local maxima terminates when the threshold reaches the m
density value of the lung images, or a predefined density value that can be derived f
statistical analysis of lung parenchyma.
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