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Increasingly, computed tomograpk@T) offers higher resolution and faster acqui-
sition times. This has resulted in the opportunity to detect small lung nodules,
which may represent lung cancers at earlier and potentially more curable stages.
However, in the current clinical practice, hundreds of such thin-sectional CT im-
ages are generated for each patient and are evaluated by a radiologist in the tradi-
tional sense of looking at each image in the axial mode. This results in the potential
to miss small nodules and thus potentially miss a cancer. In this paper, we present
a computerized method for automated identification of small lung nodules on mul-
tislice CT(MSCT) images. The method consists of three stépseparation of the
lungs from the other anatomic structurég, detection of nodule candidates in the
extracted lungs, andii) reduction of false-positives among the detected nodule
candidates. A three-dimensional lung mask can be extracted by analyzing density
histogram of volumetric chest images followed by a morphological operation.
Higher density structures including nodules scattered throughout the lungs can be
identified by using a local density maximum algorithm. Information about nodules
such as size and compact shape are then incorporated into the algorithm to reduce
the detected nodule candidates which are not likely to be nodules. The method was
applied to the detection of computer simulated small lung nod@es 7 mm in
diameter)and achieved a sensitivity of 84.2% with, on average, five false-positive
results per scan. The preliminary results demonstrate the potential of this technique
for assisting the detection of small nodules from chest MSCT images20G3
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INTRODUCTION

Lung cancer is the leading cause of cancer death in both men and women in the USA. In 2002, it
is estimated that there would be 169 400 newly diagnosed cases of lung cancer and 157 900 deaths
from this disease in the United Statellore people die of lung cancer than of colon, breast, and
prostate cancergthe next three most deadly candemombined. Although surgery, radiation
therapy, and chemotherapy have been used in the treatment of lung carcinoma, the five-year
survival rate for all stages combined is only 14%. This has not changed in the past three decades.
It is reported that the survival rate for localized cantsage I)is 49%. However, only 15% of
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lung cancers can be discovered that eayssuming that intervention at early stages leads to
higher survival rates, it is thus a major public health directive to improve the survival rate and to
reduce the mortality of lung cancer through detection and intervention at an earlier and potentially
more curable stage.

CT is considered to be the most accurate imaging modality available for early detection and
diagnosis of lung cancér® Multislice CT (MSCT), utilizing multiple detector row technology,
has increased scanning speed. As a consequence, volumetric CT chest images can be acquired with
a single breath hold, with 1-3 mm axial collimation. These thin sections can facilitate the detec-
tion of small nodules that may include lung cancers at early stages. However, hundreds of CT
images per examination are difficult to interpret in the traditional axial mode, leading to a high
false-negative rate for detecting small nodules. The reasons are multiple and are related to the
conspicuity of nodule itselfsize, density, and locatignhuman error, and scanning technique
(e.g., radiation dose, slice thickngss

Although CT may be capable of depicting lung nodules as small as f anthree-dimensional
(3D) computer simulated nodule study demonstrated the overall detection rate to be only 63% for
nodules 1-7 mm in diameter. As the size of the nodule decreased, the sensitivity fell and only 48%
of nodules less than 3 mm and 1% of nodules less than 1.5 mm were défeEtathermore,
retrospective analysis of CT scans constantly revealed undetected lung cancers on the initial
scans:!~13

Manipulation of volumetric CT data sets may improve a radiologist’s ability to detect small
lung nodules. For example, reconstruction of CT images with narrow interscan sfiamirty
interpretation of images using cine rather than film-based viewing tecHritfusave been re-
ported to improve small nodule detection. With the fast advancement of computer software and
hardware, there is an urgent need to develop computer-assisted tools for the optimized detection
and guantitative evaluation of the large number of small nodules identified by volumetric chest CT
in both diagnostic and screening studies.

A number of computer-aided methods and systems for the automated detection of small nodules
from CT chest images have been developed over the y&&fs=rom the technical point of view,
they can be divided into two groups of approaches: density-based and model-based approaches.
Considering the fact that lung nodules have relatively higher densities than those of lung paren-
chyma, density-based detection methods employ techniques such as multiple threshiditing,
region-growing!® locally adaptive thresholding in combination with region-growfignd fuzzy
clustering® to identify nodule candidates in the lungs. False-positive results can then be reduced
from the detected nodule candidates by employngiori knowledge of small lung nodules. For
the model-based detection approaches, the relatively compact shape of a small lung nodule is
taken into account while establishing the models to identify nodules in the lungs. Techniques such
as “N-Quoit filter,” 22 template-matching® object-based deformatidfi,and the anatomy-based
generic modéP have been proposed to identify sphere-shaped small nodules in the lungs. Other
attempts include automated detection of lung nodules by analysis of curved surface morffhology
and improvement of the nodule detection by subtracting bronchovascular structures from the lung
images®’ Due to the relatively small size of the existing CT lung nodule databases and the various
CT imaging acquisition protocols, it is hard to compare the detection performance among the
developed algorithms.

Because of the wide range of density distribution of lung nodules on CT images, the multiple
thresholding technigue in combination with the feature extraction and classification appears to be
a practical approach to effective and efficient nodule detection. In this paper, we present our
preliminary study on the development of an advanced multiple thresholding method for the auto-
mated detection of small lung nodules. The method uses a three-step approach. The first step is to
automatically extract the lungs from MSCT images by analyzing the volumetric density histo-
gram, thresholding the original images, and subsequently applying a morphological operation to
the resultant images. The second step is to identify higher density stru¢ugesnodules, ves-
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Fic. 1. (Color) A single chest CT slice and the corresponding volumetric density histogeasnatomic structures of the
lungs are marked on the CT imagde) A typical volumetric chest CT histogram with four density frequency-peaks on it.

sels)spread throughout the extracted lungs using a local density maxiioDivi) algorithm. The

last step is to reduce false-positive results from the detected nodule candidates ysing
knowledge of the lung nodules. The detection method has been validated with computer simulated
small lung nodules.

METHODS
A. Automated extraction of the lungs

The basis of the lung segmentation involves finding a threshold in the density histogram of CT
chest images. One 3.75-mm-thick slice from a CT chest s¢kightspeed QX/i, GE Medical
Systems, Milwaukee, Wland the corresponding volumetric density histogram are shown in Fig.

1. Typically, there are four peaks on the histogram, representing, from left to right, background
outside the body, lung parenchyma, fat, and muscle, respectively. Bones have higher density than
those of muscles but they have too few voxels to form a peak. A long, flat, and low valley between
the peaks of the lung parenchyrtsecond peak from the lefand the faithird peak from the left)

on the histogram indicates that the separation of the lung parenchyma from the soft(fessaed
muscles)and bones is insensitive to the density threshold set within the valley. A threshold thus
lying in the lung parenchyma-fat valley can be chosen after automatic determination of the high
peaks. This threshold is then used to initially separate the lung parenchyma from the other ana-
tomic structures on the CT images.

Voxels having a density lower than the threshold value will be recognized as lung candidates
and assigned the value of 1 and appear white in Fig), 2vhereas other voxels are assigned the
value of 0 and appear black in Figdd. Due to their low densities, both the lung parenchyma and
background will be classified as the “lung” on the resultant binary images. As the lung paren-
chyma is usually completely isolated from the background by the chest wall, it can be readily
determined by labeling 3D connected componénés, grouping geometrically connected voxels
that have the value of 1 and assigning an identical number to the voxels in each individual group
and selecting the largest component that does not touch any margin of the frrageXc)]. As
the apparent density of vessels and bronchial walls in the lung differ, structures with higher
densities including some higher density nodules could be grouped into soft tissues and bones,
leading to an incomplete extraction of the lung mgBig. 2(c)]. To obtain a complete, hollow-free
lung mask, morphological closing is appligig. 2(d)]. Spherical shape of the structural element
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Fic. 2. (Color) Automatic extraction of the lungs from chest CT imagés. Original image.(b) Thresholded image.
Threshold lever —375 HU. (c) Initial lung mask.(d) Complete lung maske) Extracted lungs.

is chosen for the morphological operator and the filter size is experimentally determined. With the
3D mask, the lungs can be readily extracted from the original chest CT injege<2(e)].

In the image processing steps gray level values rather than Hounsfield units are utilized. All
values of gray level obtained from the GE Lightspeed QX/i machine equate to Hounsfield units
HU as follows: gray levelHU+ 1024.

B. Detection of nodule candidates using a local density maximum algorithm

Blood vessels, bronchial walls, and nodules have density values higher than those of the lung
parenchyma on CT images. A 3D algorithm, local density maximwbM), has been thus
developed for locating those higher density structures scattered throughout the lungs.

The algorithm can be intuitively explained with a one-dimensional example. Suppose the curve
in Fig. 3 is a density profile. The LDM algorithm begins to threshold it with an initial threshold
value that can be the maximal density value of the profile. Objetsobject is a group of
connected points with density values greater than the threstaidbe identified through labeling
connected components. Subsequently, the threshold level decreases in a stepwise manner and as a
result more objects are identified. Local density maxitlegal maxima)can be determined by
testing geometric overlap of the objects identified at the current threshold level with the ones
detected at the previous level. The detail of the LDM algorithm is given in the appendix.

Three-dimensional objects are determined at each threshold level by labeling 3D connected
components. Geometrical overlapping of the objects identified at the consecutive threshold levels
are tested along each of the three directi@res, x, y, andz directions), respectively.

Five parametersi.e., the threshold step, threshold stop value, minimal density peak of local
maximum, minimal size of local maximum, and the ratio specifying the change of object’s volume
to its surrounding box’s volumegre used in the algorithm. The minimal size is chosen based on
the size range of nodule of interest as well as the CT in-plane resolution. The other parameters
control the density difference between a local maximum and its background. All parameters are
determined experimentally. In this work, we choségray level)as the threshold step, 1§ray
value)as the threshold stop value, {@ray level)as the density peak, 1®oxel) as the minimal
size, and 1/30 as the ratio
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Fic. 3. (Color) One-dimensional example of the detection of local maximum. Detected local maxima are marked with a
thin line and plateaus with a thick liné.is a newly detected objedE (local maximum replacesB; D is a local maximum,
whereasE is a plateauf andG are two local maxima residing at the platedu

C. Reduction of false-positive results

Local maxima identified by the LDM may have any size and shape as the information about the
nodule size(except the smallest siz@nd shape are not integrated into the algorithm. The next
step is, therefore, to apply trepriori knowledge of small lung nodules to eliminate those local
maxima which are not likely to be lung nodules. Such information includes, but is not limited to,
the size and shape of lung nodules that need to be detected. Only those that fall into the size range
of nodule of interest will be reserved for further consideration as nodules. In addition, although
nodules on a CT slice may have similar appearance to blood vessels that run through the plane
perpendicularly, nodules and vessels have very distinct shapes in three dimensions. The former
have a near spherical shape, whereas the latter have a tubular shape. The following parameters are
thus defined in this work to distinguish nodules from non-nodules.

(1) R1 is defined as the ratio of the volume of the object to the volume of a modified bounding
box of the object, i.e.,

R1=number of object voxel$fmax dx,dy)][maxdx,dy)]dz, (1)

where,dx, dy, anddz are the maximal projection lengtlis pixel) of the object along the axes of
X, Y, andz, respectively, and max(dx)aydx, if dx=dy; otherwise, max(dx,dydy. The volume
of the box containing an object is given by the denominator in @&g.rather than bydx-dy
-dz. This allowsR1 to be able to distinguish between a compact-shaped object from a sticklike
object lying in the lungs at a small angle to either ¥her y coordinate axis. Figure 4 explains the
modification of the bounding box of an object in two dimensions.

(2) R2 is defined as the ratio of the maximal projection length of the object along the axis of
z to the maximal projection length of the object along the axig of y, whichever is larger. The
nonisotropic characteristics of CT scan are taken into account by multiplying the Igmgiixel)
with the corresponding pixel sizén mm).

R2=(dz)p-size /{{ max dx,dy)|p-size}, (2)

wherep-size, and p-size, are the pixel size iz andx(y) directions, respectively.

(3) R3 is defined as the ratio of the maximal projection length of the object along the axis of
x ory, whichever is larger to the maximal projection length of the object along the axisoy,
whichever is smaller.
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Fic. 4. (Color) Explanation of the modification of an object’s bounding box in two dimensions. Obje¢s amd(b) have
very distinct shapes. If we use the bounding box to define the paramé®édr, 0€.,R1=number of object pixelst(x* dy),
the two objects will have similar values BfL. However, If we use a modified bounding b@j to define the parameter of
R1, i.e.,,R1=number of object pixelgmax(dx,dy] [max(dx,dy], the two objects will have distinct values Bfl.

R3=maxdx,dy)/min(dx,dy), (3)

where min(dx,dy=dx, if dx<dy; otherwise, min(dx,dy=dy.
An object(nodule candidateyill be considered as noncompact or not within the size range of
interest, and thus be deleted if the following expression is true:

R1<0.3R2>5.0|R2<0.2|R3> 1.5/{[ (dX) p-size,<2.0]

&& [(dy)p-sizg<2.0]}[{[ (dx)p-sizg>15.0]&& [(dy)p-sizg>15.0]}, (4)

where| is the logicalor and && is the logicalanp. The threshold values f&®1, R2, andR3 are
determined experimentally.

The above-defined parameters and conditions ensure that the remaining objects have relatively
compact shapes in both three dimensidrR& ) and two dimensionsR2 andR3) and fall into the
size range of nodule. Although nonisotropic characteristics of CT scanner is taken into account
while calculatingR2, the threshold level dR2 is deviated from 1the closer the value dR2 to
1, the more compact shape an object will posseBRis is because the partial volume artifact
alongz axis is larger than that alongandy axes.

D. Nodule simulation

A computer simulation program generated a bank of lung nodules which were small spheres
and ellipsoids of various sizes and densities. The size of nodules varied in diameter from 2 to 7
mm (mean: 4.1 mm; std: 0.9 mmdensities were between the average densities of the lung
parenchyma and soft tissuésean: —233.1 HU; std:140.7 HY and shapes were sphere and
ellipsoid (the ratio of the long axis to the short one of an ellipsoid beirig5). Figure 5 shows the
size and density distributions of the simulated nodules.

Before adding the nodules onto CT images, the nodule imégesdule image only contains
the nodule)were smoothed with a 3D Gaussian low-pass filter. Visually, we found that Gaussian
filter with a length of 5 voxels produced the most similar edge appearance of the simulated
nodules to those of surrounding vessels that are perpendicular to the plane of the CT images. Due
to the nonisotropic resolutions of CT images, the chest images were first interpolated into an
isotropic scale. Nodules were then added onto those isotropic images. The chest images containing
simulated small nodules were then subsampled back to the original resolutions before the nodule
detection algorithm was applied.
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Fic. 5. (Color) Size and density distributions of the computer simulated lung nod@gblodule size distributiorimean:
4.1 mm; std: 0.9 mm (b) Nodule density distributioimean: —233.1 HU; std: 140.7 HY

Thirty to thirty-five such smoothed small nodules were then added onto each of eight normal
noncontrast chest examinations. The protocol of these clinically acquired diagnostic images was:
120/140 kVp, 220/290 mAs, pitch of 3:1, and 3.75 mm collimation/3.75 reconstruction interval.
Nodules were added throughout various parts of the lung fields, including in some cases, areas in
which they were “attached” to vessels. Geometrically, 20% of the nodules were distributed in the
peripheral zone of the lundgwithin approximately 2 cm of the pleural surfage®% in the central
zone(within approximately 2 cm of the mediastinymand 73% in the middle zon@etween the
peripheral and the centjalTo simulate clinical practice with lung cancers or lung metastases,
particular attention was paid so that small and low density nodules were placed in the peripheral
zone of the lungs and nodules that imitated the surrounding vessels running perpendicularly
through the CT planes were placed in the central and the middle zones of the lungs. Furthermore,
nodule densities, in general, should not be greater than those of adjacent vessels.

RESULTS

In total, 266 simulated small nodules were added onto eight normal chest CT scans, each scan
having 60 to 80 slices. 251 nodules were detected by the LDM algorithm, corresponding to a
detection sensitivity of 94.4%. There were 906 false-positive nodules per case. After applying the
algorithm for the reduction of false-positive results, 224 nodules were retained, corresponding to
a final detection sensitivity of 84.2%. The average number of false-positives per case was reduced
to only 5(ranged 1 to 9). Furthermore, 11.4% of the nodules placed in the central zone, 22.2% of
the nodules placed in the peripheral zone, and 15.8% of the nodules placed in the middle zone of
the lungs were not detected by the algorithm. Among tBemere initially detected by the LDM
as local maximanodule candidate$ut then deleted by the reduction of false-positives in the next
step.

Figures 6 and 7 show representative CT images with computer simulated nodules and the
corresponding results to demonstrate the ability of the detection algorithm. Figure 6 presents an
example where seven small nodules were added onto the image. The algorithm successfully
detected all of thenfcircle), including the two that were attached to vessatsows). There was
no false-positive result on the image. Figure 7 shows another example with false-positive results
and missed nodules. Four small nodules were added onto the image. Two of them were placed to
imitate surrounding blood vessels that ran perpendicularly through the CT plane, and the other two
small and low-density nodules were placed in the peripheral zone of the lung. Three of the four
added nodules were detect@ircle), one was misse@rrow), and there were two falsely detected
nodules(circle and open arrow).

The algorithm, without any modification, was directly applied to a clinical subject with four
actual small lung nodules. The imaging protocol was different than the one used in the simulation
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Fic. 6. (Color) Small nodule detection using the LDM algorithm. All inserted seven nodules were successfully detected
(circles), including the two that were attached to vesgaisows).

study, i.e., 120 kVp, 150 mAs, 7.0 mm collimation and 7.0 reconstruction interval. Figure 8 shows
the detection result. Three of the four nodules were successfully detected by the aldoithen,
including one ground-glass opacity noddéércle and arrowand one nodule that was attached to
the surrounding vesselsircle and arrow head). There were nine false-positive results, and two of
them are shown in Fig. &liamonds). One nodule was not detectengle).

DISCUSSION

The essence of our detection method lies in its ability to automatically search for higher density
structures including nodules scattered in the lungs through sequentially declining threshold level.

Fic. 7. (Color) Small nodule detection using the LDM algorithm with two false-positive results. Three of the four inserted
nodules were detectd@ircles), one was misse@rrow), and there were two falsely detected nod@sles and open
arrows).
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Fic. 8. (Color) Application of the detection algorithm to a clinical case with actual lung nodules. Three of the four nodules
were detectedcircles), including one ground-glass opacity nod{diecle and arrowand one nodule that was attached to
the surrounding vesse(sircle and arrow hegdOne nodule was not detectédangle). There were nine false-positives in
total and two of them are shown as exampléismonds).

This search of higher density structures can be terminated locally if any of the termination criteria
of identifying local maxima is met. Nodules having a wide range of density distribution can thus
be automatically identified from both homogeneous and heterogeneous lung parenchyma as the
plateau in which a nodule resides is defined locally. Furthermore, nodules that attach to adjacent
vessels can also be identified, as long as their densities are different to those of the vessels at the
contact points by a certain amount.

One limitation of a region-growing-based technique is that it may not detect lower density
nodules if seed points from where suspicious nodule regions start to grow do not include any part
of those lower density nodules. Difficulties may also rise with a cluster-based technique when
dealing with the lung nodules of a wide range of densities, i.e., of mixed attenuation. The nodules
may be falsely classified as blood vessgts those nodules having higher density values as
lung parenchymdfor those nodules having lower density value®ne of the advantages of our
method over the existing multiple thresholding detection technique is that objects detected at
different threshold levels can be efficiently tracked and merged to a single one if they belong to
each other. This is not possible with the existing technftti¢®where objects detected at each
given threshold level are all considered as nodule candidates and are subjected to the subsequent
feature extraction and classification for the reduction of false-positives. There exists a data redun-
dancy in the feature extraction and classification of the existing technique as an object detected at
a higher threshold level belongs to a part of the object detected at a lower threshold level, if they
geometrically overlap with each other. This redundancy will cause unnecessary computation in the
feature extraction and may create confusion in the classification. In our approach, the data redun-
dancy can be avoided by identifying and merging identical objects detected at different thresholds.

Potentially, there are two parts in the algorithm where the detection sensitivity and the rate of
false-positives may be affected. They are the identification of local maxima and the reduction of
false-positives. To obtain a higher detection sensitivity and lower rate of false-positive results,
lung nodules should be identified as local maxifnadule candidatessls many as possible, while
the effects of heterogeneity of lung parenchyma and vascular structures as well as noise should be
maximally suppressed. This is because if a nodule is not detected as a local maximum by the LDM
algorithm, it will become a false-negative. On the other hand, all non-nodule local maxima that are
not able to be eliminated by the reduction of false-positives will become false-positives. Even if a
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nodule is recognized as a local maximum by the LDM algorithm, it may still be incorrectly ruled
out in the process of the reduction of false-positives., may also become a false-negalive
Obviously, in the reduction of false-positives among the detected nodule candidates there is a
balance between preserving nodules and eliminating non-nodules using the extracted features. By
cautiously adjusting the algorithm’s parameters, a satisfactory detection performance can be
achieved. In our simulation study, a detection sensitivity of 94.4% was reached with the LDM
algorithm (i.e., 94.4% of nodules were detected as local maxirh@wever, a total number of
detected nodule candidates could be larger than 1000. After applying the extracted features to
reduce false-positives, the number of false-positives per case was reduced taverdye: 5).
However, the detection sensitivity dropped to 84.2%. It was reported in the Results section that
two thirds of false-negative$missed noduleswere initially detected by the LDM as local
maxima. They were deleted later by the reduction of false-positives. This indicates that the detec-
tion sensitivity may be increased by improving the strategies for the reduction of false-positives.
The remaining false-positives are mainly caused by the heterogeneous density of vessels due to the
partial volume artifact of CT scanners. Those segments of vessels appearing with higher densities
and possessing compact shapes may be recognized as nodule candidates. They cannot be simply
ruled out by using the extracted features, since they share common characteristics with nodules.
However, they may be removed by including additional information about, for example, plateau’s
density into the detection algorithm.

Unlike the radiologist’s detection of small lung nodules, vessels that are perpendicular to the
CT planes(i.e., they have nodulelike appearances in the plaheuld not mislead the computer
interpretation. This is because the detection algorithm can distinguish between a spherical small
nodule and a cylinder vascular structure by analyzing the 3D shapes. Theoretically, the perfor-
mance of a computer-aided detection method should not be affected by the nodule location as long
as the nodules are not attached to the surrounding structures that have identical or similar density
distributions to those of the nodules. In our simulation study, the missing rates of the nodules
placed in the central and middle zones of the lungs were siifiilad% versus 15.8%). Small and
low density nodules were placed in the peripheral zone of the lungs, accounting for the higher
false-negative rate of the peripheral nodu{@2.2%). This may be improved by adapting the
feature thresholds in the reduction of false-positives.

In this preliminary study, computer simulated nodules were added onto clinically acquired CT
chest images to demonstrate the ability of our algorithm to detect small lung nodules. The simu-
lated nodules were created with clinically relevant sizes and densities, and were placed throughout
the lungs. Unlike evaluation of the visual detection performance where simulated nodules are
strictly required to imitate real nodules, particularly to imitate nodule edge appearances, evaluation
of the performance of computer-aided detection algorithms may not require such strictly similari-
ties between real and simulated nodules. For the detection algorithm developed in this work,
factors that are related to the nodules and may affect the algorithm’s performance are the density
differences between a nodule and its surrounding background and the nodule shape. The algorithm
is thus sensitive to image random noise caused by quantum mottle and structural distortions
brought in by the CT reconstruction algorithm as they may change the nodule-lung parenchyma
relationship. In the simulation study, random noise and structural distortions were unchanged in
the images containing the computer-generated nodules as the nodules were simply added onto the
images. Therefore, the parameters of the LDM algorithm may not necessarily need to be modified
when the algorithm is transferred from the simulation study to clinical studies. With regard to the
nodule shape, sphere and ellipsoid were used to model the lung nodules in the simulation study
since small lung nodules tend to be compact. Although the nodule shape has little effect to the
LDM algorithm, it does influence the performance of the reduction of the false-positives because
the latter utilizes the shape features to distinguish between nodules and non-nodules. In our
previous study on the segmentation of small lung nodules on volumetric CT images, we found that
the 3D shape compactness factor can be sensitive to the ¢bhgekile)size, i.e., the value of the
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compactness factor may become meaningless for small oBfeEtss is because the fraction of

the number of object surface voxels to the number of entire object voxels increases as the size of
an object decreases. The object surface voxels are the voxels that cause errors in the estimation of
the 3D compactness factor. Instead of using the 3D shape compactness factor, we defined several
2D and 3D ratios derived directly froufx, dy, anddz, the maximal projection lengths of an object
along the axes o%, y, andz. We found these ratios practical and useful in the discrimination of
small nodules from non-nodules. Another reason for employing these features is that the values of
the features are already available from the output of the LDM algorithm, there is no need to
calculate them in the feature extraction. However, in reality, nodules may not be spheres or
ellipsoids. Therefore, the features and the threshold levels set for discriminating nodules from
non-nodules in the simulation study may need to be modified or improved so that the detection
algorithm can work appropriately for clinical studies.

Nevertheless, without making any changes to the algorithm, a similar result of the detection
sensitivity and false-positive rate was obtained when the detection algorithm was applied to a
clinical case with actual lung nodules. It is worth mentioning that the acquisition protocol of the
images containing the actual lung nodules was different from the one used in the simulation study.
Particularly, the images were acquired with different slice thickne&sesilation images versus
clinical case: 3.75 mm versus 7.0 mrin addition, the detected actual nodules all had speculated
shapes, including a ground-glass opacity nodule and a nodule that was attached to the surrounding
vessels. One nodule was not detected because only small part of it was detected as a nodule
candidate by the LDM algorithm. It was then eliminated in the process of reducing false-positives,
as it did not meet the size criterion of being a nodule.

To achieve high detection sensitivity and, in the meanwhile, to keep the number of false-
positives as low as possible, modifications or even redefinitions of the parameters used in the
detection algorithm are expected when the algorithm is further validated with a large clinical data
set, particularly when the image data sets are acquired under different imaging protocols. Never-
theless, there is an inevitable dilemma, as a high detection sensitivity can be only achieved at the
cost of an increasing number of false-positive results.

The LDM algorithm is designed to detect solid lung nodules on CT images. It should also work
for part-solid nodules as long as the solid @rof the nodule exceeds a certain size. It may fail
to detect nonsolid nodules. Furthermore, if a nodule is attached to a blood vessel and there is no
density difference between the nodule and the vessel at their contact points, the nodule may not be
able to be detected by this algorithm. This requires further improvement of the algorithm by
developing additional features that allow to identify a compact @at, nodule)from an object
(e.g., vessel with a nodule attached).

CONCLUSION

We have developed an advanced computerized method for the automated detection of small
nodules on chest MSCT images. This method uses a three-step approach, consisting of automatic
extraction of the lungs, detection of higher density structures in the extracted lungs, and elimina-
tion of false-positive results among the detected nodule candidates. The method has been validated
with computer generated small lung nodu{@sto 7 mm) and achieved a detection sensitivity of
84.2%. There were, on average, five false-positive nodules per case. Our preliminary study shows
the potential of the method for assisting the detection of small lung nodules on MSCT images.

APPENDIX: THE LDM ALGORITHM

The detail of searching for local maximaodule candidatess described in the following.
Suppose that opj i=1, ... n. are the objects detected at the current threshold level, alﬁd obj
j=1,...n, are the objects detected at the previous threshold level. If for a given dbject
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detected at the current threshold level there existsbjects detected at the previous threshold
level such that olﬁj:_)objf(’l; ki<n,; 1=0,1,...m;i=1,...nc, then the following three situa-
tions need to be considered.

(i) If m=0, i.e., the current object has no overlap with any of the previous objects. The current
object is thus regarded as a new object detected at the current threshol@lgvedbjeci in Fig.

3).

(i) If m=1, which specifies that the current object overlaps only one of the previous objects;
this object will replace the previous orfe.g., objeciC replaces objecB). However, there is one
exception. We define a ratio parameterr 1/r2, wherer 1 is the ratio of the volume of the current
object to that of its bounding box an@ is the ratio of the volume of the previous object to that
of its bounding box. If the ratia drops drastically, the current object will be interpreted as a
plateau(objectE) on which the previously detected ofi®) will be identified as a local maximum
if it meets the following two criteria for being a local maximum. Explicitly, its size and density
must be larger than a predefined minimal size and minimal density peak height correspondingly.

(i) If m>1, which indicates that the current object overlaps more than one previous object;
should any of the previous objects meet the criteria of being a local maximum, it will be recog-
nized as a local maximurfF andG) and the current object becomes a platéddu Otherwise, it
will be treated either as in casi) if only one of the previous objects meets the criteria of being
a local maximum or as in cage if none of the previous objects meets the criteria.

The process of searching for local maxima terminates when the threshold reaches the minimal
density value of the lung images, or a predefined density value that can be derived from a
statistical analysis of lung parenchyma.
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