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Abstract: Hyperbranched macromolecules (HMs, also called hyperbranched polymers) are highly
branched three-dimensional (3D) structures in which all bonds converge to a focal point or core,
and which have a multiplicity of reactive chain-ends. This review summarizes major types of synthetic
strategies exploited to produce HMs, including the step-growth polycondensation, the self-condensing
vinyl polymerization and ring opening polymerization. Compared to linear analogues, the globular
and dendritic architectures of HMs endow new characteristics, such as abundant functional groups,
intramolecular cavities, low viscosity, and high solubility. After discussing the general concepts, synthesis,
and properties, various applications of HMs are also covered. HMs continue being materials for topical
interest, and thus this review offers both concise summary for those new to the topic and for those with
more experience in the field of HMs.

Keywords: hyperbranched macromolecules; polymerization; photoelectric materials; stabilizers;
bio-applications; carbon nanomaterial

1. Introduction

Dendritic macromolecules have unique architectures quite unlike their linear, branched,
and crosslinked analogues. Dendritic macromolecules are classified as dendrons, dendrimers,
or hyperbranched macromolecules (HMs, also called hyperbranched polymers), all of which are
composed of successive branching units. Dendritic macromolecules have attracted considerable
attention during recent decades, because of their unusual properties, such as low viscosity,
high solubility, and high functionality (Table 1). These properties stem from their globular and
spherical molecular architectures.

A dendrimer consists of two types of structural units: uniform terminal units on the globular surface
and dendritic units inside. Thus, dendrimers have well-defined molecular weights with unique symmetric
structures. The main drawback for practical applications of dendrimers is the tedious stepwise synthesis
required, along with time-consuming purification at each step. Consequently, more efficient methods for
production of dendritic macromolecules should involve less tedious synthesis procedures. This is possible
by forming hyperbranched macromolecules (HMs). While dendrimers have well defined structure and
molecular weight, HMs consist of a mixture of linear and branched units inside with multifunctional
groups on their periphery. They still possess a highly branched architecture with a three-dimensional
globular shape. The structural difference between dendrimers and HMs is ascribed to the difference in their
formation mechanism; thus, it can be further related to their different synthetic approaches used for them.
In the case of HMs, their termini are located on the periphery, which is similar to dendrimers. However,
the structure of the former is irregular, because linear and branched units are randomly distributed within
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the macromolecular framework (or polymer backbone). In brief, HMs have more irregular structures with
polydispersity of molecular weight than do dendrimers, which have perfect structures with monodispersity
of molecular weight [1–6]. Nevertheless, HMs have demonstrated several characteristics similar to those
of dendrimers, including multifunctionality on their periphery, low solution (melt) viscosity, and better
solubility [4]. This section focuses on the synthesis, properties, and the applications of HMs developed
during the last decades.

Table 1. Comparison of hyperbranched macromolecules with linear polymers and dendrimers.
Reproduced from [7] with permission from the Royal Society of Chemistry.

Linear Hyperbranched Dendrimer

Structure

Molecules 2018, 23, x FOR PEER REVIEW  2 of 24 

 

HMs, their termini are located on the periphery, which is similar to dendrimers. However, the 
structure of the former is irregular, because linear and branched units are randomly distributed 
within the macromolecular framework (or polymer backbone). In brief, HMs have more irregular 
structures with polydispersity of molecular weight than do dendrimers, which have perfect 
structures with monodispersity of molecular weight [1–6]. Nevertheless, HMs have demonstrated 
several characteristics similar to those of dendrimers, including multifunctionality on their periphery, 
low solution (melt) viscosity, and better solubility [4]. This section focuses on the synthesis, 
properties, and the applications of HMs developed during the last decades. 

Table 1. Comparison of hyperbranched macromolecules with linear polymers and dendrimers. 
Reproduced from [7] with permission from the Royal Society of Chemistry. 

 Linear Hyperbranched Dendrimer 

Structure 

 
 
 

Topology 
 
 

1D, linear 
3D, irregular 3D, regular 

Synthesis One-step, facile One-step, relatively facile Multi-step, laborious 
Purification Precipitation Precipitation or classification Chromatography 
Scaling-up Already, easy Already, easy Difficult 

MW 1 Discrepant Discrepant Identical 
PDI 2 >1.1 >1.1 1.0 (<1.05) 
DB 3 0 0.4–0.6 1.0 

Entanglement Strong Weak Very weak or none 
Viscosity High Low Very low 
Solubility Low High High 

Functional group At two ends At linear and terminal units 
On periphery 

(terminal units) 
Reactivity Low High High 
Strength High Low Very low 

1 Molecular weight; 2 Polydispersity index; 3 Degree of branching. 

2. Synthesis of HMs 

There are three main approaches to the synthesis of HMs: (i) step-growth polycondensation of 
ABx (x ≥ 2) or A2 + B3 monomers, (ii) self-condensing vinyl polymerization, and (iii) ring-opening 
polymerization [8].  

2.1. Step-Growth Polycondensation  

This strategy involves the polymerization of ABx (x ≥ 2) monomers via one-step 
polycondensation [9–15]. The primary advantage of this approach is that normal step-growth 
polymerization characteristics are obeyed. However, the main drawbacks include gelation, which 
often occurs during the polymerization. A monomer with functionality of three or more can form 
HMs and can fast reach gel point forming a cross-linked network structure even at low fractional 
conversion. The conversion, at which a tree-like topology turns into a network structure, is known as 
a gel point. The step-polymerization can be simply quenched the reaction prior to reach the gel point. 

Topology 1D, linear 3D, irregular 3D, regular
Synthesis One-step, facile One-step, relatively facile Multi-step, laborious

Purification Precipitation Precipitation or classification Chromatography
Scaling-up Already, easy Already, easy Difficult

MW 1 Discrepant Discrepant Identical
PDI 2 >1.1 >1.1 1.0 (<1.05)
DB 3 0 0.4–0.6 1.0
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2. Synthesis of HMs

There are three main approaches to the synthesis of HMs: (i) step-growth polycondensation of
ABx (x ≥ 2) or A2 + B3 monomers, (ii) self-condensing vinyl polymerization, and (iii) ring-opening
polymerization [8].

2.1. Step-Growth Polycondensation

This strategy involves the polymerization of ABx (x ≥ 2) monomers via one-step
polycondensation [9–15]. The primary advantage of this approach is that normal step-growth
polymerization characteristics are obeyed. However, the main drawbacks include gelation,
which often occurs during the polymerization. A monomer with functionality of three or more can
form HMs and can fast reach gel point forming a cross-linked network structure even at low fractional
conversion. The conversion, at which a tree-like topology turns into a network structure, is known
as a gel point. The step-polymerization can be simply quenched the reaction prior to reach the gel
point. Still, the purification is required to exclude minor cross-linked structures, and thus to afford
pure desired HMs.

Another drawback is that the ABx monomers employed have to be synthesized prior to
polymerization and this is a distinct disadvantage for commercial applications. However, the step-growth
polycondensation process offers diverse synthesis of HMs using a variety of available monomers,
which provides the potential for preparation of a wide spectrum of functionalities.
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AB2-type monomers are often used as building blocks, due probably to their easy synthesis
(Scheme 1), while the other ABx (x ≥ 3) monomers have been reported for use in the preparation of
hyperbranched polyesters [15,16] and polysiloxanes [17]. For example, 5-acetoxyisophthalic acid was used
as the AB2 monomer in melt polymerization to prepare hyperbranched aromatic polyesters that were
insoluble in organic solvents. This was due to intermolecular dehydration, which occurred between the
carboxylic acid groups during melt polymerization. However, hydrolysis of the crude product produced
a soluble hyperbranched polyester with a large number of carboxylic acid groups [18]. Aromatic-aliphatic
hyperbranched polyethers were also prepared by forming benzyl ether linkages in the presence of K2CO3

and crown ether (18-crown-6) in acetone [19].
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2.2. Self-Condensing Vinyl Polymerization

Self-condensing vinyl polymerization was defined by Fréchet et al. [20]. This process involves the
use of monomers that feature one vinyl group and one initiating moiety (AB* monomers) to generate
HMs (Scheme 2). The activated species can be a radical, cation, or even a carbanion.
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permission from the Springer Nature.

After the initiating moiety is activated, it is reacted with a vinyl group to form a covalent
bond and a new active site on the α-carbon atom of the double bond. The number of activation
sites increases in proportion with the propagation reaction in self-condensing vinyl polymerization,
whereas two functional groups are always consumed during polymerization. Therefore, in this process,
living/controlled polymerization systems are preferred in order to avoid crosslinking reactions
(i.e., gelation) caused by dimerization or chain-transfer reactions.
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2.3. Ring-Opening Polymerization

The third approach is called ring-opening polymerization (Scheme 3). Although the monomer
itself does not contain branching points, these are generated through the propagation reaction,
similar to that in the self-condensing vinyl polymerization (Scheme 2). Therefore, the monomer
can be considered a latent ABx monomer. Polymerization is driven by addition of a proper initiator to
the corresponding monomer. As an example, anionic ring-opening polymerization of glycidol was
used to prepare hyperbranched aliphatic polyether that contained one epoxide and one hydroxy group,
representing a latent AB2 monomer [22].
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2.4. Alternative Routes for HMs

In addition to the three main routes discussed to prepare HMs, there are a few notable variants
that merit discussion. As a consequence of the infrequent commercial availability of AB2 monomers,
other researchers have begun to focus on polycondensation of A2 and B3 monomers (the A2 + B3

route). Generally, the success of this approach is dependent upon many factors, including the ratio
of functionalities, solvent and reagent purity, and the reaction time and temperature (conversion).
This type of approach is obviously difficult to control and the resultant HMs often have high molecular
masses upon gelation [23–25].

Other approaches led to polymers with topologies similar to that of comb or star shaped polymer
architectures. The issue of polymerization control has proven to be paramount. In the case of the
‘graft onto’ approach, although steric and dilution effects limit the size of the polymers, they possess
a high degree of branching. In the case of the ‘graft from’ approach, a high degree of control over the
polymer architecture were obtained. A ‘graft onto’ polymerization was reported in 1991 [26]. Using
the polyoxazoline approach, comb-burst poly(ethylenimine)-poly 2-ethyl-2-oxazoline copolymers,
and poly(ethylenimine) homopolymers were produced. In contrast, the ‘graft from’ approach
described, was used to form branched copolymers utilizing ‘living’ free radical polymerization in
1997 [27]. This approach was utilized to afford a wide variety of complex architectures in relatively
few steps from commercially available monomers.

3. Properties of HMs

The physical properties of HMs are of key importance for their implementation in industrial
applications. The viscosity of HMs, in both solution and molten states, has been found to be
considerably lower than for their linear analogues [8,28]. Low-viscosity is one of the most interesting
features of HMs, along with very good solubility in various solvents.
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3.1. Solubility

The high solubility of HMs induced by a branched backbone is one important way that they
differ from the linear polymers. Kim and Webster reported that hyperbranched polyphenylenes [11]
had much better solubility in various solvents than did linear polyphenylenes. The solubility and
solution behavior of HMs differ from those of linear ones. It is well known that the solution viscosity
of dendritic macromolecules is lower than that of conventional linear polymers [18,29,30]. Such low
viscosity indicates that dendritic macromolecules are less entangled due to their unique spherical
shape. The relationship between intrinsic viscosity and molecular weight (MW) is shown in Figure 1.
Dendrimers display a bell-shaped relationship, resulting from their well-defined globular structures.
On the other hand, the intrinsic viscosity of HMs increases with MW, and the slopes of their plots
are much lower than those of linear polymers. Moreover, the size exclusion chromatography (SEC)
measurements indicated that the retention volume for HMs tended to be greater than that of linear
polymers, when compared with the same MWs. The results suggested more compact conformation of
HMs than of linear polymers in a solution.
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3.2. Thermal Properties

HMs are mostly amorphous materials, though some exceptional examples have been reported.
For example, HMs have been modified to induce liquid crystallinity [32,33] or crystallinity [34].
The lower glass transition temperature (Tg) of HMs than of linear polymers is another important
feature. The glass transition behavior is related to the relatively large segmental motions within the
polymeric frameworks, and the role of the end groups can be disregarded above a certain MW of
a linear polymer. However, in the case of HMs, the segmental motions are strongly affected by the
branching points, which induce large free volume, as well as the presence of abundant end groups.
Therefore, the glass transition for HMs is strongly affected by the translational movement of the
entire molecule instead of segmental movements [11,35]. Moreover, the chemical nature of HMs has
a decisive effect on Tg. For example, an aliphatic polyester generally has a much lower Tg value than
an aromatic polyester having the same MW [35].

3.3. Mechanical Properties

Mechanical properties (e.g., initial modulus, tensile strength, compressive modulus) reflect the
highly branched, compact structures of these relatively new polymer architectures [36,37]. The less
or non-entangled state of HMs imposes rather poor mechanical integrity, sometimes resulting in
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brittleness. These features of HMs have limited their use in thermoplastics, in which mechanical
strength is of importance. However, HMs can be used as additives for modification of viscosity to
enhance the processability of thermoplastics.

4. Structure of HMs

4.1. Degree of Branching (DB)

A perfectly branched dendrimer is composed of two types of structural units: terminal units
on the globular surface and dendritic units inside. On the other hand, HMs possess three types of
structural units as illustrated in Figure 2: dendritic unit (D = fully incorporated with ABx monomer),
terminal units (T = two unreacted B groups), and linear units (L = one unreacted B group). The linear
segments are generally described as defects. Fréchet et al. [38] defined the term ‘degree of branching’
(DB) as:

DB = (D + T)/(D + L + T) (1)

where D, T, and L are the number of dendritic, terminal, and linear units, respectively. DB is one of
the important characteristics that indicate the branching structure of HMs. Frey and colleagues [39]
reported a modified definition of DB based on the growth directions as:

DB = 2D/(2D + L) = (D + T − N)/(D + L + T − N) (2)

where N is the number of molecules. The two Equations give almost the same DBs for HMs with high
MWs. This is because the N in Frey’s equation is negligible in such cases.
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The DB of HMs can be measured via direct and indirect methods. The direct methods include NMR
measurements and degradation of the polymer units. The model compounds need to be characterized
by 13C-nuclear magnetic resonance (NMR). On the basis of 13C-NMR spectra, different peaks from the
different branching units of HMs can be assigned. DB can also be calculated from integrals of the
corresponding peaks [38]. In addition, an indirect method based on degradation of the hyperbranched
backbone was introduced by Kambouris and Hawker [40]. The chain ends are chemically modified and
then the hyperbranched skeleton is fully degraded by hydrolysis. The degradation products are identified
using capillary chromatography. To use this technique successfully, there are two prerequisites. First,
the chain ends must remain intact during the degradation, and second, conversion to elementary subunits
must be complete [40].
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DB can be altered or tuned to some extent [41–46] via four major methods: (i) copolymerization of
AB2 and AB monomers with different feed ratios [13]; (ii) changing the polymerization conditions such
as temperature, the ratio of monomer to catalyst and solvent [47–50], and the monomer pressure [51,52];
(iii) host-guest inclusion of AB2 or a multifunctional monomer [53]; and (iv) combinations of these
three. Moreover, five methods have been tried to increase DB: (i) increasing the reactivity of the
B′ group (residual functional group on the linear unit) [54], (ii) addition of core molecules [55],
(iii) polycondensation of dendrons [56], (iv) post-modification of the formed HMs to convert the linear
units to dendritic ones [57], and (v) using a special catalyst [58].

4.2. Molecular Weight

Molecular weight (MW) and the polydispersity index (PDI) are significant parameters for
determining the characteristics of HMs. Based on statistical and kinetic methods for HMs prepared
by the polycondensation of ABx (x ≥ 2) monomers, DP and PDI depend on conversion of the
monomers [59,60]. Obviously, PDI increases with increasing conversion. Nevertheless, in some
experiments, PDI could be narrowed by utilizing specific techniques, including: (i) slow addition
of monomers [61–65], (ii) copolymerization with core molecules [55,63–67], and (iii) separation by
dialysis or precipitation [68].

5. Potential Applications of HMs

Generally, in comparison with linear analogues, HMs display many peculiar features, such as large
number of reactive end-groups, few chain entanglements, and little or no crystallization (amorphous).
The new properties allow them to provide new features such as large free volume, tailor-made
properties, enhanced solubility, and low viscosity. To tune their properties, it gives rise to diverse HMs
with desirable functional groups (e.g., –COOH, –OH, –NH2, O=C–NH2, etc.) and topologies such as
segmented or sequential units. Benefiting from tunable nature and correspondingly new properties,
the produced HMs have been widely applied in various new fields, including photoelectronics,
nanotechnology, biomedicine, composites, coatings, adhesives, and modifiers (Figure 3).
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5.1. Photoelectric Materials

When compared with linear polymers, conjugated HMs (CHMs) have better solubility and
processability. Moreover, their highly branched and globular frameworks can prevent aggregation and
reduce interunit reactions. Driven by the requirement for unusual properties, much effort has been
devoted to the design and synthesis of CHMs.
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With donor-π-acceptor chromophores, non-linear optical (NLO) materials play a significant role
in latent electro-optic applications [69]. For high performance NLO materials, one of the daunting
problems is how to eliminate intermolecular dipole-dipole interactions. Such defects can be efficiently
restrained by building chromophores in the main-chain [70,71], side-chain [72,73], and periphery [74]
of HMs.

To prevent undesired dipole-dipole interactions, direct polycondensation through an A2 + B4

route using Suzuki coupling reaction has been applied for the synthesis of soluble HMs (two
hyperbranched NLO polymers HP1 and HP2) with isolated chromophores [70]. HP1 and HP2
from A4 + B2 (boronic ester) monomers, containing nitro-based chromophore and sulfonyl-based
chromophore, were also prepared via click reaction. According to second harmonic generation
measurements, the d33 coefficients were 40.0 and 73.6 pm V−1 with Φ values of 0.11 and 0.13. Peripheral
chromophore-modified HMs can also reduce the dipole-dipole interactions. Although the content of
such a chromophore is lower (~20–23 wt %) than that of their linear polymers, the d33 coefficients are
similar (up to 65 pm V−1). The result can be attributed to their unique molecular architectures [75].

Among the diverse CHMs, polyfluorines (PFs) are very important candidates for blue light
emitting diodes (LEDs) due to their desirable luminous intensity [76–83]. To reduce detrimental
green emission and/or inherent ketonic defects, the incorporation of triazole, truxene, oxadiazole,
or carbazole building units into hyperbranched polyfluorines (HPFs) has been used to improve their
electron transport capabilities. A series of novel HPFs were prepared using Suzuki cross-coupling [78].
The resultant products were soluble in common organic solvents (i.e., CHCl3, CH2Cl2, and toluene) and
displayed good thermal stability. Either in film or in chloroform solution, they exhibited absorption
maxima at 349–378 nm (Figure 4). For an LED using HPF as the emitting layer, the blue emission was
up to 212 cd m−2 at about 19 V.
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5.2. Stabilizers for Nanocrystals

Nanocrystals (NCs or nanoparticles) include insulator, semiconductor, and metal crystals that
show unique size-dependent physical or chemical properties [84,85]. Spontaneous aggregation of NC
particles leads to degradation of performance. Therefore, to minimize the problem, HMs are often
used as stabilizers in the preparation of NCs due to their special characteristics, such as their specific
three-dimensional structure, good solubility, and lots of intramolecular hollow space (free-volume).
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The influence of the HM structure on the synthesis of NCs is mainly shown in the following three
aspects: (i) their unique 3D structure can provide sufficient hindrance, and thus can efficiently suppress
the aggregation tendency of NCs, (ii) the presence of many cavities in the HM templates confines
the free diffusion of NC precursors, and hence are useful for controlling the size of NC particles,
and (iii) the terminal groups of HMs provide enough functional flexibility to facilitate the synthesis
and dimensional control of NC particles.

Three methods have been reported for the synthesis of NCs: (i) HMs first (HMs use as stabilizers
to directly prepare NCs); (ii) ligand exchange (NCs-coated surfactants or linear polymers as ligands
are exchanged into an appropriate HMs); and (iii) NCs first (the grafting or in-situ growth of HMs
occurs on the surface of NCs) (Figure 5).
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To date, six major kinds of HMs have been employed to prepare NCs. As shown in Figure 6,
the acronyms of these HMs are hyperbranched polyamidoamines (HPAMAM) [86,87], hyperbranched
poly(ethylene imine) (HPEI) [88–90], hyperbranched polyglycerol (HPG) [91–93], hyperbranched
polyester (HPE) [94,95], hyperbranched poly(acryl amide) (HPAM) [96–98] and hyperbranched
poly(ether polyols) (HPEO) [99]. Using these HMs as stabilizers, various semiconducting and
metallic-conducting NCs have been prepared for diverse applications.

Most quantum dots (QDs) are synthesized using the ‘HMs first’ approach [88–90,100–104].
Hydroxyl-ended HPG (Mn > 20000 g mol−1) was directly used as the stabilizer to prepare QDs
that included ZnS, Ag2S, PbS, CuS, and CdS [92]. Due to the role of HPG, various QDs displayed good
solubility in water and DMF, and also showed low toxicity with good biocompatibility. Excluding
unmodified HPGs, thioether-functionalized HPGs could be employed to prepare CdS and CdSe
QDs [93]. Interestingly, the sizes of the resultant QDs depended on the molecular weights of the
modified HPGs. In addition, the ligand-exchange strategy showed its superiority with regard to the
size control of the NCs, because NC particles can be pre-formed. HPEI exchanged with hydrophobic
surfactants of CdSe@ZnS QDs, can form very stable colloids in chloroform [105]. Compared with the
aforementioned approaches, surface chemical grafting onto QDs is a more reliable way to stabilize
NCs. Coating QDs with a protective shell can effectively avoid fluorescence quenching or the release
of toxic metal ions [106–109].
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Incidentally, multifarious factors, such as DB, the reaction temperature, and the concentration of
metal ions, contribute to the particle size of NCs [110–112]. Other than monometallic (Au, Ag, Pt, Pd,
and Ru) NCs, bimetallic (Au/Pt, Au/Pd, and Au/Ru) NCs [98] and smart HM-stabilized NCs [113]
(thermo- or pH-responsive ones) have also easily been achieved using a similar strategy.

5.3. Bio-Applications

Similar to the amphiphilic linear block copolymers, amphiphilic HMs can be self-assembled into
various supramolecular structures in solution or through interfacial self-assembly. Supramolecular
structures have potential applications in biomedical areas, because of their biocompatibility and adjustable
molecular architectures. Hyperbranched polyethers, polyesters, polyphosphates, and polysaccharides
could be candidates for biomedical uses in areas including cytomimetic chemistry, drug delivery, gene
transfection, antimicrobial material, and bio-imaging fields [114–116].

Compared with small molecular liposomes, the HM vesicles (HMVs) formed, display lower
membrane fluidity and higher stability. HMVs can induce multivalent interactions among vesicles,
like a biomembrane does. Moreover, the size of HMVs is very close to that of a cell, allowing direct
observation through optical or fluorescent microscopy. Zhou and Yan revealed that membrane fusions
were initiated even by small perturbations or by changing the osmotic pressure [117,118].

Apart from cytomimetic chemistry, supramolecular aggregates formed by HM self-assembly have
been utilized to load drugs. Compared with naked drugs, HM-drug complexes can improve solubility
and prolong service time. At the same time, they can easily penetrate cell membranes and selectively
accumulate, as well as be retained, at tumor sites [119].
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Cationic HMs (e.g., hyperbranched polyethylenimine, HPEI) mixed with electronegative DNA
can form HM-DNA polyplexes for gene transfection. Compared with viral vectors, HMs displayed
various advantages such as higher safety, weaker immune responses, more facile synthesis, and easier
operation [120–126].

HMs have also been widely used as antibacterial/antifouling materials. Due to their good
biocompatibility and chemical stability, HPGs are promising antifouling materials that can be employed
to prevent the attachment of proteins [127].

In the bio-imaging field, HM-probe-conjugates with good water solubility and available functional
groups are good solutions to problems associated with low quantum yield and poor specificity.
Zhu and Yan grafted fluorescein isothiocyanate on peripheral hyperbranched polysulfonamine (HPSA)
through the reaction of isothiocyanate and a primary amino group [128,129]. With low cytotoxicity
and good serum compatibility, the HPSA-probe conjugate can be used for bio-imaging or for tracking
cells [125].

Star-like HMs (HCP-N-PEG and HCP-O-PEG) have an hyperbranched conjugated polymer
(HCP) core and linear polyethylene glycol (PEG) arms. They showed superior fluorescein response
sensitivity compared to that of small fluorophores, and could be used as drug carriers for tumor
therapy (Figure 7) [130].
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5.4. Carbon Nanomaterial/HM Nanocomposites

Because of their highly branched architecture, HMs have less intermolecular entanglement,
which leads to good solubility, low viscosity, and unusual rheological properties. Their unique 3-D
architecture offers enough steric hindrance to avoid aggregation of the nanoparticles. Therefore,
HPs are good dispersants and surface modifiers for carbon nanomaterials, such as carbon nanotubes
(CNTs) and graphene (or graphene nanoplatelets).

When dendritic sulfonated hyperbranched poly-(ether-ketone) (SHPEK) was grafted onto
the surfaces of multiwall carbon nanotubes (MWCNT or MWNT), the resultant nanocomposites
(e.g., SHPEK-g-MWCNT) were easily dispersible in water (zeta potential of −57.8 mV; see Figure 8).
SHPEK-g-MWCNT film showed sheet resistance as low as 63 Ω/sq and high electrocatalytic activity for
the oxygen reduction reaction (ORR), without heteroatom doping onto the MWCNT framework [131].
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were in the semi-metallic transport region (3.56 S cm−1) [134]. 

Figure 8. (a) Schematic demonstrations for SHPEK-g-MWCNT. (b) Zeta-potential curve of SHPEK-
g-MWCNT (Inset: a photograph of the solution with hand-held laser shining). (c) Cyclic voltammograms
in nitrogen- and oxygen-saturated 0.1 M aqueous KOH solution for SHPEK-g-MWCNT. (d) RDE
voltammograms in oxygen-saturated 0.1 M aq. KOH solution with a scan rate of 0.01 V/s at different
rotation rates. Reproduced from [131] with permission from the American Chemical Society.

Carbon nanomaterial/HM nanocomposites exhibited enhanced performance due to their favorable
synergetic effects [132,133]. HMs exhibit low intrinsic viscosity, thus endowing the nanocomposites with
good processability. There are two major methods for preparing nanocomposites or hybrids: (i) direct
mixing of HMs with carbon nanomaterials and (ii) in situ polymerization of HMs in the presence of carbon
nanomaterials. If HMs and carbon nanomaterials are linked by covalent bonds, the phase separation issue
at the interface can be efficiently eliminated and the overall performance is greatly enhanced.

In the case of HPPS-g-MWCNT prepared from grafting of hyperbranched poly(phenyl sulfide)
(HPPS) onto the surface of MWCNT, the dispersibility and melt-processability of the nanocomposite
were significantly enhanced. Thus, the nanocomposite specimens could be easily compression-molded.
Without chemical doping, the surface conductivities of as-prepared HPPS-g-MWNT film were in the
semi-metallic transport region (3.56 S cm−1) [134].

Graphene has attracted increasing attention and been subjected to rapid development because of
its unique atom-thick 2-D structure and excellent properties. It has a wide range of promising potential
applications [135,136]. Exfoliation of graphite to produce graphene could be achieved very simply
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by a wedge effect using HMs. In situ ‘direct’ grafting of HMs to the edges of pristine graphite could
exfoliate graphitic layers to form graphene (Figure 9). Due to the 3-D molecular architectures of HMs,
the solubility of HM grafted graphene is profoundly improved compared with grafting of its linear
analogue. This result is because HM provides numerous polar peripheral groups that not only act as
macromolecular wedges, but also exhibit chemical affinity for solvents [137].
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Figure 9. (a) ‘Direct’ Friedel-Crafts acylation reaction between graphite and HPEK in PPA/P2O5

medium. TEM images: (b) HPEK-g-graphite; (c) ‘Edge-on’ view (Inset: a selected area electron
diffraction (SAED) pattern obtained from the basal area). Reproduced from [137] with permission from
the Royal Society of Chemistry.

Graphene oxide (GO) possesses many available functional groups (e.g., hydroxyl and epoxide
groups) on its basal area and along edges [138], which allow further chemical modification.
Furthermore, these functional groups endow GO sheets with strong hydrophilicity, which makes GO
fully dispersible in water or polar solvents (such as DMF and NMP) [139]. Through a liquid crystal
self-templating methodology, next-generation continuous nacre-mimics with extreme strength and
toughness have been achieved [140,141]. Hierarchically assembled fibers exhibited the highest tensile
strength (652 MPa) and excellent ductility, with a toughness of 18 MJ m−3. The outstanding mechanical
performance of GO-HPG fibers is ascribed to their hierarchically assembled structure and uniform
alignment of GO sheets (Figure 10).
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6. Conclusions and Outlook

The major developments of synthetic strategies, the relationship between structures and properties,
and many of the applications for HMs have been summarized in this paper. It is noteworthy that the
development of applications for HMs is still in its infancy and further research is required to maximize
their full potential. Moreover, because this is still an area of emerging research, some problems need to be
solved, many knowledge gaps should be filled, and key limitations should be overcome. These include
such as DB control, introduction of hetero-atoms, synthesis of HMs with 2D structure, development of
sequence-controlled HMs, and biocompatibility.

Acknowledgments: This research was supported by the Creative Research Initiative (CRI, 2014R1A2069102),
BK21 Plus (10Z20130011057), Science Research Center (SRC, 2016R1A5A1009405), and Technology Development
Program to Solve Climate Change (2016M1A2A2940910, 2016M1A2A2940912) programs through the National
Research Foundation (NRF) of Korea.

Conflicts of Interest: The authors declare no conflict of interest.



Molecules 2018, 23, 657 15 of 21

References

1. Jiang, W.; Zhou, Y.; Yan, D. Hyperbranched polymer vesicles: From self-assembly, characterization,
mechanisms, and properties to applications. Chem. Soc. Rev. 2015, 12, 3874–3889. [CrossRef] [PubMed]

2. Carminade, A.-M.; Yan, D.; Smith, D.K. Dendrimers and hyperbranched polymers. Chem. Soc. Rev. 2015, 44,
3870–3873. [CrossRef] [PubMed]

3. Sun, H.-J.; Zhang, S.; Percec, V.F. From structure to function via complex supramolecular dendrimer systems.
Chem. Soc. Rev. 2015, 12, 3900–3923. [CrossRef] [PubMed]

4. Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and
magnetic properties. Chem. Soc. Rev. 2015, 12, 3997–4022. [CrossRef] [PubMed]

5. Voit, B.I.; Lederer, A. Hyperbranched and Highly Branched Polymer Architectures—Synthetic Strategies and
Major Characterization Aspects. Chem. Rev. 2009, 109, 5924–5973. [CrossRef] [PubMed]

6. Carlmark, A.; Hawker, C.; Hult, A.; Malkoch, M. New methodologies in the construction of dendritic
materials. Chem. Soc. Rev. 2009, 38, 352–362. [CrossRef] [PubMed]

7. Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: Advances from synthesis to applications.
Chem. Soc. Rev. 2015, 44, 4091–4130. [CrossRef] [PubMed]

8. Jikei, M.; Kakimoto, M.-A. Hyperbranched polymers: A promising new class of materials. Prog. Polym. Sci.
2001, 26, 1233–1285. [CrossRef]

9. Cook, A.B.; Barbey, R.; Burns, J.A.; Perrier, S. Hyperbranched Polymers with High Degrees of Branching
and Low Dispersity Values: Pushing the Limits of Thiol–Yne Chemistry. Macromolecules 2016, 49, 1296–1304.
[CrossRef]

10. Sun, J.; Aly, K.I.; Kuckling, D. A novel one-pot process for the preparation of linear and hyperbranched
polycarbonates of various diols and triols using dimethyl carbonate. RSC Adv. 2017, 7, 12550–12560.
[CrossRef]

11. Kim, Y.H.; Webster, O.W. Hyperbranched polyphenylenes. Macromolecules 1992, 25, 5561–5572. [CrossRef]
12. Aydogan, C.; Yilmaz, G.; Yagci, Y.; Morgenroth, F. Synthesis of Hyperbranched Polymers by Photoinduced

Metal-Free ATRP. Macromolecules 2017, 50, 9115–9120. [CrossRef]
13. Khalyavina, A.; Schallausky, F.; Komber, H.; Samman, M.A.; Radke, W.; Lederer, A. Aromatic–Aliphatic

Polyesters with Tailored Degree of Branching Based on AB/AB2 and ABB*/AB2 Monomers. Macromolecules
2010, 43, 3268–3276. [CrossRef]

14. Xue, Z.; Finke, A.D.; Moore, J.S. Synthesis of Hyperbranched Poly(m-phenylene)s via Suzuki Polycondensation
of a Branched AB2 Monomer. Macromolecules 2010, 43, 9277–9282. [CrossRef]

15. Yamaguchi, N.; Wang, J.-S.; Hewitt, J.M.; Lenhart, W.C.; Mourey, T.H. Acid chloride-functionalized
hyperbranched polyester for facile and quantitative chain-end modification: One-pot synthesis and structure
characterization. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2855–2867. [CrossRef]

16. Mahdavi, H.; Shahalizade, T. Preparation, characterization and performance study of cellulose acetate
membranes modified by aliphatic hyperbranched polyester. J. Membr. Sci. 2015, 473, 256–266. [CrossRef]

17. Niu, S.; Yan, H.; Chen, Z.; Li, S.; Xu, P.; Zhi, X. Unanticipated bright blue fluorescence produced from novel
hyperbranched polysiloxanes carrying unconjugated carbon–carbon double bonds and hydroxyl groups.
Polym. Chem. 2016, 7, 3747–3755. [CrossRef]

18. Ye, L.; Letchford, K.; Heller, M.; Liggins, R.; Guan, D.; Kizhakkedathu, J.N.; Brooks, D.E.; Jackson, J.K.;
Burt, H.M. Synthesis and Characterization of Carboxylic Acid Conjugated, Hydrophobically Derivatized,
Hyperbranched Polyglycerols as Nanoparticulate Drug Carriers for Cisplatin. Biomacromolecules 2011, 12,
145–155. [CrossRef] [PubMed]

19. Perala, S.K.; Ramakrishnan, S. Effect of Spacer Stiffness on the Properties of Hyperbranched Polymers.
Macromolecules 2017, 50, 8536–8543. [CrossRef]

20. Fréchet, J.M.J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M.R.; Grubbs, R.B. Self-Condensing Vinyl
Polymerization: An Approach to Dendritic Materials. Science 1995, 269, 1080–1083. [CrossRef] [PubMed]

21. Higashihara, T.; Segawa, Y.; Sinananwanich, W.; Ueda, M. Synthesis of hyperbranched polymers with
controlled degree of branching. Polym. J. 2011, 44, 14–29. [CrossRef]

22. Satoh, Y.; Miyachi, K.; Matsuno, H.; Isono, T.; Tajima, K.; kakuchi, T.; Satoh, T. Synthesis of Well-Defined
Amphiphilic Star-Block and Miktoarm Star Copolyethers via t-Bu-P4-Catalyzed Ring-Opening Polymerization of
Glycidyl Ethers. Macromolecules 2016, 49, 499–509. [CrossRef]

http://dx.doi.org/10.1039/C4CS00274A
http://www.ncbi.nlm.nih.gov/pubmed/25336064
http://dx.doi.org/10.1039/C5CS90049B
http://www.ncbi.nlm.nih.gov/pubmed/26024369
http://dx.doi.org/10.1039/C4CS00249K
http://www.ncbi.nlm.nih.gov/pubmed/25325787
http://dx.doi.org/10.1039/C4CS00224E
http://www.ncbi.nlm.nih.gov/pubmed/25170592
http://dx.doi.org/10.1021/cr900068q
http://www.ncbi.nlm.nih.gov/pubmed/19785454
http://dx.doi.org/10.1039/B711745K
http://www.ncbi.nlm.nih.gov/pubmed/19169453
http://dx.doi.org/10.1039/C4CS00528G
http://www.ncbi.nlm.nih.gov/pubmed/25902871
http://dx.doi.org/10.1016/S0079-6700(01)00018-1
http://dx.doi.org/10.1021/acs.macromol.6b00132
http://dx.doi.org/10.1039/C7RA01317E
http://dx.doi.org/10.1021/ma00047a001
http://dx.doi.org/10.1021/acs.macromol.7b02240
http://dx.doi.org/10.1021/ma100037n
http://dx.doi.org/10.1021/ma102023a
http://dx.doi.org/10.1002/pola.10378
http://dx.doi.org/10.1016/j.memsci.2014.09.013
http://dx.doi.org/10.1039/C6PY00654J
http://dx.doi.org/10.1021/bm101080p
http://www.ncbi.nlm.nih.gov/pubmed/21128674
http://dx.doi.org/10.1021/acs.macromol.7b01401
http://dx.doi.org/10.1126/science.269.5227.1080
http://www.ncbi.nlm.nih.gov/pubmed/17755528
http://dx.doi.org/10.1038/pj.2011.99
http://dx.doi.org/10.1021/acs.macromol.5b02459


Molecules 2018, 23, 657 16 of 21

23. Rannard, S.; Davis, N.; McFarland, H. Synthesis of dendritic polyamides using novel selective chemistry.
Polym. Int. 2000, 49, 1002–1006. [CrossRef]

24. Choi, J.-Y.; Oh, S.-J.; Lee, H.-J.; Wang, D.H.; Tan, L.-S.; Baek, J.-B. In-Situ Grafting of Hyperbranched Poly(ether
ketone)s onto Multiwalled Carbon Nanotubes via the A3 + B2 Approach. Macromolecules 2007, 40, 4474–4480.
[CrossRef]

25. Masukawa, S.; Kikkawa, T.; Fujimori, A.; Oishi, Y.; Shibasaki, Y. Synthesis of a A2B3-type Hyperbranched
Copolymers Based on a 3-Armed Unimolecular 4-N-Methylbenzamide Pentamer and Poly(propylene oxide).
Chem. Lett. 2015, 44, 536–538. [CrossRef]

26. Tomalia, D.A.; Hedstrand, D.M.; Ferritto, M.S. Comb-burst dendrimer topology: New macromolecular
architecture derived from dendritic grafting. Macromolecules 1991, 24, 1435–1438. [CrossRef]

27. Nguyen, C.; Hawker, C.J.; Miller, R.D.; Huang, E.; Hedrick, J.L.; Gauderon, R.; Hilborn, J.G. Hyperbranched
Polyesters as Nanoporosity Templating Agents for Organosilicates. Macromolecules 2000, 33, 4281–4284.
[CrossRef]

28. Zhou, Y.; Huang, W.; Liu, J.; Zhu, X.; Yan, D. Self-Assembly of Hyperbranched Polymers and Its Biomedical
Applications. Adv. Mater. 2010, 22, 4567–4590. [CrossRef] [PubMed]

29. Mourey, T.H.; Turner, S.R.; Rubinstein, M.; Frechet, J.M.J.; Hawker, C.J.; Wooley, K.L. Unique behavior of
dendritic macromolecules: Intrinsic viscosity of polyether dendrimers. Macromolecules 1992, 25, 2401–2406.
[CrossRef]

30. Ohta, Y.; Sakurai, K.; Matsuda, J.; Yokozawa, T. Chain-growth condensation polymerization of
5-aminoisophthalic acid triethylene glycol ester to afford well-defined, water-soluble, thermoresponsive
hyperbranched polyamides. Polymer 2016, 101, 305–310. [CrossRef]

31. Chen, H.; Kong, J. Hyperbranched polymers from A2 + B3 strategy: Recent advances in description and
control of fine topology. Polym. Chem. 2016, 7, 3643–3663. [CrossRef]

32. Zigmond, J.S.; Pavia-Sanders, A.; Russell, J.D.; Wooley, K.L.; Percec, V. Dynamic Anti-Icing Coatings:
Complex, Amphiphilic Hyperbranched Fluoropolymer Poly(ethylene glycol) Cross-Linked Networks with
an Integrated Liquid Crystalline Comonomer. Chem. Mater. 2016, 28, 5471–5479. [CrossRef]

33. Zigmond, J.S.; Letteri, R.A.; Wooley, K.L.; Percec, V. Amphiphilic Cross-Linked Liquid Crystalline
Fluoropolymer-Poly(ethylene glycol) Coatings for Application in Challenging Conditions: Comparative Study
between Different Liquid Crystalline Comonomers and Polymer Architectures. ACS Appl. Energy Mater. 2016, 8,
33386–33393. [CrossRef] [PubMed]

34. Wang, G.-W.; Chen, B.; Zhuang, L.-H.; Yun, K.; Guo, J.-R.; Wang, Y.; Xu, B. Dyeing performances of ramie
fabrics modified with an amino-terminated aliphatic hyperbranched polymer. Cellulose 2015, 22, 1401–1404.
[CrossRef]

35. Kim, Y.H.; Beckerbauer, R. Role of End Groups on the Glass Transition of Hyperbranched Polyphenylene
and Triphenylbenzene Derivatives. Macromolecules 1994, 27, 1968–1971. [CrossRef]

36. Wu, C.; Huang, X.; Wang, G.; Wu, X.; Yang, K.; Li, S.; Jiang, P. Hyperbranched-polymer functionalization
of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites.
J. Mater. Chem. 2012, 14, 7010–7019. [CrossRef]

37. Lei, X.; Chen, Y.; Qiao, M.; Tian, L.; Zhang, Q.; Romagnoli, B. Hyperbranched polysiloxane (HBPSi)-based
polyimide films with ultralow dielectric permittivity, desirable mechanical and thermal properties. J. Mater.
Chem. C 2016, 11, 2134–2146. [CrossRef]

38. Gadwal, I.; Binder, S.; Stuparu, M.C.; Khan, A. Dual-Reactive Hyperbranched Polymer Synthesis through
Proton Transfer Polymerization of Thiol and Epoxide Groups. Macromolecules 2014, 47, 5070–5080. [CrossRef]

39. Hölter, D.; Burgath, A.; Frey, H. Degree of branching in hyperbranched polymers. Acta Polym. 1997, 48,
30–35. [CrossRef]

40. Kambouris, P.; Hawker, C.J. A versatile new method for structure determination in hyperbranched
macromolecules. J. Chem. Soc. Perkin Trans. 1 1993, 22, 2717–2721. [CrossRef]

41. Zhu, X.; Zhou, Y.; Yan, D. Influence of branching architecture on polymer properties. J. Polym. Sci. Part B
Polym. Phys. 2011, 49, 1277–1286. [CrossRef]

42. Spears, B.R.; Waksal, J.; mcQuade, C.; Lanier, L.; Harth, E. Controlled branching of polyglycidol and
formation of protein–glycidol bioconjugates via a graft-from approach with “PEG-like” arms. Chem. Commun.
2013, 49, 2394–2396. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/1097-0126(200009)49:9&lt;1002::AID-PI417&gt;3.0.CO;2-7
http://dx.doi.org/10.1021/ma0701282
http://dx.doi.org/10.1246/cl.150022
http://dx.doi.org/10.1021/ma00006a039
http://dx.doi.org/10.1021/ma991407v
http://dx.doi.org/10.1002/adma.201000369
http://www.ncbi.nlm.nih.gov/pubmed/20853374
http://dx.doi.org/10.1021/ma00035a017
http://dx.doi.org/10.1016/j.polymer.2016.08.079
http://dx.doi.org/10.1039/C6PY00409A
http://dx.doi.org/10.1021/acs.chemmater.6b02013
http://dx.doi.org/10.1021/acsami.6b11112
http://www.ncbi.nlm.nih.gov/pubmed/27960419
http://dx.doi.org/10.1007/s10570-015-0558-6
http://dx.doi.org/10.1021/ma00085a048
http://dx.doi.org/10.1039/c2jm16901k
http://dx.doi.org/10.1039/C5TC03391H
http://dx.doi.org/10.1021/ma500920z
http://dx.doi.org/10.1002/actp.1997.010480105
http://dx.doi.org/10.1039/p19930002717
http://dx.doi.org/10.1002/polb.22320
http://dx.doi.org/10.1039/c3cc38369e
http://www.ncbi.nlm.nih.gov/pubmed/23370543


Molecules 2018, 23, 657 17 of 21

43. Unal, S.; Lin, Q.; Mourey, T.H.; Long, T.E. Tailoring the Degree of Branching: Preparation of Poly(ether ester)s
via Copolymerization of Poly(ethylene glycol) Oligomers (A2) and 1,3,5-Benzenetricarbonyl Trichloride (B3).
Macromolecules 2005, 38, 3246–3254. [CrossRef]

44. Unal, S.; Oguz, C.; Yilgor, E.; Gallivan, M.; Long, T.E.; Yilgor, I. Understanding the structure development in
hyperbranched polymers prepared by oligomeric A2 + B3 approach: Comparison of experimental results
and simulations. Polymer 2005, 46, 4533–4543. [CrossRef]

45. Schubert, C.; Schömer, M.; Steube, M.; Decker, S.; Friedrich, C.; Frey, H. Systematic Variation of the Degree
of Branching (DB) of Polyglycerol via Oxyanionic Copolymerization of Glycidol with a Protected Glycidyl
Ether and Its Impact on Rheological Properties. Macromol. Chem. Phys. 2018, 219, 1700376. [CrossRef]

46. Segawa, Y.; Higashihara, T.; Ueda, M. Synthesis of hyperbranched polymers with controlled structure.
Polym. Chem. 2013, 4, 1746–1759. [CrossRef]

47. Mai, Y.; Zhou, Y.; Yan, D.; Lu, H. Effect of Reaction Temperature on Degree of Branching in Cationic
Polymerization of 3-Ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2003, 36, 9667–9669. [CrossRef]

48. Popeney, C.S.; Lukowiak, M.C.; Böttcher, C.; Schade, B.; Welker, P.; Mangoldt, D.; Gunkel, G.; Guan, Z.;
Haag, R. Tandem Coordination, Ring-Opening, Hyperbranched Polymerization for the Synthesis of
Water-Soluble Core–Shell Unimolecular Transporters. ACS Macro Lett. 2012, 1, 564–567. [CrossRef]

49. Shi, Y.; Graff, R.W.; Cao, X.; Wang, X.; Gao, H. Chain-Growth Click Polymerization of AB2 Monomers for
the Formation of Hyperbranched Polymers with Low Polydispersities in a One-Pot Process. Angew. Chem.
Int. Ed. 2015, 54, 7631–7635. [CrossRef] [PubMed]

50. Segawa, Y.; Higashihara, T.; Ueda, M. Hyperbranched Polymers with Controlled Degree of Branching from 0
to 100%. J. Am. Chem. Soc. 2010, 132, 11000–11001. [CrossRef] [PubMed]

51. Guan, Z. Recent Progress of Catalytic Polymerization for Controlling Polymer Topology. Chem. Asian J. 2010,
5, 1058–1070. [CrossRef] [PubMed]

52. Guan, Z. Chain Walking: A New Strategy to Control Polymer Topology. Science 1999, 283, 2059–2062.
[CrossRef] [PubMed]

53. Chen, L.; Zhu, X.; Yan, D.; Chen, Y.; Chen, Q.; Yao, Y. Controlling Polymer Architecture through Host-Guest
Interactions. Angew. Chem. Int. Ed. 2006, 45, 87–90. [CrossRef] [PubMed]

54. Liu, N.; Vignolle, J.; Vincent, J.-M.; Robert, F.; Landais, Y.; Cramail, H.; Taton, D. One-Pot Synthesis and
PEGylation of Hyperbranched Polyacetals with a Degree of Branching of 100%. Macromolecules 2014, 47,
1532–1542. [CrossRef]

55. Radke, W.; Litvinenko, G.; Müller, A.H.E. Effect of Core-Forming Molecules on Molecular Weight Distribution
and Degree of Branching in the Synthesis of Hyperbranched Polymers. Macromolecules 1998, 31, 239–248.
[CrossRef]

56. Ishida, Y.; Sun, A.C.F.; Jikei, M.; Kakimoto, M.-A. Synthesis of Hyperbranched Aromatic Polyamides
Starting from Dendrons as ABx Monomers: Effect of Monomer Multiplicity on the Degree of Branching.
Macromolecules 2000, 33, 2832–2838. [CrossRef]

57. Lach, C.; Frey, H. Enhancing the Degree of Branching of Hyperbranched Polymers by Postsynthetic
Modification. Macromolecules 1998, 31, 2381–2383. [CrossRef]

58. Huang, W.; Su, L.; Bo, Z. Hyperbranched Polymers with a Degree of Branching of 100% Prepared by Catalyst
Transfer Suzuki–Miyaura Polycondensation. J. Am. Chem. Soc. 2009, 131, 10348–10349. [CrossRef] [PubMed]

59. Zhou, Z.; Yan, D. Kinetic analysis for polycondensation of AB (g) type monomers. Chem. J. Chin. Univ. Chin.
1999, 20, 1978–1981.

60. Cao, X.; Shi, Y.; Wang, X.; Graff, R.W.; Gao, H. Design a Highly Reactive Trifunctional Core Molecule To
Obtain Hyperbranched Polymers with over a Million Molecular Weight in One-Pot Click Polymerization.
Macromolecules 2016, 49, 760–766. [CrossRef]

61. Cheng, K.-C.; Chuang, T.-H.; Chang, J.-S.; Guo, W.; Su, W.-F. Effect of Feed Rate on Structure of
Hyperbranched Polymers Formed by Self-Condensing Vinyl Polymerization in Semibatch Reactor.
Macromolecules 2005, 38, 8252–8257. [CrossRef]

62. Cheng, K.-C. Effect of feed rate on structure of hyperbranched polymers formed by stepwise addition of
AB2 monomers into multifunctional cores. Polymer 2003, 44, 1259–1266. [CrossRef]

63. Möck, A.; Burgath, A.; Hanselmann, R.; Frey, H. Synthesis of Hyperbranched Aromatic Homo- and
Copolyesters via the Slow Monomer Addition Method. Macromolecules 2001, 34, 7692–7698. [CrossRef]

http://dx.doi.org/10.1021/ma047534v
http://dx.doi.org/10.1016/j.polymer.2005.03.073
http://dx.doi.org/10.1002/macp.201700376
http://dx.doi.org/10.1039/C2PY20877F
http://dx.doi.org/10.1021/ma035275o
http://dx.doi.org/10.1021/mz300083y
http://dx.doi.org/10.1002/anie.201502578
http://www.ncbi.nlm.nih.gov/pubmed/26081420
http://dx.doi.org/10.1021/ja105213r
http://www.ncbi.nlm.nih.gov/pubmed/20666357
http://dx.doi.org/10.1002/asia.200900749
http://www.ncbi.nlm.nih.gov/pubmed/20391469
http://dx.doi.org/10.1126/science.283.5410.2059
http://www.ncbi.nlm.nih.gov/pubmed/10092223
http://dx.doi.org/10.1002/anie.200502306
http://www.ncbi.nlm.nih.gov/pubmed/16304657
http://dx.doi.org/10.1021/ma4026509
http://dx.doi.org/10.1021/ma970952y
http://dx.doi.org/10.1021/ma992021n
http://dx.doi.org/10.1021/ma9715132
http://dx.doi.org/10.1021/ja9033846
http://www.ncbi.nlm.nih.gov/pubmed/19586020
http://dx.doi.org/10.1021/acs.macromol.5b02678
http://dx.doi.org/10.1021/ma050640s
http://dx.doi.org/10.1016/S0032-3861(02)00846-7
http://dx.doi.org/10.1021/ma000515a


Molecules 2018, 23, 657 18 of 21

64. Zhou, Z.; Jia, Z.; Yan, D. Effect of slow monomer addition on molecular parameters of hyperbranched
polymers synthesized in the presence of multifunctional core molecules. Sci. China Chem. 2010, 53, 891–897.
[CrossRef]

65. Cheng, K.-C.; Lai, W.-J. Effect of feed rate of end-capping molecules on structure of hyperbranched polymers
formed from monomers A2 and B4 in semibatch process. Eur. Polym. J. 2017, 89, 339–348. [CrossRef]

66. Tobita, H. Markovian Approach to Self-Condensing Vinyl Polymerization: Distributions of Molecular
Weights, Degrees of Branching, and Molecular Dimensions. Macromol. Theory Simul. 2014, 24, 117–132.
[CrossRef]

67. Litvinenko, G.I.; Müller, A.H.E. Molecular Weight Averages and Degree of Branching in Self-Condensing
Vinyl Copolymerization in the Presence of Multifunctional Initiators. Macromolecules 2002, 35, 4577–4583.
[CrossRef]

68. Gao, C.; Yan, D.; Frey, H. Promising Dendritic Materials: An Introduction to Hyperbranched Polymers.
In Hyperbranched Polymers: Synthesis, Properties, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA,
2011; pp. 1–26.

69. Li, Z.; Li, Q.; Qin, J. Some new design strategies for second-order nonlinear optical polymers and dendrimers.
Polym. Chem. 2011, 2, 2723–2740. [CrossRef]

70. Wu, W.; Huang, L.; Xiao, L.; Huang, Q.; Tang, R.; Ye, C.; Qin, J.; Li, Z. New second-order nonlinear optical
(NLO) hyperbranched polymers containing isolation chromophore moieties derived from one-pot “A2 + B4”
approach via Suzuki coupling reaction. RSC Adv. 2012, 2, 6520–6526. [CrossRef]

71. Zhu, Z.; Li, Z.A.; Tan, Y.; Li, Z.; Li, Q.; Zeng, Q.; Ye, C.; Qin, J. New hyperbranched polymers containing
second-order nonlinear optical chromophores: Synthesis and nonlinear optical characterization. Polymer
2006, 47, 7881–7888. [CrossRef]

72. Bai, Y.; Song, N.; Gao, J.P.; Sun, X.; Wang, X.; Yu, G.; Wang, Z.Y. A New Approach to Highly Electrooptically Active
Materials Using Cross-Linkable, Hyperbranched Chromophore-Containing Oligomers as a Macromolecular
Dopant. J. Am. Chem. Soc. 2005, 127, 2060–2061. [CrossRef] [PubMed]

73. Li, Z.; Qin, A.; Lam, J.W.Y.; Dong, Y.; Dong, Y.; Ye, C.; Williams, I.D.; Tang, B.Z. Facile Synthesis, Large Optical
Nonlinearity, and Excellent Thermal Stability of Hyperbranched Poly(aryleneethynylene)s Containing
Azobenzene Chromophores. Macromolecules 2006, 39, 1436–1442. [CrossRef]

74. Scarpaci, A.; Blart, E.; Montembault, V.R.; Fontaine, L.; Rodriguez, V.; Odobel, F. Synthesis and Nonlinear
Optical Properties of a Peripherally Functionalized Hyperbranched Polymer by DR1 Chromophores.
ACS Appl. Mater. Interfaces 2009, 1, 1799–1806. [CrossRef] [PubMed]

75. Scarpaci, A.; Blart, E.; Montembault, V.; Fontaine, L.; Rodriguez, V.; Odobel, F. A new crosslinkable system
based on thermal Huisgen reaction to enhance the stability of electro-optic polymers. Chem. Commun. 2009,
14, 1825–1827. [CrossRef] [PubMed]

76. Li, J.; Bo, Z. “AB2 + AB” Approach to Hyperbranched Polymers Used as Polymer Blue Light Emitting
Materials. Macromolecules 2004, 37, 2013–2015. [CrossRef]

77. Xin, Y.; Wen, G.-A.; Zeng, W.-J.; Zhao, L.; Zhu, X.-R.; Fan, Q.-L.; Feng, J.-C.; Wang, L.-H.; Peng, B.; Cao, Y.; et al.
Hyperbranched Oxadiazole-Containing Polyfluorenes: Toward Stable Blue Light PLEDs. Macromolecules
2005, 38, 6755–6758. [CrossRef]

78. Tsai, L.-R.; Chen, Y. Novel Hyperbranched Polyfluorenes Containing Electron-Transporting Aromatic
Triazole as Branch Unit. Macromolecules 2007, 40, 2984–2992. [CrossRef]

79. Cao, X.-Y.; Zhou, X.-H.; Zi, H.; Pei, J. Novel Blue-Light-Emitting Truxene-Containing Hyperbranched and
Zigzag Type Copolymers: Synthesis, Optical Properties, and Investigation of Thermal Spectral Stability.
Macromolecules 2004, 37, 8874–8882. [CrossRef]

80. Wu, Y.; Hao, X.; Wu, J.; Jin, J.; Ba, X. Pure Blue-Light-Emitting Materials: Hyperbranched Ladder-Type
Poly(p-phenylene)s Containing Truxene Units. Macromolecules 2010, 43, 731–738. [CrossRef]

81. Wu, G.; Yang, Y.; He, C.; Chen, X.; Li, Y. A new triphenylamine-based hyperbranched polyfluorene with
oxadiazole units on its side chains. Eur. Polym. J. 2008, 44, 4047–4053. [CrossRef]

82. Li, Z.A.; Ye, S.; Liu, Y.; Yu, G.; Wu, W.; Qin, J.; Li, Z. New Hyperbranched Conjugated Polymers Containing
Hexaphenylbenzene and Oxadiazole Units: Convenient Synthesis and Efficient Deep Blue Emitters for
PLEDs Application. J. Phys. Chem. B 2010, 114, 9101–9108. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11426-010-0121-0
http://dx.doi.org/10.1016/j.eurpolymj.2017.02.006
http://dx.doi.org/10.1002/mats.201400071
http://dx.doi.org/10.1021/ma012063n
http://dx.doi.org/10.1039/c1py00205h
http://dx.doi.org/10.1039/c2ra20255g
http://dx.doi.org/10.1016/j.polymer.2006.09.047
http://dx.doi.org/10.1021/ja042854f
http://www.ncbi.nlm.nih.gov/pubmed/15713080
http://dx.doi.org/10.1021/ma051924f
http://dx.doi.org/10.1021/am900319h
http://www.ncbi.nlm.nih.gov/pubmed/20355797
http://dx.doi.org/10.1039/b900669a
http://www.ncbi.nlm.nih.gov/pubmed/19319414
http://dx.doi.org/10.1021/ma0357422
http://dx.doi.org/10.1021/ma050833f
http://dx.doi.org/10.1021/ma070045l
http://dx.doi.org/10.1021/ma048676s
http://dx.doi.org/10.1021/ma9024448
http://dx.doi.org/10.1016/j.eurpolymj.2008.09.018
http://dx.doi.org/10.1021/jp1014077
http://www.ncbi.nlm.nih.gov/pubmed/20590166


Molecules 2018, 23, 657 19 of 21

83. Liu, J.; Yu, L.; Zhong, C.; He, R.; Yang, W.; Wu, H.; Cao, Y. Highly efficient green-emitting electrophosphorescent
hyperbranched polymers using a bipolar carbazole-3,6-diyl-co-2,8-octyldibenzothiophene-S,S-dioxide-3,7-diyl
unit as the branch. RSC Adv. 2012, 2, 689–696. [CrossRef]

84. Hu, X.; Zhou, L.; Gao, C. Hyperbranched polymers meet colloid nanocrystals: A promising avenue to
multifunctional, robust nanohybrids. Colloid Polym. Sci. 2011, 289, 1299–1320. [CrossRef]

85. Zhu, Q.; Qiu, F.; Zhu, B.; Zhu, X. Hyperbranched polymers for bioimaging. RSC Adv. 2013, 3, 2071–2083.
[CrossRef]

86. Pérignon, N.; Marty, J.-D.; Mingotaud, A.-F.; Dumont, M.; Rico-Lattes, I.; Mingotaud, C. Hyperbranched
Polymers Analogous to PAMAM Dendrimers for the Formation and Stabilization of Gold Nanoparticles.
Macromolecules 2007, 40, 3034–3041. [CrossRef]

87. Saliba, S.; Valverde Serrano, C.; Keilitz, J.; Kahn, M.L.; Mingotaud, C.; Haag, R.; Marty, J.-D. Hyperbranched
Polymers for the Formation and Stabilization of ZnO Nanoparticles. Chem. Mater. 2010, 22, 6301–6309.
[CrossRef]

88. Tuchbreiter, L.; Mecking, S. Hydroformylation with Dendritic-Polymer-Stabilized Rhodium Colloids as
Catalyst Precursors. Macromol. Chem. Phys. 2007, 208, 1688–1693. [CrossRef]

89. Gladitz, M.; Reinemann, S.; Radusch, H.-J. Preparation of Silver Nanoparticle Dispersions via a Dendritic-Polymer
Template Approach and their Use for Antibacterial Surface Treatment. Macromol. Mater. Eng. 2009, 294, 178–189.
[CrossRef]

90. Krämer, M.; Pérignon, N.; Haag, R.; Marty, J.-D.; Thomann, R.; Lauth-de Viguerie, N.; Mingotaud, C.
Water-Soluble Dendritic Architectures with Carbohydrate Shells for the Templation and Stabilization of
Catalytically Active Metal Nanoparticles. Macromolecules 2005, 38, 8308–8315. [CrossRef]

91. Shen, Z.; Duan, H.; Frey, H. Water-Soluble Fluorescent Ag Nanoclusters Obtained from Multiarm Star
Poly(acrylic acid) as “Molecular Hydrogel” Templates. Adv. Mater. 2007, 19, 349–352. [CrossRef]

92. Zhou, L.; Gao, C.; Hu, X.; Xu, W. General Avenue to Multifunctional Aqueous Nanocrystals Stabilized by
Hyperbranched Polyglycerol. Chem. Mater. 2011, 23, 1461–1470. [CrossRef]

93. Wan, D.; Fu, Q.; Huang, J. Synthesis of a thioether modified hyperbranched polyglycerol and its template
effect on fabrication of CdS and CdSe nanoparticles. J. Appl. Polym. Sci. 2006, 102, 3679–3684. [CrossRef]

94. Wei, X.; Zhu, B.; Xu, Y. Preparation and stability of copper particles formed using the template of
hyperbranched poly(amine-ester). Colloid Polym. Sci. 2005, 284, 102–107. [CrossRef]

95. Zhao, Y.; Zou, J.; Shi, W. Synthesis and characterization of PbS/modified hyperbranched polyester
nanocomposite hollow spheres at room temperature. Mater. Lett. 2005, 59, 686–689. [CrossRef]

96. Monticelli, O.; Russo, S.; Campagna, R.; Voit, B. Preparation and characterisation of blends based on
polyamide 6 and hyperbranched aramids as palladium nanoparticle supports. Polymer 2005, 46, 3597–3606.
[CrossRef]

97. Kakati, N.; Mahapatra, S.S.; Karak, N. Silver Nanoparticles in Polyacrylamide and Hyperbranched Polyamine
Matrix. J. Macromol. Sci. Part A Pure Appl. Chem. 2008, 45, 658–663. [CrossRef]

98. Mahapatra, S.S.; Karak, N. Silver nanoparticle in hyperbranched polyamine: Synthesis, characterization and
antibacterial activity. Mater. Chem. Phys. 2008, 112, 1114–1119. [CrossRef]

99. Richter, T.V.; Schüler, F.; Thomann, R.; Mülhaupt, R.; Ludwigs, S. Nanocomposites of Size-Tunable
ZnO-Nanoparticles and Amphiphilic Hyperbranched Polymers. Macromol. Rapid Commun. 2009, 30, 579–583.
[CrossRef] [PubMed]

100. Sun, Y.; Liu, Y.; Guizhe, Z.; Zhang, Q. Effects of hyperbranched poly(amido-amine)s structures on synthesis
of Ag particles. J. Appl. Polym. Sci. 2007, 107, 9–13. [CrossRef]

101. Drozd, M.; Pietrzak, M.; Parzuchowski, P.; Mazurkiewicz-Pawlicka, M.; Malinowka, E. Peroxidase-like
activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.
Nanotechnology 2015, 16, 495101. [CrossRef] [PubMed]

102. Zhu, L.; Shi, Y.; Tu, C.; Wang, R.; Pang, Y.; Qiu, F.; Zhu, X.; Yan, D.; He, L.; Jin, C.; et al. Construction and
Application of a pH-Sensitive Nanoreactor via a Double-Hydrophilic Multiarm Hyperbranched Polymer.
Langmuir 2010, 26, 8875–8881. [CrossRef] [PubMed]

103. Keilitz, J.; Radowski, M.R.; Marty, J.-D.; Haag, R.; Gauffre, F.; Mingotaud, C. Dendritic Polymers with
a Core–Multishell Architecture: A Versatile Tool for the Stabilization of Nanoparticles. Chem. Mater. 2008, 20,
2423–2425. [CrossRef]

http://dx.doi.org/10.1039/C1RA00610J
http://dx.doi.org/10.1007/s00396-011-2457-1
http://dx.doi.org/10.1039/C2RA22210H
http://dx.doi.org/10.1021/ma070176m
http://dx.doi.org/10.1021/cm102069w
http://dx.doi.org/10.1002/macp.200700198
http://dx.doi.org/10.1002/mame.200800269
http://dx.doi.org/10.1021/ma0510791
http://dx.doi.org/10.1002/adma.200601740
http://dx.doi.org/10.1021/cm1030359
http://dx.doi.org/10.1002/app.24202
http://dx.doi.org/10.1007/s00396-005-1344-z
http://dx.doi.org/10.1016/j.matlet.2004.11.009
http://dx.doi.org/10.1016/j.polymer.2005.03.029
http://dx.doi.org/10.1080/10601320802168892
http://dx.doi.org/10.1016/j.matchemphys.2008.07.047
http://dx.doi.org/10.1002/marc.200900051
http://www.ncbi.nlm.nih.gov/pubmed/21706643
http://dx.doi.org/10.1002/app.26132
http://dx.doi.org/10.1088/0957-4484/26/49/495101
http://www.ncbi.nlm.nih.gov/pubmed/26567596
http://dx.doi.org/10.1021/la9046275
http://www.ncbi.nlm.nih.gov/pubmed/20225825
http://dx.doi.org/10.1021/cm8002639


Molecules 2018, 23, 657 20 of 21

104. Moisan, S.; Martinez, V.; Weisbecker, P.; Cansell, F.; Mecking, S.; Aymonier, C. General Approach for the
Synthesis of Organic–Inorganic Hybrid Nanoparticles Mediated by Supercritical CO2. J. Am. Chem. Soc.
2007, 129, 10602–10606. [CrossRef] [PubMed]

105. Chen, Y.; Frey, H.; Thomann, R.; Stiriba, S.-E. Optically active amphiphilic hyperbranched polyglycerols as
templates for palladium nanoparticles. Inorg. Chim. Acta 2006, 359, 1837–1844. [CrossRef]

106. Zhou, L.; Gao, C.; Hu, X.; Xu, W. One-Pot Large-Scale Synthesis of Robust Ultrafine Silica-Hybridized CdTe
Quantum Dots. ACS Appl. Mater. Interfaces 2010, 2, 1211–1219. [CrossRef] [PubMed]

107. Zhou, L.; Gao, C.; Xu, W. Magnetic Dendritic Materials for Highly Efficient Adsorption of Dyes and Drugs.
ACS Appl. Mater. Interfaces 2010, 2, 1483–1491. [CrossRef] [PubMed]

108. Zhou, L.; Gao, C.; Xu, W.; Wang, X.; Xu, Y. Enhanced Biocompatibility and Biostability of CdTe Quantum
Dots by Facile Surface-Initiated Dendritic Polymerization. Biomacromolecules 2009, 10, 1865–1874. [CrossRef]
[PubMed]

109. Shi, Y.; Du, J.; Zhou, L.; Li, X.; Zhou, Y.; Li, L.; Zang, X.; Zhang, X.; Pan, F.; Zhang, H.; et al. Size-controlled
preparation of magnetic iron oxidenanocrystals within hyperbranched polymers and their magnetofection
in vitro. J. Mater. Chem. 2012, 22, 355–360. [CrossRef]

110. Yu, B.; Jiang, X.; Yin, J. Responsive hybrid nanosheets of hyperbranched poly(ether amine) as a 2D-platform
for metal nanoparticles. Chem. Commun. 2013, 49, 603–605. [CrossRef] [PubMed]

111. Zhou, Y.; Yan, D. Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and
dimensions: Progress, characteristics and perspectives. Chem. Commun. 2009, 10, 1172–1188. [CrossRef]
[PubMed]

112. Dey, P.; Blakey, I.; Thurecht, K.J.; Fredericks, P.M. Self-Assembled Hyperbranched Polymer–Gold
Nanoparticle Hybrids: Understanding the Effect of Polymer Coverage on Assembly Size and SERS
Performance. Langmuir 2013, 29, 525–533. [CrossRef] [PubMed]

113. Shen, Y.; Kuang, M.; Shen, Z.; Nieberle, J.; Duan, H.; Frey, H. Gold Nanoparticles Coated with
a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors.
Angew. Chem. Int. Ed. 2008, 47, 2227–2230. [CrossRef] [PubMed]

114. Jin, H.; Huang, W.; Zhu, X.; Zhou, Y.; Yan, D. Biocompatible or biodegradable hyperbranched polymers:
From self-assembly to cytomimetic applications. Chem. Soc. Rev. 2012, 41, 5986–5997. [CrossRef] [PubMed]

115. Wang, D.; Chen, H.; Su, Y.; Qiu, F.; Zhu, L.; Huan, X.; Zhu, B.; Yan, D.; Guo, F.; Zhu, X. Supramolecular
amphiphilic multiarm hyperbranched copolymer: Synthesis, self-assembly and drug delivery applications.
Polym. Chem. 2013, 4, 85–94. [CrossRef]

116. Hartlieb, M.; Floyd, T.; Cook, A.B.; Sanchez-Cano, C.; Catrouillet, S.; Burns, J.A.; Perrier, S. Well-defined
hyperstar copolymers based on a thiol–yne hyperbranched core and a poly(2-oxazoline) shell for biomedical
applications. Polym. Chem. 2017, 13, 2014–2054. [CrossRef]

117. Zhou, Y.; Yan, D. Real-Time Membrane Fusion of Giant Polymer Vesicles. J. Am. Chem. Soc. 2005, 127,
10468–10469. [CrossRef] [PubMed]

118. Zhou, Y.; Yan, D. Real-Time Membrane Fission of Giant Polymer Vesicles. Angew. Chem. Int. Ed. 2005, 44,
3223–3226. [CrossRef] [PubMed]

119. Gregory, A.; Stenzel, M.H. Complex polymer architectures via RAFT polymerization: From fundamental
process to extending the scope using click chemistry and nature’s building blocks. Prog. Polym. Sci. 2012, 37,
38–105. [CrossRef]

120. Wang, X.; He, Y.; Wu, J.; Gao, C.; Xu, Y. Synthesis and Evaluation of Phenylalanine-Modified Hyperbranched
Poly(amido amine)s as Promising Gene Carriers. Biomacromolecules 2010, 11, 245–251. [CrossRef] [PubMed]

121. Ren, Y.; Jiang, X.; Pan, D.; Mao, H.-Q. Charge Density and Molecular Weight of Polyphosphoramidate
Gene Carrier Are Key Parameters Influencing Its DNA Compaction Ability and Transfection Efficiency.
Biomacromolecules 2010, 11, 3432–3439. [CrossRef] [PubMed]

122. Newland, B.; Tai, H.; Zheng, Y.; Velasco, D.; Di Luca, A.; Howdle, S.M.; Alexander, C.; Wang, W.; Pandit, A.
A highly effective gene delivery vector—Hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from
in situ deactivation enhanced ATRP. Chem. Commun. 2010, 46, 4698–4700. [CrossRef] [PubMed]

123. Chen, M.; Wu, J.; Zhou, L.; Jin, C.; Tu, C.; Zhu, B.; Wu, F.; Zhu, Q.; Zhu, X.; Yan, D. Hyperbranched glycoconjugated
polymer from natural small molecule kanamycin as a safe and efficient gene vector. Polym. Chem. 2011, 2,
2674–2682. [CrossRef]

http://dx.doi.org/10.1021/ja074069j
http://www.ncbi.nlm.nih.gov/pubmed/17685528
http://dx.doi.org/10.1016/j.ica.2005.06.067
http://dx.doi.org/10.1021/am9009296
http://www.ncbi.nlm.nih.gov/pubmed/20423141
http://dx.doi.org/10.1021/am100114f
http://www.ncbi.nlm.nih.gov/pubmed/20459067
http://dx.doi.org/10.1021/bm9002877
http://www.ncbi.nlm.nih.gov/pubmed/19496613
http://dx.doi.org/10.1039/C1JM14079E
http://dx.doi.org/10.1039/C2CC37645H
http://www.ncbi.nlm.nih.gov/pubmed/23211935
http://dx.doi.org/10.1039/b814560c
http://www.ncbi.nlm.nih.gov/pubmed/19240868
http://dx.doi.org/10.1021/la304034b
http://www.ncbi.nlm.nih.gov/pubmed/23244573
http://dx.doi.org/10.1002/anie.200704572
http://www.ncbi.nlm.nih.gov/pubmed/18275053
http://dx.doi.org/10.1039/c2cs35130g
http://www.ncbi.nlm.nih.gov/pubmed/22797315
http://dx.doi.org/10.1039/C2PY20573D
http://dx.doi.org/10.1039/C7PY00303J
http://dx.doi.org/10.1021/ja0505696
http://www.ncbi.nlm.nih.gov/pubmed/16045316
http://dx.doi.org/10.1002/anie.200462622
http://www.ncbi.nlm.nih.gov/pubmed/15844108
http://dx.doi.org/10.1016/j.progpolymsci.2011.08.004
http://dx.doi.org/10.1021/bm901091z
http://www.ncbi.nlm.nih.gov/pubmed/19904954
http://dx.doi.org/10.1021/bm1009574
http://www.ncbi.nlm.nih.gov/pubmed/21067136
http://dx.doi.org/10.1039/c0cc00439a
http://www.ncbi.nlm.nih.gov/pubmed/20514386
http://dx.doi.org/10.1039/c1py00333j


Molecules 2018, 23, 657 21 of 21

124. Tu, C.; Li, N.; Zhu, L.; Zhou, L.; Su, Y.; Li, P.; Zhu, X. Cationic long-chain hyperbranched poly(ethylene
glycol)s with low charge density for gene delivery. Polym. Chem. 2013, 4, 393–401. [CrossRef]

125. Yu, S.; Chen, J.; Dong, R.; Su, Y.; Ji, B.; Zhou, Y.; Zhu, X.; Yan, D. Enhanced gene transfection efficiency of
PDMAEMA by incorporating hydrophobic hyperbranched polymer cores: Effect of degree of branching.
Polym. Chem. 2012, 3, 3324–3329. [CrossRef]

126. Wang, G.; Yin, H.; Yin Ng, J.C.; Cai, L.; Li, J.; Tang, B.Z.; Liu, B. Polyethyleneimine-grafted hyperbranched
conjugated polyelectrolytes: Synthesis and imaging of gene delivery. Polym. Chem. 2013, 4, 5297–5304.
[CrossRef]

127. Siegers, C.; Biesalski, M.; Haag, R. Self-Assembled Monolayers of Dendritic Polyglycerol Derivatives on
Gold That Resist the Adsorption of Proteins. Chem. Eur. J. 2004, 10, 2831–2838. [CrossRef] [PubMed]

128. Chen, S.; Tan, Z.; Li, N.; Wang, R.; He, L.; Shi, Y.; Jiang, L.; Li, P.; Zhu, X. Highly Efficient Intracellular Drug
Delivery with a Negatively Charged Hyperbranched Polysulfonamine. Macromol. Biosci. 2011, 11, 828–838.
[CrossRef] [PubMed]

129. Qiu, W.; Xu, J.; Li, X.; Zhong, L.; Li, J.; Li, J.; Nan, F. Design and Synthesis of Matrix Metalloprotease
Photoaffinity Trimodular Probes. Chin. J. Chem. 2009, 27, 825–833. [CrossRef]

130. Qiu, F.; Wang, D.; Zhu, Q.; Zhu, L.; Tong, G.; Lu, Y.; Yan, D.; Zhu, X. Real-Time Monitoring of Anticancer
Drug Release with Highly Fluorescent Star-Conjugated Copolymer as a Drug Carrier. Biomacromolecules
2014, 15, 1355–1364. [CrossRef] [PubMed]

131. Sohn, G.-J.; Choi, H.-J.; Jeon, I.-Y.; Chang, D.W.; Dai, L.; Baek, J.-B. Water-Dispersible, Sulfonated Hyperbranched
Poly(ether-ketone) Grafted Multiwalled Carbon Nanotubes as Oxygen Reduction Catalysts. ACS Nano 2012, 6,
6345–6355. [CrossRef] [PubMed]

132. Caruso, F. Nanoengineering of Particle Surfaces. Adv. Mater. 2001, 13, 11–22. [CrossRef]
133. Hood, M.; Mari, M.; Muñoz-Espí, R. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid

Nanoparticles. Materials 2014, 7, 4057–4087. [CrossRef] [PubMed]
134. Jeon, I.-Y.; Lee, H.-J.; Choi, Y.S.; Tan, L.-S.; Baek, J.-B. Semimetallic Transport in Nanocomposites Derived

from Grafting of Linear and Hyperbranched Poly(phenylene sulfide)s onto the Surface of Functionalized
Multi-Walled Carbon Nanotubes. Macromolecules 2008, 41, 7423–7432. [CrossRef]

135. Novoselov, K.S. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [CrossRef]
[PubMed]

136. Roldán, R.; Chirolli, L.; Prada, E.; Silva-Guillén, J.A.; San-Jose, P.; Guinea, F. Theory of 2D crystals: Graphene
and beyond. Chem. Soc. Rev. 2017, 15, 4387–4399. [CrossRef] [PubMed]

137. Jeon, I.-Y.; Choi, H.-J.; Bae, S.-Y.; Chang, D.W.; Baek, J.-B. Wedging graphite into graphene and graphene-like
platelets by dendritic macromolecules. J. Mater. Chem. 2011, 21, 7820–7826. [CrossRef]

138. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis,
Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [CrossRef] [PubMed]

139. Hirata, M.; Gotou, T.; Ohba, M. Thin-film particles of graphite oxide. Preliminary studies for internal micro
fabrication of single particle and carbonaceous electronic circuits. Carbon 2005, 43, 503–510. [CrossRef]

140. Hu, X.; Xu, Z.; Liu, Z.; Gao, C. Liquid crystal self-templating approach to ultrastrong and tough biomimic
composites. Sci. Rep. 2013, 3, 2374. [CrossRef] [PubMed]

141. Xu, Z.; Gao, C. Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers. Acc. Chem. Res. 2014,
47, 1267–1276. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C2PY20523H
http://dx.doi.org/10.1039/c2py20487h
http://dx.doi.org/10.1039/c3py00020f
http://dx.doi.org/10.1002/chem.200306073
http://www.ncbi.nlm.nih.gov/pubmed/15195314
http://dx.doi.org/10.1002/mabi.201000473
http://www.ncbi.nlm.nih.gov/pubmed/21384554
http://dx.doi.org/10.1002/cjoc.200990138
http://dx.doi.org/10.1021/bm401891c
http://www.ncbi.nlm.nih.gov/pubmed/24606561
http://dx.doi.org/10.1021/nn301863d
http://www.ncbi.nlm.nih.gov/pubmed/22680297
http://dx.doi.org/10.1002/1521-4095(200101)13:1&lt;11::AID-ADMA11&gt;3.0.CO;2-N
http://dx.doi.org/10.3390/ma7054057
http://www.ncbi.nlm.nih.gov/pubmed/28788665
http://dx.doi.org/10.1021/ma801259b
http://dx.doi.org/10.1126/science.1102896
http://www.ncbi.nlm.nih.gov/pubmed/15499015
http://dx.doi.org/10.1039/C7CS00210F
http://www.ncbi.nlm.nih.gov/pubmed/28640314
http://dx.doi.org/10.1039/c1jm10583c
http://dx.doi.org/10.1002/adma.201001068
http://www.ncbi.nlm.nih.gov/pubmed/20706983
http://dx.doi.org/10.1016/j.carbon.2004.10.009
http://dx.doi.org/10.1038/srep02374
http://www.ncbi.nlm.nih.gov/pubmed/23918042
http://dx.doi.org/10.1021/ar4002813
http://www.ncbi.nlm.nih.gov/pubmed/24555686
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Synthesis of HMs 
	Step-Growth Polycondensation 
	Self-Condensing Vinyl Polymerization 
	Ring-Opening Polymerization 
	Alternative Routes for HMs 

	Properties of HMs 
	Solubility 
	Thermal Properties 
	Mechanical Properties 

	Structure of HMs 
	Degree of Branching (DB) 
	Molecular Weight 

	Potential Applications of HMs 
	Photoelectric Materials 
	Stabilizers for Nanocrystals 
	Bio-Applications 
	Carbon Nanomaterial/HM Nanocomposites 

	Conclusions and Outlook 
	References

