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Use of machine learning‑based 
integration to develop 
an immune‑related signature 
for improving prognosis in patients 
with gastric cancer
Jingyuan Ning 1,5, Keran Sun 1,5, Xiaoqing Fan 1,5, Keqi Jia 2, Lingtong Meng 1, Xiuli Wang 3, 
Hui Li 4, Ruixiao Ma 4, Subin Liu 4, Feng Li 4 & Xiaofeng Wang 1,4*

Gastric cancer is one of the most common malignancies. Although some patients benefit from 
immunotherapy, the majority of patients have unsatisfactory immunotherapy outcomes, and 
the clinical significance of immune‑related genes in gastric cancer remains unknown. We used the 
single‑sample gene set enrichment analysis (ssGSEA) method to evaluate the immune cell content of 
gastric cancer patients from TCGA and clustered patients based on immune cell scores. The Weighted 
Correlation Network Analysis (WGCNA) algorithm was used to identify immune subtype‑related 
genes. The patients in TCGA were randomly divided into test 1 and test 2 in a 1:1 ratio, and a machine 
learning integration process was used to determine the best prognostic signatures in the total cohort. 
The signatures were then validated in the test 1 and the test 2 cohort. Based on a literature search, 
we selected 93 previously published prognostic signatures for gastric cancer and compared them with 
our prognostic signatures. At the single‑cell level, the algorithms "Seurat," "SCEVAN", "scissor", and 
"Cellchat" were used to demonstrate the cell communication disturbance of high‑risk cells. WGCNA 
and univariate Cox regression analysis identified 52 prognosis‑related genes, which were subjected 
to 98 machine‑learning integration processes. A prognostic signature consisting of 24 genes was 
identified using the StepCox[backward] and Enet[alpha = 0.7] machine learning algorithms. This 
signature demonstrated the best prognostic performance in the overall, test1 and test2 cohort, and 
outperformed 93 previously published prognostic signatures. Interaction perturbations in cellular 
communication of high‑risk T cells were identified at the single‑cell level, which may promote disease 
progression in patients with gastric cancer. We developed an immune‑related prognostic signature 
with reliable validity and high accuracy for clinical use for predicting the prognosis of patients with 
gastric cancer.

Abbreviations
WGCNA  Weighted correlation network analysis
GC  Gastric cancer
PD-1  Programmed cell death 1
CTLA4  Cytotoxic T lymphocyte antigen 4
ICIs  Immune checkpoint inhibitors
TME  Tumor immune microenvironment
TCGA   The Cancer Genome Atlas
GEO  Gene expression omnibus
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C-index  Concordance index
ssGSEA  Single sample gene set enrichment analysis
GS  Gene significance
MM  Module membership
IRS  Immune-related signature
GO  Gene ontology
ROC  Receiver operating characteristic
AUC   Area under the curve
RSF  Random survival forest
Enet  Elastic network
plsRcox  Partial least squares regression for Cox
SuperPC  Supervised principal components
GBM  Generalised boosted regression
survival-SVM  Survival support vector machine
C-index  Concordance index
OS  Overall survival
PFS  Progression-free survival

Gastric cancer (GC) is among the most common malignant tumors. Its incidence in China ranks second among 
that of all malignant  tumors1. Worldwide, GC is the fifth leading cause of all cancers and the fourth leading 
cause of cancer-related  mortality2. Currently, there are various treatment methods for  GC3, such as  surgery4,5, 
 chemotherapy6,  radiotherapy7, targeted  therapy8, and  immunotherapy9,10. However, these approaches are not 
effective in prolonging the life of most  patients11. Additionally, traditional treatment methods are not effective for 
patients with advanced stages of  GC12. At present, anti-programmed cell death 1 (PD-1) monoclonal antibodies, 
anti-cytotoxic T lymphocyte antigen 4 (CTLA4) monoclonal antibodies, and other immune checkpoint inhibi-
tors (ICIs) are considered innovative treatment strategies for advanced  GC13. Although studies Keynote-05914, 
Keynote-06115, Keynote-06216, and attraction-0217 have shown a good efficacy of immunotherapy against GC, it 
seems to be more effective for subgroups with high mutation load, positive Epstein Barr virus, or high microsatel-
lite  instability18. Many factors, including the tumor immune microenvironment (TME), affect the effectiveness 
of immunotherapy. There are only a few accurate biomarkers that can predict the response to  immunotherapy19. 
Identification of potential prognostic markers and the development of immunotherapy guidelines can aid in 
designing personalized immunotherapy for patients with GC. Some researchers have suggested that a more 
in-depth analysis of the complexity of the TME can help reveal efficacious biomarkers that can identify patient 
populations responsive to  immunotherapy20. Unfortunately, we still know little about the TME in GC, and we 
urgently need to identify effective prognostic signatures.

Based on machine learning, prognostic models have been shown to have predictive value in various dis-
eases, including renal  cancer21,22 colon  adenocarcinoma23, and  endometriosis24. Although previous studies have 
screened immune-related genes of GC to predict the prognosis characteristics, their prediction accuracy is not 
 high25,26. In our study, we used a combination of 98 machine learning algorithms to determine the best immune-
related prognostic signature for GC and performed external prognostic prediction validation using multiple 
datasets. Finally, we collected 93 prognostic signatures for comparison. The results showed that our signature 
was the most effective prognostic biomarker compared to other signatures.

Methods. Acquisition and pre-processing of transcriptome data. We downloaded the transcriptome data 
of 32 normal gastric tissues and 375 GC tissues from The Cancer Genome Atlas (TCGA) website (https:// por-
tal. gdc. cancer. gov/). The fragments per kilobase million values were transformed into transcripts per million. 
Concomitantly, the clinical information corresponding to all patients was downloaded for subsequent analysis.

Weighted correlation network analysis (WGCNA). The WGCNA approach was employed to build 
coexpression networks of genes. To establish a scale-free network, we calculated an optimal soft threshold β. The 
weighted adjacency matrix was then converted into a topological overlap matrix (TOM), and its correspond-
ing dissimilarity (1-TOM) was computed. The dynamic tree cutting method was utilized to identify modules of 
coexpressed genes.

Enrichment analysis. Enrichment analysis of differential genes was performed using the "GSEABase" 
package, "ClusterProfiler" package and "org.Hs.eg.db" package. The database used for the enrichment analysis 
was derived from the Gene Ontology (http:// geneo ntolo gy. org/). Use the EnrichGO function for enrichment. 
If P < 0.05, the pathway was considered to be significantly enriched. "ggplot2" package, "ggpubr" package for 
visualization.

Machine learning to build prognostic signatures. In the R(4.2.1) environment, a total of 10 machine 
learning algorithms, including random survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise Cox, 
CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal components (SuperPC), gen-
eralized boosted regression (GBM), and survival support vector machine (survival-SVM) were used. In the 
process, we used one algorithm to filter the variables and another algorithm to build the prognostic signature. 
When the final prognostic signature contained less than 5 genes, the signature was considered an invalid sig-
nature. A total of 98 combinations of machine learning algorithms were eventually integrated. Finally, Har-
rell’s concordance index (C-index) was calculated for each signature, and the signature with the highest average 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://geneontology.org/
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C-index value was considered to be the best signature. After calculating the risk score for each patient using the 
predict function, the optimal cutoff value for the risk score is determined using the surv_cutpoint function in 
the "srvminer" package. Based on the optimal cutoff value of the risk score, patients are divided into high-risk 
and low-risk groups.

Acquisition and pre‑processing of single‑cell transcriptome data. Single-cell transcriptome data 
were obtained from the GEO database (GEO registration number: GSE163558; https:// www. ncbi. nlm. nih. gov/ 
geo/). Quality control was performed in R(4.1.2) environment using standard single cell processing procedures. 
The count matrix were read using the Read10X function from the Seurat package (Version 4.0.4), and the lat-
ter was further converted to dgCMatrix format. The merge function was used to integrate all individual objects 
into an aggregate object, and the RenameCells function was used to ensure that all cell labels were unique. We 
filtered low quality cells with the following filtering criteria: when a gene was expressed in less than 3 cells, the 
gene was deleted. When the number of genes expressed in a cell was less than 200, the cell was deleted. A global-
scaling normalization method (“LogNormalize”) was employed to ensure that the total gene expression in each 
cell was equal, and the scale factor was set to 10,000. The top 2000 variably expressed genes were returned for 
downstream analysis using the FindVariableFeatures function. The ScaleData function, “vars.to.regress” option 
UMI, and percent mitochondrial content were used to regress out unwanted sources of variation. Principal com-
ponent analysis (PCA) incorporating highly variable features reduced the dimensionality of this dataset, and the 
first 30 PCs were identified for analysis. Harmony  method27 was used to remove batch effects between samples. 
Cells were down-dimensioned using the UMAP method. Clustering analysis was performed based on the edge 
weights between any two cells, and a shared nearest-neighbor graph was produced using the Louvain algorithm, 
which was implanted in the FindNeighbors and FindClusters functions. The parameter of resolution in the 
FindClusters function was tried repeatedly between 0.1 and 1. Cell clustering trees at different resolutions were 
observed using the clustree function, and the results showed that the clearest clustering results were obtained 
when the resolution was 0.5. To annotate the cell clusters, differentially expressed markers of the resulting clus-
ters were identified with the FindAllMarkers function using the default nonparametric Wilcoxon rank sum test 
with Bonferroni correction. All cells were annotated according to cell surface markers and annotated genes used 
in the relevant literature and CellMarker  database28 (http:// xteam. xbio. top/ CellM arker/).

Identification of high‑risk‑related phenotypic cells. Scissor algorithm from the "Scissor"  package29 
(2.0.0). By leveraging bulk data and phenotype information, this algorithm automatically selects cell subpopula-
tions from single-cell data that are most responsible for the differences of phenotypes. The novelty of Scissor is 
that it utilizes phenotype information from bulk data to identify the most highly disease-relevant cell subsets. In 
our study, high-risk patients and low-risk patients identified in TCGA were treated as two different phenotypes. 
Based on the transcriptomic data of high- and low-risk phenotypes for all patients, the "Scissor" function was 
used to associate both phenotypes with each cell in the single-cell data.

Cellular communication network. Cell–cell interaction analysis was performed based on the “CellChat” 
(v1.0.0) R  package30. CellChat has a public repository of ligands, receptors, cofactors and their interactions 
(http:// www. cellc hat. org/). The CellChat R package is a versatile and easy-to-use toolkit for inferring, analyz-
ing, and visualizing cell–cell communication from any given scRNA-seq data. The ligand and receptor genes 
expressed by each cell were projected into a manually selected reference communication network and the prob-
ability of communication in each pathway was inferred by gene expression. Finally use the netVisual_bubble 
function for visualization, with all parameters as default.

Statistical analysis. All statistical analyses were carried out using R (4.1.2). The statistical methods were 
all set up according to the corresponding R software.P < 0.05 was considered statistically significant. *P < 0.05, 
**P < 0.01, ***P < 0.001.

Ethics approval and consent to participate. All methods were carried out in accordance with relevant 
guidelines and regulations.

Results
Cluster analysis of immune subtypes. We calculated multiple immune cell scores for each patient with 
GC using the single sample Gene Set Enrichment Analysis (ssGSEA) method, and based on the scores, we clus-
tered all the patients (Fig. 1A). Furthermore, analysis of all the patients using the T-SNE clustering algorithm 
showed that the clustering was highly stable in all patients (Fig. 1B). As shown in a heat map, all patients could be 
divided into two subtypes: one subtype of patients had a higher immune cell score (Immunity_H) and the other 
subtype had a lower immune cell score (Immunity_L) (Fig. 1C). To demonstrate that our immune cell cluster-
ing results are not subject to algorithmic bias, we first used ESTIMATE to verify the plausibility of the ssGSEA 
results. The results showed that patients in the Immunity_H group had a higher immune score and lower tumor 
purity compared to patients in the Immunity_L group (Fig. 1C). We then used six algorithms based on TIMER, 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC for immune cell content 
assessment. The results all showed that patients in the Immunity_H group had significantly higher immune cell 
content than patients in the Immunity_L group, which was highly consistent with our clustering results based on 
the ssGSEA algorithm (Fig. 1D). These findings demonstrate the high stability of our clustering results.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://xteam.xbio.top/CellMarker/
http://www.cellchat.org/
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Identification of immune‑related modules. In the weighted correlation network analysis (WGCNA), 
the soft threshold β was set to 8 (Fig.  2A), which provided a suitable power value for the construction of a 

Figure 1.  Subtype analysis of patients with TCGA gastric cancer. (A) Clustering analysis based on immune cell 
content. This analysis identified two different patient immunotypes. (B) Reduced dimensional analysis of T-SNE 
based on immune cell content. This figure further validates the immunophenotyping of two different patients. 
(C) Immune cell content calculated by the ssGSEA and ESTIMATE algorithms. (D) six algorithms based on 
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC for immune cell 
content assessment. The results show two types of immune patients typed without the bias of the algorithm.
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coexpression network. We identified a total of 14 gene modules, each of which was represented using a different 
color (Fig. 2B). The correlation between each module and the patient’s clinical traits, including sex, grade, stage, 
and subtype that we clustered based on the ssGSEA method, was evaluated. Among all modules, the correla-
tion between the magenta module and subtype was the highest (Fig. 2C). The correlation coefficient between 
gene significance (GS) and module membership (MM) reached 0.73 (Fig. 2D), which suggested that the qual-
ity of the magenta module construction was superior. Based on these results, we defined the 1104 genes in the 
magenta module as immune subtype-related genes. To further determine the correlation between these genes 
and immunity, we performed an enrichment analysis of immune subtype-related genes. The Gene ontology 
(GO) enrichment analysis results showed that these genes were enriched in T cell activation, leukocyte cell–cell 

Figure 2.  The weighted correlation network analysis. (A) Determination of soft thresholds. (B) Identification 
of gene clustering modules. (C) Correlation meter analysis between gene modules and phenotypes. Memagenta 
modules are highly correlated with subtypes (D) The correlation coefficient between gene significance (GS) and 
module membership (MM). (E) GO enrichment analysis. (F) KEGG enrichment analysis.
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adhesion, regulation of T cell activation, and positive regulation of leukocyte cell–cell adhesion (Fig. 2E). Kyoto 
Encyclopedia of Genes and  Genomes31 (KEGG) enrichment analysis results showed that these genes were sig-
nificantly enriched in cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, antigen process-
ing and presentation, B cell receptor signaling pathway, and T cell receptor signaling pathway(Fig. 2F). Together, 
these results demonstrate a high correlation between immune subtype-related genes and the immune system.

Generation of signature based on machine learning integration. We performed a univari-
ate Cox regression analysis on the 1104 immune subtype-related genes and identified 52 prognosis-related 
genes (Fig. 3A), including 6 protective genes (HR < 1) and 46 risk genes (HR > 1). These 52 genes were sub-
jected to our machine learning integration process for establishing immune-related signatures. Specifically, we 
removed patients with a survival time of fewer than 30 days, after which the remaining 335 TCGA patients 
with GC were used as the total cohort for subsequent analysis. Meanwhile, to determine the accuracy of our 
signature, we randomly divided the 335 patients into two cohorts named test 1 and test 2 in a 1:1 ratio. In 
the total cohort, we fitted 98 prognostic prediction signatures, and the C-index values were calculated in the 
total, test 1, and test 2 cohorts for each signature. Interestingly, StepCox[backward] + Enet[alpha = 0.7] had the 
highest mean C-index value (0.726) among all signatures (Fig. 3B). The signature consisted of 24 genes and 
we named it immune-related signature (IRS). Based on the expression of these 24 genes, we calculated the 
risk score for all patients. Risk scores = (−  0.2076025 × TNFAIP2 expression) + (0.1472951 × SLC37A2 expres-
sion) + (0.1714101 × RGS1 expression) + (−  0.3396804 × ZNF101 expression) + (−  0.6150795 × TM6SF1 expres-
sion) + (−  0.3724076 × CRHBP  expression) + (−  0.9322991 × AKAP5 expression) + (−  0.3562780 × CRYBB1 
expression) + (0.5096191 × S100Z expression) + (0.4818817 × ACSM5 expression) + (0.2350907 × NTAN1 
expression) + (0.5508151 × IL5RA expression) + (0.1979289 × ABCG1 expression) + (0.8638607 × CAMK4 
expression) + (0.2211539 × MCEMP1 expression) + (0.2176318 × SLC2A3 expression) + (0.1990519 × RENBP 
expression) + (0.1643554 × BASP1 expression) + (0.2138879 × KYNU expression) + (−  0.2643476 × CTLA4 
expression) + (−  0.2688278 × FCGR2B expression) + (−  0.1302975 × ENTPD8 expression) + (0.2952993 × DDO 
expression) + (− 0.1408996 × FCN1 expression).

Accuracy and validity assessment of IRS. Notably, a large number of machine learning-based prognos-
tic prediction signatures have been developed in recent years. There is a diversity of these signatures in terms of 
research perspectives, such as pyroptosis, cuproptosis, ferroptosis, EMT conversion, hypoxia, metabolism, aging, 
and immune response. To determine the superiority of the IRS, we collected 93 published prognostic signatures 
and calculated the C-index values for these signatures (Fig. 4A). Importantly, IRS showed the highest C-index 
values for the total, test 1, and test 2 cohorts compared to these signatures. This suggests that the IRS has robust 
accuracy. Next, we determined the optimal cutoff value based on the risk score of each patient using the "sur-
vminer" package. Kaplan–Meier analysis showed that the overall survival of high-risk patients in the total, test 
1, and test 2 cohorts was significantly worse than that of low-risk patients (Fig. 4B). Additionally, we found that 
progression-free survival (PFS) was significantly worse in high-risk patients in the total, test 1, and test 2 cohorts 
compared to that in low-risk patients, demonstrating the value of IRS for predicting PFS as well (Fig. 4C).The 
receiver operating characteristic curve (ROC) analysis showed that the area under the curve (AUC) values for 
the total cohort were 0.728, 0.798, and 0.791 at 1, 3, and 5 years, respectively. Meanwhile, the AUC values for 
the test 1 cohort were 0.726, 0.726, and 0.806, and for the test 2 cohort were 0.733, 0.838, and 0.766 at 1, 3, and 
5 years, respectively (Fig. 4D). The results of univariate Cox regression (Fig. 4E) and multivariate Cox regression 
analysis (Fig. 4F) showed that risk score and stage were the two independent factors affecting prognosis, with 
risk score having the largest HR value. For the purpose of external validation, we introduced the GSE84437 and 
GSE84433 datasets for external validation of the prognostic effect. The results showed that in both GSE84437 
and GSE84433 datasets, high-risk patients had worse overall survival (OS) than low-risk patients (Fig. 4G,H). 
Finally, we assessed the value of IRS in immunotherapy. AUC values were higher than 0.75 in two anti-PD-1 
treatments and one anti-PD-1/anti-CTLA-4 (Fig. 4I), suggesting that IRS is relevant for predicting sensitivity to 
immunotherapy in patients with gastric cancer. In conclusion, our results suggest that IRS has excellent stability 
and validity. To improve the clinical value of this study, we created a nomogram based on risk scores and clinical 
characteristics to facilitate clinical translation (Fig. 4J). The calibration curve showed that the nomogram had 
good accuracy at 1, 2, 3, and 5 years.

IRS combined with single‑cell analysis identifies communication perturbations in high‑risk 
cells. Cell-to-cell communication plays a crucial role in understanding the complexity of the tumor immune 
microenvironment. For instance, in cancer, tumor cells interact with various immune cells and stromal cells 
in the tumor microenvironment. These interactions can shape disease progression and response to therapy. 
However, this is not captured by bulk transcriptomic data. Luckily, single-cell sequencing technology enables 
the possibility of uncovering intricate and complex interactions between cells. Single-cell analysis of tumors 
and immune cells can provide an in-depth understanding of the molecular mechanisms of tumor-immune cell 
interactions, which can offer information for the development of new immunotherapies. Hence, we acquired 
and processed single-cell sequencing data from the tumor sites of three patients with GC.Here, a total of 10,234 
cells passed quality control. All cells were annotated according to cell surface markers (Fig. 5A). Five cell types 
were present, namely B cells, epithelial cells, myeloid cells, stroma cells, and T cells. For epithelial cells, we 
identified 2634 malignant cells using the "SCEVAN"  package32, which has been shown to be significantly more 
accurate than “inferCNV” and “copyKAT”. Figure 5B shows the landscape of copy number variation in normal 
and tumour cells. Cell down-dimensioning and visualization were performed using T-SNE (Fig. 5C). Among 
the immune cells, T cells were the most numerous. To identify the T cells that contribute to the high-risk disease 
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phenotype, the “scissor” package was used to correlate bulk sequencing data with single-cell sequencing data. 
This method uses single-cell data and phenotypic information to identify subpopulations of cells. Using bulk 
sequencing data and its annotated information with various phenotypes, the algorithm automatically selects 
cells that are highly correlated with the phenotype. We considered high-risk and low-risk in patients as two 
phenotypes, associating both phenotypes with T cells that contribute to the high-risk disease phenotype. We 
successfully identified a total of 507 high-risk cells and 365 low-risk cells (Fig. 5D). We then used the "cellchat" 
package to analyze the differences in cellular communication networks between the high-risk and low-risk cells 
(Fig. 5E). Multiple signaling perturbations were found between high-risk T cells, low-risk T cells, tumor cells, 
and normal epithelial cells (Fig. 5F). JAG1-NOTCH1 and TNFSF15-TNFRSF25 signals were present between 
tumor cells and low-risk T cells, and absent between tumor cells and high-risk T cells. The autocrine SELPLG-
SELL signaling present in low-risk T cells was lost in high-risk T cells. Furthermore, we found some alterations 

Figure 3.  Machine learning integration to build prognostic models. (A) Univariate Cox regression identifying 
52 prognosis-related genes. (B) 98 machine learning integrated prognostic models and their C-index values. 
Determine StepCox[backward] + Enet[alpha = 0.7] as the best signature.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7019  | https://doi.org/10.1038/s41598-023-34291-9

www.nature.com/scientificreports/

Figure 4.  Analysis of the accuracy and validity of IRS. (A) C-index values of IRS compared with 93 published 
prognostic models for gastric cancer. The results demonstrate the outperformance of IRS over published 
signatures (B) OS analysis of IRS in the total cohort, test1 cohort, and test2 cohort. Poorer prognosis for high-
risk patients compared to low-risk patients. (C) PFS analysis of IRS in the total cohort, test1 cohort, and test2 
cohort. Poorer prognosis for high-risk patients compared to low-risk patients. (D) 1, 3, and 5 year ROC analysis 
of IRS in total cohort, test1 cohort, and test2 cohort. (E) Univariate Cox regression analysis of IRS and clinical 
characteristics. (F) Multivariate Cox regression analysis of IRS and clinical characteristics. (G) OS analysis of IRS 
in GSE84437. (H) OS analysis of IRS in GSE84433. (I) ROC analysis of IRS differentiating between responding 
and non-responding patients in an immunotherapy cohort. IRS has predictive value for patient response to 
immunotherapy. (J) Risk scores combined with clinical characteristics of the nomogram. The calibration curve 
proves the accuracy of this nomogram.
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between immune cells. For example, disappearance of DLL4-NOTCH1, MDK-(ITGA4 + ITGB1), and SELE-
GLG1 signaling between stromal cells and high-risk T cells.Disappearance of ICAM1-SPN signaling with CD99-
CD99 signaling in B cells and high-risk T cells.

Figure 5.  Single-cell analysis of IRS. (A) Expression of cellular annotated genes. (B) Copy number changes in 
tumor cells and normal cells. (C) Cell types after annotation of all cells. (D) Identification of high-risk and low-
risk T cells. (E) Cellular communication analysis of the landscape. (F) Analysis of ligand-receptor interactions 
between different cell types.
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Discussion
With the application of immunotherapy to GC, the treatment of GC has entered a new era. However, not all 
patients with GC can benefit from immunotherapy. Several studies have attempted to identify better immune-
related characteristic genes that affect the prognosis of patients but have not been very  successful25,26. As early 
as last century, it was proposed that the immune microenvironment of gastric cancer is the key factor affecting 
the prognosis of gastric cancer  patients33. The level of infiltration of T cells, macrophages and various immune 
cells affects the prognosis of patients with gastric  cancer34,35. Since 2019, many studies have been devoted to the 
establishment of immune related signature for gastric cancer. These signature not only affect the prognosis of 
gastric cancer patients, but also affect the efficacy of chemotherapy, immunotherapy and other treatments for 
patients with gastric  cancer36–38. Therefore, the current study aimed to find the optimal immune-related prog-
nostic signature for patients with GC.

WCGNA analysis was used to identify 14 gene modules. The evaluation of the correlation between each 
module and the patient’s clinical characteristics showed that among all modules, the magenta module had the 
highest correlation with the subtype. Therefore, 1104 genes in the magenta module were defined as immune 
subtype-related genes. Subsequently, these 1104 immune subtype-related genes were used for univariate Cox 
regression analysis, and 52 prognosis-related genes were identified to establish immune-related signatures. In 
the total cohort, we fitted 98 prognosis prediction signatures. For each signature, we calculated the C-index value 
in the total, test 1, and test 2 cohorts, and the signature with the highest average C-index value was considered 
the best signature. Among all the signatures, StepCox [backward] + Enet [alpha = 0.7] showed the highest aver-
age C-index value (0.726). This signature, named in this study as IRS, is composed of 24 genes: TNFAIP239,40, 
SLC37A2, RGS141, ZNF101, TM6SF1, CRHBP, AKAP542, CRYBB1, S100Z43, ACSM5, NTAN144, IL5RA, ABCG1, 
CAMK4, MCEMP145–47, SLC2A348–50, RENBP, BASP151,52, KYNU53,54, CTLA455, FCGR2B56, ENTPD8, DDO, 
FCN157. All of these genes have been mentioned in previous studies to affect the prognosis of patients with GC. 
Especially, CTLA4 has been used in the clinic as a target for mature tumor-targeted  therapy58, which indicates 
the accuracy of our signature.

A large number of prognosis prediction signatures based on machine learning have been reported in recent 
literature. In terms of research, these signals have diversity, such as pyroptosis, cuproptosis, ferroptosis, EMT 
conversion, hypoxia, metabolism, aging, and immune  response36,37,59–64. We collected 93 published prognostic 
signatures and calculated C-index values for these signatures. Compared with these signatures, the IRS showed 
a higher C-index value in the total, test 1, and test 2 cohorts, indicating its high accuracy. Higher TMB has 
been demonstrated to be associated with better prognosis in patients with GC, which is consistent with our 
 findings65. Immune interaction is the key feature of tumorigenesis and the therapeutic target of GC. Stromal cells 
and immune cells are the main components of TME, and immune and matrix scores are related to the clinical 
features and prognosis of  GC66,67. Our results also confirmed that tumor immunity is the most important factor 
affecting the prognosis of GC patients.

Subsequently, we processed the tumor site single-cell sequencing data of patients with GC and identified 2634 
malignant tumor cells. Upon cell dimension reduction and visualization, we noticed that the number of T cells is 
the largest among immune cells. Recent studies emphasize that several types of tumor infiltrating lymphocytes 
(TIL) are associated with better disease outcomes for various human  cancers68,69, It indicates that more CD3+, 
CD8+ or CD45RO + T cells in tumor tissue are significantly associated with lower frequency of lymph node 
metastasis, disease recurrence or longer survival of patients. However, tumors have developed many different 
strategies to escape immune surveillance, such as loss of tumor antigen expression, expression of Fas ligand (Fas-
L) or CD200 that can induce apoptosis of activated T cells, and immunosuppressive cytokine secretion, such as 
IL-10 or TGF-β, Or production of regulatory T cells, and downregulation or loss of  MHC70. The change of HLA 
class I expression occurs in gastric  cancer71, and may play a role in the clinical process of disease by making tumor 
cells escape T cell mediated immune  response72. This intercellular communication may be the main reason for 
the different prognoses of different patients with GC.

In our study, we used a combination of various machine learning algorithms to construct immune-related 
prognostic signatures for gastric cancer, and validated the stability and effectiveness of the immune-related 
signature (IRS) using multiple datasets. We compared IRS with 93 previously published prognostic signatures, 
and demonstrated that IRS was the most effective prognostic signature. Through the evaluation of IRS, doctors 
can better understand the patient’s prognosis and consider it in their treatment plan, helping to develop more 
personalized treatment plans and maximize the patient’s survival rate. Additionally, we further discovered the 
predictive value of IRS for the response to immune checkpoint therapy, which is based on the patient’s immune 
gene expression profile and can predict the patient’s response to immunotherapy. In clinical practice, the appli-
cation of IRS can providing more accurate and personalized guidance for patient treatment and management. 
Importantly, we further revealed cellular communication between high-risk and low-risk T cells at the single-cell 
level, which provides important reference value for the study of tumor immune microenvironment in gastric 
cancer patients. However, our study still has some shortcomings. IRS needs to be re-validated in real-world 
cohorts, and the combination of IRS with clinical features that affect patient prognosis may further improve 
accuracy. In summary, IRS is a promising tool for clinical prognosis prediction and immune therapy decision-
making for GC patients.

Conclusions
We developed an immune-related prognostic signature with reliable validity and high accuracy for clinical use 
for predicting the prognosis of patients with gastric cancer.
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Data availability
Single-cell transcriptome data were obtained from the GEO database (GEO registration number: GSE163558; 
https:// www. ncbi. nlm. nih. gov/ geo/). Bulk transcriptome sequencing data were obtained from the TCGA database 
(https:// portal. gdc. cancer. gov/) and GEO database (GSE84437, GSE84433).
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