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Abstract: Plants host diverse but taxonomically structured communities of microorganisms, called
microbiome, which colonize various parts of host plants. Plant-associated microbial communities
have been shown to confer multiple beneficial advantages to their host plants, such as nutrient
acquisition, growth promotion, pathogen resistance, and environmental stress tolerance. Systematic
studies have provided new insights into the economically and ecologically important microbial
communities as hubs of core microbiota and revealed their beneficial impacts on the host plants.
Microbiome engineering, which can improve the functional capabilities of native microbial species
under challenging agricultural ambiance, is an emerging biotechnological strategy to improve crop
yield and resilience against variety of environmental constraints of both biotic and abiotic nature. This
review highlights the importance of indigenous microbial communities in improving plant health
under pathogen-induced stress. Moreover, the potential solutions leading towards commercialization
of proficient bioformulations for sustainable and improved crop production are also described.

Keywords: microbiome engineering; microbiota; pathogens; plant–microbe interactions; rhizosphere;
root exudates

1. Introduction

Interest in the control of crop diseases has recently increased due to the global require-
ment for eco-friendly approaches that would replace chemical fertilizers and pesticides
in agricultural practices [1,2]. Plants provide the place for the growth of niches and the
proliferation of a diverse microbial community, including protists, fungi, bacteria, viruses,
and nematodes [3,4]. These organisms play important roles in the health and productivity
of crops by forming complex co-associations with plants [1]. In particular, plant-associated
microbiota and plants form a ‘holobiont’, and evolutionary selection among microbes and
plants contributes to the stability of ecosystem [5,6]. Complex plant–microbial associa-
tions have deep branching lineages and comprise of diverse phyla at lower phylogenetic
resolutions. Recently developed culture-independent high-throughput sequencing has
accelerated the identification of microbial communities inhabiting the surrounding spaces,
as well as inside tissues and surfaces of plants, and demonstrated the existence of mi-
crobial lineage subsets, termed as ‘core microbiota’, which reproducibly make contacts
with host plants across a wide range of environmental conditions [7,8]. Among the plant
microbiome, fungi and bacteria, which play significant roles in the proper functioning
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and health of plants [9,10], are dominant microbes in contrast to the other members of
community, i.e., archaea, nematodes, algae, and protists. The metagenome/genome-wide
association studies (M/GWAS) have enlightened our understanding regarding the roles
of individual taxa in modulating plant physiology, colonization and fitness [8], whereby,
multi-omic approaches have enabled us to predict and characterize the genes that facilitate
the microbes to interact with the plant-associated microbiomes [11]. Based on the current
knowledge of plant–microbiome interactions, there is an evolving paradigm that considers
plant–microbiome associations/interactions as means to develop novel plant genotypes
under continuously changing ambiance [12,13]. This review summarizes the recent ad-
vances on plant–microbiome interactions at the community level, along with the roles of
composition and assembly of a microbial community to improve the disease resilience in
plants. Current knowledge gaps and future research directions are also discussed.

2. Structural Dynamics of Microbiome in Plant Life

The plant-associated microbiome assembly comprises of a series of successional steps
determined by microbe–microbe and plant–microbe interplays (Figure 1). Plant-microbiota
generally transmit via either horizontal pathway (i.e., obtained from the vicinal envi-
ronment) or vertically (i.e., gained directly from the parent) [14]. Although the detailed
information on horizontal and vertical modes of transmission remains elusive, their roles
in shaping the final diversity of seed microbiota are well-established. Once seeds germi-
nate, microbe assembly is stimulated by horizontal transmission mode, where seed-borne
microorganisms mostly get fixed with roots and rhizosphere [15].
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Figure 1. Various steps that occur during the assembly of the plant microbiome are depicted schematically. Firstly, plants
release signaling molecules (i.e., phenolics, proteins, etc.) in the form of rhizodeposits to attract microbial community
(step 1). Secondly, microbes respond to plant oriented signaling molecules by initiating mobilization and colonizing various
plant parts as epiphytes and endophytes (step 2). The final diversity of the plant microbiome is shaped by a series of stages
involving intricate signaling between plants and microorganisms.

The microbiome associated with plant roots is dynamically assembled and recruited
during life cycle of the host plants. Temporal alterations in structural composition of
rhizobiome are constant across different geographic regions around the globe [16]. The
microbiome composition is highly dynamic during early vegetative growth stage and
sustains in later vegetative stage [16,17]. However, some members of microbial taxa belong
to the core microbiota, and constantly maintain in relatively high abundances during the
developmental phase of the host plants [16–19]. These core microbiota possess several
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beneficial traits, such as endurance of stress, beneficial effects on the host growth, efficient
colonization, and to protect host plants from harsh environmental constraints [15,20].
Host plants, on the other hand, can transfer the abovementioned core microbiota-induced
beneficial traits to their offspring, revealing the significance of linkage between plant-
associated microbiome and host plants [21].

Plants harbor diverse microbial communities, some of which enter the plant tissues,
called endophytes, while others stay on the outer surface of plant tissues, known as
epiphytes [22,23]. Early studies mainly focused on the structural and functional characteri-
zation of rhizobiome, and discovered that plant–soil crosstalk plays a key role in shaping
the rhizosphere microbiota [24]. For example, defects in phosphate starvation response
(PSR) pathway in Arabidopsis plants negatively regulated the diversity of beneficial micro-
biota and ultimately favored the colonization of phytopathogens [25]. Plant leaves also
offer habitats to complex and diverse microbial communities [26,27]. Most endophytes
spread systematically through the xylem system to other compartments of plants such
as the leaves, fruits, and stem; however, distinct endophyte communities are present on
aboveground plant tissues depending on the plant source allocation [22]. Phyllosphere
bacteria initially start their lives in a soil environment, and eventually enter into plant
leaves as endophytes, a process driven mainly by environmental and plant factors [28–30].
Features of plant cell walls play key roles in shaping almost 40% of the bacterial population
diversity in the roots of Arabidopsis plants [31]. Host genotype, age, and environment
conditions have cumulative impacts on the diversity of rhizospheric and phyllospheric bac-
terial communities in Boechera stricta, suggesting the importance of genotype–environment
interactions in determining the structural assembly of plant microbiomes under natural
conditions [32].

Various microbial groups, belonging to different genus and species, inhabit the phyllo-
sphere and endosphere of host plants. For instance, Pseudomonas, Sphingomonas, Frigoribac-
terium, Pantoea, Acinetobacter, Enterobacter, Methylobacterium, Bacillus, and Curtobacterium are
predominant genera of carposphere or phyllosphere microbiota in grapevine [29,33], while
Methylobacteria and Sphingomonads are predominant taxa of leaf microbiomes in maize [30].
Similarly, Enterobacteriaceae and Pseudomonas were identified as dominant epiphytic bacteria
existing on the flower of apple [34], and Pseudomonas is the most abundant genus found in
the leaves of tobacco, apple, pumpkin, grapefruit, and almond [35].

Plant endophytes mainly originate from seed, air, and soil, followed by habituation
inside the plant tissues, where they spend rest of their lives. Various factors including envi-
ronment factors, farm management, plant genotype, and soil features shape the community
composition of plant endophytes [26,36]. Plants compartmentalize specific microbial com-
munities as endophytes and establish a strong association as well as a signaling nexus with
endophytes [37]. For example, invasion of Xanthomonas oryzae pv. oryzae (Xoo), the causal
agent of rice bacterial blight, negatively regulated the endophytic microbial diversity of
rice plants by reducing alpha-diversity of the fungal communities, Xoo infection helped
rice plants to acquire disease combating beneficial microbes that subsequently elicited the
disease-suppressive mechanisms in the plants [38]. However, the composition, interactions,
and functions of endophytic bacterial communities in protecting plants from pathogen
attack under adverse environmental conditions remain unclear.

3. Plant–Microbe Interplays: Recruiting Microbial Communities for
Microbiome Assembly

Diverse microbial communities colonize plant surfaces and tissues, where beneficial
microbial groups provide plants with a wide array of life supporting functions, such as
resilience to biotic and abiotic stresses, growth promotion, and nutrient acquisition [39,40].
Managing microbial colonization process would help to modulate the abovementioned
functions, but in-depth understanding regarding how plant genotypes regulate coloniza-
tion of particular microbial group will be helpful to further strengthen beneficial microbiota-
linked traits. The microbiome assembly depends on both plant–microbe interactions and
microbe–microbe interactions (Figure 2).
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Figure 2. Schematic visualization of various interactions occurring in the plant holobiont. Numerous complex signaling
pathways are involved in plant–microbiome crosstalk, including plant–microbe, microbe–microbe, and microbe–plant
communications. The ultimate fate of plant–microbiome interactions depends on the chemistry of the rhizosphere, and the
diversity and the composition of microbial communities.

3.1. Root Exudates and Chemotaxis

Microbes employ chemotaxis to detect and respond to plant-derived signals (i.e.,
sugars or organic acids), exuded from plant roots, to initiate microbial colonization step.
Following the signal perception, microbes mobilize towards plants and become attached
to the surface of roots to form biofilm [41]. Genes responsible for motility, chemotaxis,
biofilm formation, flagella assembly, two-component regulatory system, and secretions are
abundantly present in microbial communities of phyllosphere and rhizosphere, in contrast
to the bulk soil [42–44]. Large numbers of substrate transporters present in the members
of phyla Firmicutes and Proteobacteria facilitate the habituation of microbial populations
in the nutrient rich environment of plants [4,18,29]. Similarly, motility genes were also
identified in bacterial strains isolated from Arabidopsis thaliana roots [45].

In plants, the compounds that stimulate chemotaxis in microbes are present on the
root surface or in root exudates [46–48]. Detailed characterization of root exudates is
challenging, owing to the variation in their composition with plant developmental stages,
plant varieties, and environmental conditions [49]. However, several compounds have
been identified in certain plant species; some are common, while others are unique [41].
Usually, polysaccharides are secreted by root tips and abundantly present in root caps and
mucilage [50]. However, elongation zones and meristem contain oxidized compounds
such as amino acids, sugars, and organic acids [51,52].

The ability to sense organic compounds widely exists in plant-beneficial bacteria in-
cluding Azospirillum brasilense, Sinorhizobium meliloti, Rhizobium leguminosarum, and various
Pseudomonas species, and specific receptors for different organic compounds have been
identified in plant-beneficial bacteria [53]. R. leguminosarum, A. brasilense, and S. meliloti
utilize organic acids as catabolite repressors [54]. Organic acids are the key metabolic
regulators that help microbial species to adapt to rhizospheric environment, elucidating
the widespread distribution of organic acid-mediated chemotaxis in plant-associated bac-
teria [55]. Microbes sense the molecules of interest present in root exudates indirectly, by
periplasmic binding proteins and a phosphotransferase system followed by the attachment
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to corresponding receptors. For instance, a galactose binding periplasmic protein (i.e.,
ChvE) is involved in chemotaxis of A. brasilense, although the interacting chemoreceptors
are still unknown [56]. R. leguminosarum and S. meliloti perform nitrogen fixation only
during symbiotic association, and rely on other nitrogen sources (i.e., amino acids) un-
der free-living conditions [54]. In addition, chemotaxis towards flavonoids, host-specific
phenolic compounds exuded in low amount from plant roots, regulates the expression of
nodulation genes in bacteria [57]. Some of the rhizodeposits secreted by different plants,
together with microbial responses and effects, are presented in Table 1.

Table 1. Summary of some root exudates involved in plant–microbe crosstalk with subsequent impact on plant microbe
symbiosis.

Root Exudates Microbial Receptors 1 Microbes Plant Species Effects References

Alanine CtaA, CtaB, CtaC
and CtaD

Pseudomonas protegens
CHA0 Tobacco Suppresses root disease [58]

Arginine McpA Azospirillum caulinodans Sesbania rostrata Regulates root colonization and
flagella synthesis [59]

Chitinase McpU Pseudomonas sp. RP2 Arachis hypogaea Increases immunity [55]

Choline McpX Sinorhizobium meliloti Alfalfa Facilitates nitrogen-fixation in
root nodules [60]

Citric acid McpU Sinorhizobium meliloti Alfalfa Regulates root colonization [61]

Citric acid McpU Bacillus subtilis Arabidopsis thaliana Enhances root binding of
Bacillus subtilis [62]

Ethylene ETR1 Azospirillum brasilense Wheat Modulates plant morphology [63]

Malic acid McpU Bacillus subtilis Rice Improves nutrient assimilation
and pH regulation [64]

Malic acid McpA Pseudomonas fluorescens Tomato Improves plant growth and
nutrient acquisition [65]

Methyl-
glucoside McpA Bacillus amyloliquefaciens Cucumber Modulates chemotaxis mobility

and enhances immunity [48]

Nicotine McpU Pseudomonas aeruginosa Tobacco Increases biocontrol efficiency
against bacterial wilt [66]

Oxalic acid TlpA1 Azospirillum caulinodan Sesbania rostrata Increases plant growth [67]

Proline IcpB Pseudomonas aeruginosa Cucumber Shows antifungal activity
against Fusarium oxysporum [68]

Proline McpB Bacillus velezensis Maize Regulates swarming motility
and biofilm formation [69]

Proline McpU Sinorhizobium meliloti Alfalfa Directs flagellar motor rotation
and root colonization [54]

Succinic acid TlpA1 Azospirillum brasilense Wheat Increases plant growth, root
volume, and crop yield [41]

Succinic acid TlpA1 Bacillus velezensis Brachypodium
distachyon Regulates biofilm formation [51]

Tryptophan IcpB Azorhizobium caulinodans Sesbania rostrata Modulates nodulation and
nitrogen fixation [70]

Tryptophan IcpB Bacillus cereus Tomato Reduces the damage of
Medoidogyne incognita [71]

1 CtaA, CtaB, CtaC, and CtaD are the chemoreceptors for amino acids; McpA, McpU, and McpX are chemotaxis sensory proteins that detect
chemotactic ligands; ETR1 is a membrane-localized histidine kinase chemoattractant receptor for ethylene; TlpA1 is a transmembrane
chemoreceptor that responds to various organic acids, glycerol, and proline; and IcpB is a heme-binding soluble chemotaxis sensory protein
that senses organic acids.

Root colonization is generally triggered by Rhizobiales (part of the core microbiome)
equipped with symbiosis-related genes [72]. In the interface of plant rhizospheres,
polyamines, i.e., putrescine and arginine, act as signaling molecules and stimulate the
lifestyle switch in a microbial group to promote attachment and biofilm formation [73,74].
After successful colonization within host plants, diverse processes, such as nutrient
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deficiency-mediated root inhibition and/or activation of signaling pathways, take place,
which alter the root architecture of the host plants, resulting in differential niche coloniza-
tion patterns between many microbial groups [75].

3.2. Microbe–Microbe Interactions

It is not surprising that various active genes of soil microbiota play significant roles in
competition or cooperation with other microbes. Microbes can synthesize different prod-
ucts, which affect the microbe–microbe interactions. Distinct and diverse gene clusters for
biosynthesis of natural products have been identified in plant-associated bacteria [76]. The
genomes of plant-associated bacteria harbor biosynthetic genes for intraspecific or interspe-
cific bacteria-killing substances (such as antibiotics and toxins) to control the abundance,
diversity, and distribution of other microbial groups in host plants [55]. However, how
these compounds are synthesized, and how they regulate the microbe–microbe interplays,
along with their underlying biochemical mechanisms, remains to be explored.

Specific functional traits correlated with pathogen suppression, e.g., biosynthetic genes
for antifungal compounds and protein secretion, are rich in bacterial disease combating
rhizobiomes of tomato and soybean [77,78]. Pathogens induce the activation of various un-
known biosynthetic gene clusters (BGCs), encoding polyketide synthases (PKSs), chitinases,
and non-ribosomal peptide synthetases (NRPSs), which subsequently trigger the disease
suppression activity in the endophytic root microbiome [79]. More than one thousand
BGCs belonging to diverse biosynthetic classes of terpene system, post-translationally
modified and ribosomally synthesized peptides, trans-AT PKSs, and NRPSs have been
identified in phyllospheric bacteria of Arabidopsis plants [80]. These BCGs are involved in
driving the complex interactions occurring within a microbial niche [81]. In addition to the
abundance of antibiotic production, antibiotic resistance genes are also widely distributed
within the microbiome [6], implying an intense competition between different microbial
groups that controls the structure of microbial community.

Quorum sensing (QS) is a well-established mechanism by which bacteria communi-
cate with one another by sensing and producing signaling molecules, e.g., homoserine
lactone (HSL) [82]. Different bacterial taxa have the ability to generate the same type of
signaling molecules, which enable either interference or cooperation with the neighbor-
ing microbes belonging to other taxa [83]. QS facilitated the movement of finger millet
endophyte M6 (Enterobacter sp.) towards the root invading microbe Fusarium graminearum,
and resulted in the development of biofilm on root hair to trap and prevent the entry of
endophytic pathogen [84]. Terpene and HSL biosynthetic genes are enriched in microbial
communities [82]. Terpenoids play roles in diverse ecological and biological functions,
including chemical defense against pathogens and herbivores [85,86]. Bacterial terpenes
are also involved in interkingdom signaling, as these compounds function as elicitors of
profound responses in plants [87]. Microbial colonization on the ‘local side’ stimulates the
microbial colonization on the ‘systemic side’ by modulating root exudation of metabolites
via long-distance communication with different parts of rhizospheric system [88]. For
instance, locally inoculated bacterial strains belonging to genera Bacillus and Pseudomonas
trigger the production of bacteria-specific metabolites in the root exudates, which, in turn,
induce the colonization of selective bacterial groups on the systemic side [89]. QS is an
intercellular communication system, in which particular signal molecules including AHLs
mediate bacterial gene expression and bacterial cell concentration [90]. In fact, QS system
controls the production of a variety of phenotypes, many of which have been linked to
pathogenesis in a variety of economically significant bacterial pathogens, such as Pecto-
bacterium carotovorum, Pseudomonas syringae, Dickeya solani, Ralstonia solanacearum, Erwinia
amylovora, and Agrobacterium tumefaciens [91]. In agriculture, interference or interrupt-
ing QS is thus an intriguing technique for preventing pathogen infections [92]. Quorum
quenching (QQ), involving the enzymatic destruction of AHL signal molecules, is one of
the most well-known QS-interrupting techniques [93]. For example, the QQ activity of
Pseudomonas segetis strain P6 reduced soft rot symptoms on potato and carrot caused by D.
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solani, P. carotovorum, and Pectobacterium atrosepticum [91]. Moreover, plants are also able
to disrupt the QS system by producing QS inhibitors, which either degrade QS signals or
compete for signal receptors. For example, extracts from Medicago truncatula, cinnamon,
grapefruit, and other edible plants and fruits showed QS inhibition activity against plant
pathogens [94]. Bioactive molecules produced naturally by marine organisms and fungi
and chemically synthesized compounds and antibodies have been reported to act as QS
inhibitors. An interesting feature of QS inhibitors is that they operate at lower than mini-
mum inhibitory concentration. Thus, pathogens do not perceive threats to their survival,
and continue to grow without causing disease [95,96].

Microbial populations that can successfully colonize may not only rely on colonization
signals from host plants, but also possess genetic machinery to compete with other members
of the microbiome [97]. Multiple type VI secretion system (T6SS) genes, which are involved
in the production of toxic proteins to kill competitor cells, have been identified in the
microbial communities of wheat, cucumber [98], barley [99], and citrus [6]. Hyde1, a new
family of T6SS effectors identified in pathogenic Acidovorax spp., was found to control
the growth and proliferation of phyllospheric bacteria, revealing its involvement in inter-
bacterial competition for plant colonization [44]. Therefore, an array of factors, such as
fitness for competition, survival rate, ability to respond to plant-oriented signals and
environmental conditions, may collectively affect the colonization process of microbial
groups. However, integrated studies of modelling and synergistic interactions occurring in
the plant holobiont are required to completely understand the molecular basis of complex
web of microbial associations.

Recent studies have provided new insights into the role of eco-evolutionary processes,
such as microbial shift between niches, selection of the fittest microbial group, ecological
drift, and genetic diversification, in the microbial community assembly process [39]. Ran-
dom habituation and past events have substantial impacts on the structure of microbial
community in plant microbiomes. Initially, random processes trigger the colonization
of rhizospheric and phyllospheric microbial communities [17,100]. Despite the robust-
ness of primary microbial communities, plants can accommodate new species without
any major change in existing microbiome structure. Deciphering the driving machinery
behind the assembly, dynamics, occurrence, and sensitivity to biotic/abiotic factors is nec-
essary to highlight the role of microbiomes in plant physiological responses to challenging
environmental conditions.

3.3. Plant-Pathogen Interactions

Plant–pathogen interactions are mediated by interplays of multifaceted processes,
which are facilitated by the pathogen- and plant-oriented molecules [101,102]. Molecules
secreted by pathogens are the main factors, which control their successful penetration,
colonization, and pathogenicity inside the host plants [103]. For instance, Zymoseptoria
tritici, a devastating wheat pathogen, favored its infection process by suppressing immune
responses of wheat plants via altering benzoxazinoids and phenylpropanoids biosynthetic
pathways [104]. By contrast, plant-derived molecules are responsible for the pathogen
recognition to provoke an array of defense responses within plants. The interactions
between the pathogens and the plants are normally initiated in apoplast, followed by the
recognition of microbial elicitors by receptors in plants [105]. These elicitors, termed as
pathogen-associated molecular patterns (PAMPs), are generally recognized by membrane
localized pattern recognition receptors (PRRs) in plants [102,106,107]. Bacterial flagellin,
peptide surrogates, elongation factor (EF), chitin, elf18, and flg22 are common PAMPs,
which are usually recognized by PRRs, i.e., chitin elicitor receptor kinase1 (CERK1), EF-Tu
receptor (EFR), and flagellin-sensitive2 (FLS2), respectively.

Recognition of microbe-derived PAMPs by plant PRRs triggers the first line of defense
in host plants, termed as PAMP-triggered immunity (PTI). To overcome PTI, pathogens
evolutionarily develop and deliver a large number of effector proteins into their host
cells to inhibit or scavenge the PTI components [108,109]. Among these, avirulence (Avr)



Int. J. Mol. Sci. 2021, 22, 6852 8 of 24

proteins, such as transcription activation-like effectors (TALEs) of Xanthomonas oryzae
and S1p1 of Magnaporthe oryzae, are the common examples of microbial effectors that
chock the defense responses of host plants [102]. As consequence, however, plants encode
various disease resistance (R) proteins to recognize pathogen-associated Avr proteins [108].
Molecular interactions between host-derived R and pathogen-oriented Avr proteins activate
the second line of defense, known as effector-triggered immunity (ETI). ETI is relatively
faster and stronger than PTI, and usually induces localized necrosis of both pathogen
and plant cells in the infected area [110,111]. PTI and ETI together constitute the innate
immunity system in plants, which enable plants to recognize and resist/combat against
invading pathogens.

The fate of plant–pathogen interactions is decided by various environmental factors
including cultivation conditions, genetic basis of plants and pathogens, variations in host
physiological responses under biotic/abiotic climate changes, and the structure of the
host-associated microbiome [17]. For example, the bacterial pathogen, Pseudomonas fus-
covaginae, was responsible for disease incidence in highland rice plants, while the fungal
pathogen, Sarocladium oryzae, was found to cause infection in rice plants grown at low
altitudes, especially during wet season [112]. The plant microbiome, especially rhizo-
biome, acts as a protective shield and obstructs plant–pathogen interplays with subsequent
beneficial impacts on plant health [113]. Plant-associated microbial communities hinder
the pathogen-oriented activities via competing for resources, locking key nutrients (i.e.,
iron) and producing pathogen-killing metabolites (such as antibiotics and toxins) that
ultimately eradicate the pathogens [114,115]. Furthermore, plant-beneficial microbiota also
interrupt the communications between pathogens and their corresponding hosts indirectly,
by inducing systemic resistance in plants (described in later sections) [116]. Recently, the
indigenous plant-associated microbial communities have attracted the attentions of the
scientific community, owing to their functional benefits on plant health under challenging
climatic conditions [117,118].

4. Functions of Microbiome in Plant Health

Generally, each microcosm member possesses several valuable traits that help to
regulate the physiological processes in the host plants under diverse environmental con-
ditions. Specific traits displayed by an individual microbial group in the microbiome
is of significant importance regarding plant health, and is influenced by variety of fac-
tors including microbial diversity, environmental factors, and host plant species [119,120].
The direct health-related benefits provided by the microorganisms to their host plants
include nutrient acquisition, mitigation of environmental stresses, and protection from
pathogens [59]. Plant microbiomes have long been studied for their role in protecting their
hosts from phytopathogens, and the term “biocontrol” refers to the processes that eliminate
disease-causing organisms [121]. Usually, beneficial microbes protect plants from pathogen
attacks either directly (by interacting with pathogens) or indirectly (by activating the innate
immune responses of the host plants).

4.1. Roles in Direct Suppression of Plant Pathogens

The plant-microbiota members include neutral, pathogenic, and beneficial organ-
isms. During their lifespan, plants not only establish beneficial associations with microbial
communities, but also need to cope with the infections caused by diverse pathogenic
microorganisms. Soil-borne pathogens cause adverse effects on hundreds of plant species,
including economically important crops, leading to significant economic losses by reducing
quality and yield [122–124]. The most important soil-borne fungal pathogens are Rhizoc-
tonia solani [125], Fusarium oxysporum [126], Verticillium spp. [127], and Fusarium solani [4].
These soil-borne pathogens can survive in soil for long periods of time by forming resting
structures (such as chlamydospores, melanized mycelia, oospores, cysts, and sclerotia)
until they receive life signals from their corresponding host plants [59]. For example, free
amino acids, phenolic compounds, and sugars in root exudates of watermelon and tomato
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significantly enhanced the sporulation and spore germination of F. oxysporum [128,129].
The infection of soil-borne pathogens usually causes root development inhibition, root rot,
stunted growth, stem or collar rot, wilting, and seedling damping-off of plants [130,131],
and some of the soil-borne pathogens infect a wide range of host plants rendering tradi-
tional control measures ineffective [132]. A few groups of soil-inhabiting bacteria have
been known to negatively regulate the plant health. For instance, A. tumefaciens, the causal
agent of crown gall disease [133], and R. solanacearum, causing bacterial wilt, are widely
studied plant-damaging soil-borne bacteria [134].

Pathogens must interact with the complex microbial community of rhizosphere to
develop an intense pathogenic impact on plants [135]. Pathogens negatively affect the
plant health by interacting with beneficial microbiota, i.e., competing for nutrients and
space, and the production of antimicrobial compounds [136]. Furthermore, pathogens also
promote the colonization of other plant-harmful microbes by delivering effector proteins
that cease the activities of beneficial microbes in rhizosphere community [136]. Plants
and their associated microbiota are evolving simultaneously for millions of years, and
this co-association of microbes and plants provides several benefits to plants including
nutrient acquisition, fight against abiotic stresses, and disease suppression [111]. Host-
linked communities of beneficial microbes are involved in disease suppression and nutrient
mobilization in plants [137,138]. For example, Pseudomonas spp. can reduce the growth
of plant pathogens through competition and antibiosis; however, the overall disease sup-
pression in soil is affected by multiple factors, i.e., genetic background of both hosts and
pathogens, population dynamics of pathogens, diversity and composition of plant micro-
biota, as well as biotic and abiotic conditions [42,139]. Although the disease suppression
ability is associated with synergistic efforts of microbes rather than individual specific
efforts [140,141], complete understanding of underlying interactions between potential
antagonists and disease-causing phytopathogens requires further investigation. Some sim-
ple mechanisms, i.e., production of antimicrobial metabolites and volatiles in antagonistic
bacteria, have been reported to be responsible for improving the efficacies of the disease-
suppressive soils [142,143]. Among all mechanisms of disease suppressive soils, antibiosis
(i.e., production of antimicrobial metabolites by an organism to suppress the growth and
proliferation of another organism) is the most widely studied [144]. Antibiotics such as
2,4-diacetylphloroglucinol (DAPG) and phenazines (PHZ) have been well-studied, owing
to their potential roles in plant disease suppression [144,145]. Several Pseudomonas species
produced DAPG and PHZ in soils, which suppressed Fusarium wilt of flax or wheat [146].
Moreover, DAPG and pyrrolnitrin suppressed the growth of R. solani [147], while PHZ
and pyoluteorin were widely distributed in soils and are involved in the suppression of
Thielaviopsis basicola [148]. A rice seed endophyte, Sphingomonas melonis, promoted the rice
panicle rot disease suppression in rice seedlings by producing anthranilic acid against
Burkholderia plantarii [149]. Similarly, microbes with inherent potential of volatile organic
compound production have been proposed as key components of disease suppressive
soils [144]. Earlier studies highlighted the potential role of ammonia and hydrogen cyanide
in suppressing the growth of phytopathogens [144,150,151]. Inhibition of the proliferation
of pathogens in soil can be mediated by competition between plant-beneficial and -harmful
microbes for survival, nutrient acquisition, and colonization [152,153].

If a pathogen successfully surpasses the rhizobiome, the so-called first line of defense
against invading pathogens, and enters the plant, endophytes come into action to provide
plants with an extra layer of protection. Upon pathogen entry, endophytes start recruit-
ing microbial communities, which initiate their genetic machineries to produce defensive
enzymes and metabolites against pathogens [79]. Fusarium wilt disease in various crops
(e.g., tomato, lettuce, and cucumber) was suppressed when these crop plants were grown
in disease suppressive soils enriched in bacterial phyla named Acinetobacteria and Fir-
micutes [12]. General or specific disease suppression can be achieved via modulating the
composition of microbial communities by implementing different management practices,
such as crop rotation and compost addition [154].
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Genomic studies have added more knowledge about the presence of specific gene
clusters that are involved in pathogen inhibitory activities. These specific gene clusters
also lead towards the identification of antibiotics [80]. Plant-associated microbes are good
sources of potential antagonists which can resist phytopathogens. These microbiomes
interact directly with pathogens and inhibit their growth [155]. Additionally, niche overlap
with microbes for resource competition is also considered a major factor in stimulating
biocontrol activity [118].

4.2. Roles in Activation of Plant Immune Response

Emerging evidence has indicated that plant-associated microbiomes are engaged with
plant health [156] and the beneficial features of plant-associated microbes can boost the
immune responses in plants against biotic/abiotic environmental constraints [118,157].
Essentially, microbiomes help their host plants to gain resistance against pathogens via
modulation of plant defense mechanisms [158,159]. The microbe-triggered immune re-
sponse makes plants resilient against pathogen attack with a substantial boost in the disease
combating efficiency [160,161]. Microbiomes can reinforce the defensive capabilities of
plants by interrupting the plant-pathogen interactions, which subsequently improve the
disease resilience in plants [89]. Bacterial antagonists belonging to Achromobacter, Coma-
monas, Curtobacterium, Enterobacter, Leclercia, Microbacterium, Pantoea, Sphingobacterium,
and Stenotrophomonas genera showed tremendous biocontrol potential against M. oryzae
and triggered the expression of defense genes, such as OsCEBiP, OsCERK1, OsEDS1,
and OsPAD4, in rice seedlings against rice blast disease [162]. Similarly, root-associated
Pseudomonas sp. EA105 and Pantoea sp. EA106 induced disease suppression in M. oryzae-
challenged rice plants by triggering jasmonate- and ethylene-dependent induced systemic
resistance (ISR) responses [163]. Pathogen attacks induce changes in the root exudation
pattern of host plants, which can result in the colonization of specific resistance-inducing
microbiota. Diverse microbial populations inhabiting the episphere and endosphere are
involved in the activation of defense machinery of tomato plants against F. oxysporum
attack by inducing cell wall fortification through the modulation of salicylic acid biosyn-
thesis pathway [141,164]. Moreover, the root-associated microbiome induced resistance
in strawberry plants against two soil-inhabiting fungal pathogens, Verticillium dahliae and
Macrophomina phaseolina, in controlled field trials [165]. Similarly, a field trial revealed
a positive correlation between the microbiome-triggered ability of maize plants and the
suppression of a disease caused by R. solani [166]. Several microorganisms could induce
plant immune responses under greenhouse conditions, but the majority failed in field
conditions. This inconsistency is mostly linked to the lack of ability of the microorganisms
to survive and colonize the rhizosphere under inappropriate environmental conditions
that ultimately affects their protective qualities in field circumstances [144]. Overall, en-
vironmental conditions and soil health play important roles in the development of such
beneficial plant–microbe interactions.

Rhizobacteria conferred ISR is one form of the inducible immunity in plants, and
the molecular mechanisms in ISR are conserved in different plant species [167]. Some of
the components present on the cell surface of biocontrol bacteria, i.e., flagella or polysac-
charide [168], can trigger ISR in plants [169]. The ISR response in plants can also be
triggered when they come into direct contact with compounds secreted by beneficial bac-
teria, e.g., volatile 2,3-butanediol [170], DAPG, and cyclic lipopeptide surfactants [171].
A transcription factor, MYB72, is involved in the regulation of ISR in A. thaliana [172].
Occurrence of ISR indicates that plants might be evolved in such a way that they use
associated microbes as signals for the stimulation and maturation of their immune system.
Indeed, plants require microbes during the early stages of life to be in contact with soil for
their survival [17]. On the other hand, ISR inducing strains regulate the plant–pathogen
interactions via regulating the secretion of antimicrobial compounds by roots [137,173].
Alterations in the composition of root exudates ultimately manipulate root microbiomes
and activate recruitment of plant-beneficial microbial groups in the rhizosphere [174].
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Microbiome-induced resistance has been reported in different plant species for various
diseases, including potato scab, sugar beet Rhizoctonia damping-off, Fusarium wilt, and
wheat take-all [118,175]. Colonization of potential antagonistic bacteria conferred resistance
to tomato plants against bacterial wilt pathogen R. solanacearum [77]. These observations
indicate the possibility that the plant immune responses can be modulated by facilitating
the recruitment of resistance-inducing microbes that ultimately help plants to sustainably
combat pathogen attacks. Selective enrichment of microbial groups is responsible for
the induction of immune responses in plants against biotic and abiotic stresses, and this
induced immunity can be transferred over generations [176]. However, ISR-inducing
microbes need to bypass the plant immune system to develop a symbiotic relationship
with their host plants. Beneficial microbes employ mechanisms similar to pathogens which
suppress activities of plant immune responses [177,178]. For example, Rhizophagus in-
traradices, an ISR-inducing arbuscular mycorrhizal (AM) fungus, suppresses plant immune
responses and promotes its root colonization by producing SP7 effector [179]. Likewise,
Laccaria bicolor, a symbiotic ectomycorrhizal fungus, successfully colonizes plant tissues
by suppressing salicylic acid-mediated immune responses through MiSSP7 effector [180].
Moreover, compromised immune responses have also been reported in A. thaliana af-
ter colonization by Trichoderma [181], Bacillus subtilis [182], and Pseudomonas fluorescens
WCS417r [183]. In addition to downregulating local immune responses to facilitate col-
onization, plant-beneficial microbes also produce elicitors/signals to activate systemic
immune responses [137]. However, the detailed molecular mechanisms of mutualistic
plant–microbe interactions need further investigation. The beneficial services provided by
the microbiome to pathogen-challenged plants are presented in Figure 3.
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Figure 3. Beneficial impacts of positive plant–microbe interactions on plants. In plants, pathogen-oriented molecular
patterns (i.e., PAMPs) or plant-beneficial bacteria activate induced systemic resistance (ISR). Positive interactions between
plant and microbiome help plants in combating diseases and other environmental stresses, as well as boosting growth and
biomass production. Beneficial plant-microbiota compete with phytopathogens for colonization, resources, and habitat,
etc. Overall, beneficial microbes, through numerous mechanisms, including antibiosis, toxin production and nutrient
sequestration, directly suppress the proliferation of pathogens and the symptoms of infections in plants.
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5. Microbiome Engineering: Plausible Functional Benefits on Plant Health

Plant microbiota is one of the primary factors responsible for the growth and de-
velopment of plants under diverse environmental conditions [184]. Several emerging
microbiome engineering strategies, such as soil conditioning, artificial microbial consortia,
and host-dependent microbiome engineering, have been shown to strengthen these features
of stress tolerance, disease resistance, and nutrient acquisition in host plants (Figure 4).

Figure 4. Different microbiome engineering approaches, such as cultivation of microbe-recruiting
plant cultivars, inoculation of synthetic microbial communities, and conditioning of soil using
suitable amendments, increase the diversity of functionally active and diverse microbial communities,
resulting in improved plant health under adverse environmental conditions.

5.1. Traditional Soil Conditioning Using Organic and Chemical Amendments

Improvement of soil health is associated with consistent diversity of functional mi-
crobiota that will ultimately result in environmentally resilient and higher-yielding crops.
Soil organic formulations can be used for supporting the growth and proliferation of func-
tional microbial groups, and include compost, organic residues, organic wastes, biochar,
and peat [11]. Biofumigation, as an organic soil conditioning, is a strategy to suppress
diseases via soil fungistasis [185]. Amendment of soil with organic conditioners can enrich
in positive, functionally more efficient, and interrelated species of microbes compared to
supplementation with chemical fertilizers [186]. Functional characterization of positive
microbial groups responding to specific organic amendments, and optimization of organic
soil amendment applications for particular crop/soil type, will help to better understand
the biochemistry of soil health and establish sustainable soil health.

Plant-oriented signaling molecules, such as salicylic acid and various metabolites in
root exudates, strongly affect the dynamics and composition of microbiome [156,187],
suggesting that plant microbiomes can be artificially modulated using such types of
microbe-stimulating chemicals in an efficient and precise manner. For example, phe-
nolic compounds (i.e., coumarins) exuded from plant roots have an assisting role in altering
the composition of root-colonizing microbes [188]. Several studies suggested the protective
role of coumarins for plants against soil-borne pathogens by facilitating the growth of
beneficial rhizobacteria [188,189]. In maize plants, another class of root exudates, called
benzoxazinoids, has been shown to protect plants from herbivore insect attacks by favoring
the recruitment and colonization of beneficial bacterial and fungal microbial groups in
rhizosphere [190]. Further investigations on how different root exudates, such as malic
acid, coumarins, benzoxazinoids, and camalexin, can contribute towards microbiome
engineering and chemical communications between a particular signaling molecule and
microbial group will help to develop host-specific biofertilizers.
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5.2. Microbiome Engineering Using Artificial Microbial Consortia

Like synthetic biology, the function and structure of plant microbiomes can be mod-
ulated in a more specific manner by using the approach of microbiome engineering en-
compassing the use of artificial microbial consortia (AMC). This approach enables us to
establish AMC equipped with multiple functions relevant to plant growth and develop-
ment under normal and challenging environments. Such a strategy provides the best
alternative to solve numerous drawbacks associated with traditional biofertilizers, such as
the inability to compete with microbes under field trials, compromised performance under
local environment, and host compatibility issues [191]. The fabrication of an ideal AMC is
a systematic approach involving a series of steps including the selection of microbe origin,
excavating and culturing the core microbiota, identification of functionally active microbial
groups, fine-tuning the microbe–microbe interactions, and the evaluation of consortium
efficacy [192].

Numerous microbes establish complex interaction networks with other microbes in
the rhizosphere, and have become a key part of the functional consortia. For example,
plant growth promoting rhizobacteria (PGPR) and AM fungi can complement one another
with respect to ecosystem functioning and nutrient availability [193]. Similarly, key micro-
bial strains can also be artificially inoculated into soils to alter the structure of microbial
communities [194]. The role of AMC in conferring stress tolerance to plants is well docu-
mented [172,195]. For example, co-inoculation of AM fungus Claroideoglomus claroideum
and plant-beneficial bacterium Pseudomonas libanensis into sunflower rhizospheres pro-
moted plant growth by stimulating the growth of plant-beneficial microbiota under salinity
or metal stress [196]. Similarly, treating chili plant roots with a bacterial consortium in-
cluding Acinetobacter sp., Bacillus velezensis, and Bacillus amyloliquefaciens promoted the
plant growth and disease suppressive ability against soil-borne Phytophthora capsica [2]. In
addition, Agrobacterium sp. modulated the bacterial community shift in rhizospheric region
by promoting the growth of various PGPRs, e.g., Brevibacterium spp. and Actinomycetes
spp. [197]. The Agrobacterium-induced microbial community shift exerted beneficial effects
to bean plants by increasing overall plant biomass, antioxidants, flavonoids, potassium
content, and root nodules [197,198]. Moreover, co-inoculating the rhizospheres of tomato
with Stenotrophomonas maltophilia and Pseudomonas stutzeri boosted the plant growth and
stimulated the production of diffusible compounds (i.e., dimethyl disulphide), which are
active against the foliar pathogen Botrytis cinerea [199]. Two synthetic microbial communi-
ties, comprising bacterial strains with 1-aminocyclopropane-1-carboxylic acid deaminase
activity, were recently constructed, and these synthetic microbial consortia showed an-
timicrobial potential against F. oxysporum f. sp. Lycopersici and promoted the growth of
tomato plants [200]. Similarly, co-inoculation of pea plants with Pseudomonas aeruginosa,
Trichoderma harzianum, and B. subtilis enhanced the defense response against Sclerotinia scle-
rotiorum through regulating antioxidant enzymes activities and accumulation of phenolic
compounds upon pathogen attacks [201]. Application of co-cultures of Azospirillum sp.
and P. fluorescens was also effective in controlling the root rot disease of cotton caused by
Rhizoctonia bataticola [202]. Further studies unraveling the complex nexus between plant
genotypes and microbial species/strains are necessary to enlighten our understanding
regarding the mechanistic effect of antagonists on disease suppression. Sustainability of
synthetic microbial consortia needs to be considered under field conditions, and may be
achieved through continuous applications of AMC at regular intervals to stabilize microbial
consortia over the generations of host plants.

5.3. Host Genotype-Dependent Microbiome Engineering

Beneficial microbes are mainly present in rhizospheres, and plant roots act as a gate-
keeper to allow only beneficial microbes to enter plants as endophytes [193,199,203]. Plants
also expel bacterial species into the rhizosphere, but the underlying mechanisms by which
microbes (beneficial or pathogenic) exit and enter the holobiont of plants remain un-
known [204,205]. Moreover, plant roots have the ability to consume associated-microbes
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directly as a source of nitrogen [206], indicating that microbial biomass in rhizosphere play
an essential role in plant development in an unspecific manner. However, further investi-
gation is required to understand whether plants favor specific microbes for consumption.
Plant genetic machinery plays key roles in shaping and functioning of microcosms [11]. For
example, Pseudomonas simiae WCS417r boosted the biomass production in Arabidopsis plants
of some accessions [207]. The phyllospheric microbial diversity altered in mutant Arabidop-
sis plants defective in PTI signaling pathway and MIN7 vesicle-trafficking pathway [208].
This suggests a strong genetic connection between Arabidopsis plants loci (controlling plant
defense and cell wall integrity) and phyllospheric bacterial diversity [209]. Mutant rice
plants, deficient in jasmonate synthesis, showed a significant reduction in Azoarcus olearius
colonization [210]. At the microbiome level, distinct plant genotypes also attract a variable
range of disease suppressive and beneficial microbes, and reassemble their microbial di-
versity via variations in metabolites exuded from roots [77,211]. Some bacterial groups
belonging to Enterobacter and Kosakonia genera are more abundant in the rhizobiomes of
banana cultivars, and provide them a shield against Fusarium wilt [205]. Similarly, bean
genotypes significantly affected the microbiome assembly in the rhizosphere, with only
0.7% operational taxonomic units (OTUs) in common [212]. Strong genetic correlations
were detected among the diversity of epiphytic microbial population, maize plants, and
their resistance to southern sheath blight pathogen Cochliobolus heterostrophus, and the
γ-aminobutyric acid pathway was responsible for controlling the phyllospheric microbial
diversity and southern sheath blight susceptibility in maize [213,214].

Selection and breeding of ‘microbe-friendly’ cultivars can provide tremendous poten-
tial for improved agricultural productivity. Knowledge on beneficial associations between
plants and microbes has provided opportunities to manipulate the plant genome to at-
tract and stabilize the functional microbes existing in the microcosm [172]. To achieve
this goal, ‘designer plants’ can be genetically modified to release exudates and hormones
that support the recruitment and colonization of beneficial microbiomes. Wild species or
relatives may play important roles in exploring genes linked with the assembly of beneficial
microbiomes [215]. For example, wild bean accessions had abundant Bacteroidetes, while
modern domesticated accessions showed Proteobacteria and Actinobacteria in relatively
high abundance [212]. A strong connection between host genotype and associated phyl-
loshperic microbial diversity in different tomato accessions was detected [216]; however,
host genetic variations, coupled with environmental factors, were correlated with the endo-
phytic microbial diversity in wheat plants [217]. Thus, it is likely that microbial community
shift is linked with modified plant genotypes and altered root morphology. How host
genotype–microbiome crosstalk recruits beneficial microbial groups for achieving desirable
traits, and how plants modulate and favor the colonization of specific microbiomes need to
be investigated to devise ways to maintain functionally active and beneficial microbiomes,
as well as to track the real time changes in microbial diversity under field conditions.

6. Concluding Remarks and Future Perspectives

Integrated approaches of experimental biology, multi-omics, and computational bi-
ology have provided quantitative insights into plant–microbiome interactions and the
underlying mechanisms. The broad survey of important crop plants and model plant
species has established a list of major fungal and bacterial groups that commonly form
associations with plants. However, more studies about microbial diversity are required
to discover the functional consortia of microbes for agronomically important crop plants.
Systematic approaches to identify core microbiota and their functions in host plants will
be required to characterize microbiomes of economic and ecological importance. MWAS
and GWAS have predicted key players that contain functional genes for colonizing plants,
plant fitness traits, and their influence on the assembly of plant-microbiota. Although these
techniques have unraveled the effects of microbiomes on plant fitness under challenging
environments, large proportions of variations are not fully understood. Large-scale longi-
tudinal studies are required to develop baseline for plant–microbiome interactions with
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clear consideration of host age and temporal dynamics to elucidate leftover knowledge
gaps. Improved understanding about the dynamic interactions of plant–microbiome with
challenging environmental conditions will give a way forward to engineer microbial con-
sortia with robust outcomes and predicted behavior. Furthermore, coupling experimental
approaches with modelling will accelerate the scientific advancement by resolving method-
ological and technical challenges associated with the plant–microbiome world. Integrative
approaches, combining the knowledge from different scientific disciplines, will help to
engineer and boost the activities of complex microbial consortia in a consistent and precise
manner. Improved knowledge about the dynamics of plant–microbiome–environment
interplay will pave the way for the deployment of engineered microbial consortia for
sustainable and improved plant production under a continuously fluctuating environment.
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