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Abstract: Bacterial ribonuclease binase exhibits a cytotoxic effect on tumor cells possessing certain
oncogenes. The aim of this study was to identify the structural parts of the binase molecule that exert
cytotoxicity. Out of five designed peptides, the peptides representing the binase regions 21–50 and
74–94 have the highest cytotoxic potential toward human cervical HeLa and breast BT-20 and MCF-7
cancer cells. The peptides B21–50 and B74–94 were not able to enter human lung adenocarcinoma
A549 cells, unlike BT-20 cells, explaining their failure to inhibit A549 cell proliferation. The peptide
B74–94 shares similarities with epidermal growth factor (EGF), suggesting the peptide’s specificity
for EGF receptor overexpressed in BT-20 cells. Thus, the binase-derived peptides have the potential
of being further developed as tumor-targeting peptides.

Keywords: anticancer peptides; ribonuclease (RNase); binase; cytotoxicity; EGF; epidermal growth
factor (EGFR)

1. Introduction

The main disadvantages of traditional anticancer therapy are the lack of selectiv-
ity, arising drug resistance, and side effects of chemotherapeutic agents. For this reason,
anticancer peptides (ACPs) are considered as promising tools in antitumor treatment [1].
ACPs have several advantages over other chemotherapeutics such as high specificity, short
time-frame of interaction, good tumor penetration, good solubility, high affinity, and low
toxicity that decrease the probability of resistance emergence and reduce the side effects
of ACPs [2–4]. ACPs generally consist of 5 to 50 amino acid residues folded into helical
structures; however, other conformations are encountered as well [2,5,6]. The anticancer
properties of ACPs are attributed to their amphipathicity, moderate overall hydrophobicity,
and positive net charge [7,8]. Membranolytic, apoptosis-inducing, necrosis-triggering,
immune-stimulating, angiogenesis-inhibiting modes of ACPs action are reported [6].
Cell membrane charge and composition is thought to account for the selective toxicity of
many ACPs toward cancer cells. However, the mechanisms of ACPs activity and selectivity
toward cancer cells still are not fully understood.

Among potential therapeutics, special attention is being paid to compounds affecting
the specific RNAs of tumor cells. Ribonucleases (RNases) of animal, fungal, and bacterial
origin have shown promise as a tool for the development of novel anticancer drugs [9–13].
It has been proven that the antitumor potential of RNases is mediated by their catalytic
activity [14,15], the charge of the molecule [10,16], protein structural organization [17,18],
and interaction with cellular components [19,20]. It has been shown that positively charged
dimeric RNase from Bacillus pumilus (binase) [17,21] selectively inhibits tumor growth via
the induction of apoptosis in cancer cells [14,22,23], but molecular mechanisms under-
lying this biologic effect require a detailed explanation. Earlier, it was believed that the
cytotoxicity of RNases is predominantly due to their catalytic activity toward available
RNA; at the same time, RNA species other than rRNA and/or tRNA were supposed to be
targeted as well [24]. It has been shown that the inhibition of tumor and metastasis growth
by pancreatic RNase A is accompanied by the global alteration of miRNA profiles in the
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blood and tumor tissue [14]. However, the alteration of total RNA level induced by binase
is not fatal for cell viability [25]. Except for the reaction of bacterial and eukaryotic RNases
with their substrates, practically nothing is known about the interaction of these enzymes
with other cellular components. For binase, the selective cytotoxicity toward cancer cell
lines expressing certain oncogenes, namely ras, kit, acute myelogenous leukemia 1 AML1)
transcription factor and the eight-twenty one (ETO) corepressor, and FMS-like tyrosine
kinase 3 (FLT3), has been previously demonstrated [15,20,22,26,27]. It is still unclear what
exactly leads to the upregulation of carbohydrate metabolism, inositol phosphate cascade,
oxidative phosphorylation, cellular transport and localization, re-arrangement of cell ad-
hesion, cell cycle control, apoptosis, and transcription in tumor cells following RNase
treatment [28,29]. Binase has been shown to induce tumor cell death via inhibition of
the mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK)
signaling pathway through direct interaction with Kirsten rat sarcoma viral oncogene
homolog protein (KRAS) [20]. Thus, the antitumor effect induced by RNases is associated
with the different molecular events that these enzymes trigger in cancer cells.

Here, we have investigated the ability of binase-derived peptides to induce similar
cytotoxic effect as the full-length protein for their further development into ACPs. We have
proposed that peptides derived from binase will be more specific and efficient in the
inhibition of tumor cell proliferation when compared to the entire protein. In addition,
they should have less side effects and avoid undesirable immune responses in patients [2–4].
To identify the binase regions contributing to its cytotoxic potential, we have designed five
peptides based on the binase three-dimensional structure and assessed their cytotoxicity
toward different cancer cell lines.

2. Materials and Methods
2.1. Binase and Binase-Derived Peptides

The authentic ribonuclease from B. pumilus (12.3 kDa, pI 9.5) was purified as described
earlier [30]. Binase-derived peptides were synthesized by GenScript Corporation (Piscat-
away, NJ, USA). The purity of the peptides was at least 90%. Binase-derived peptides
B21–50 and B74–94 possessing 6x-His affinity tag at the N-terminus were synthesized by
Elabscience Biotechnology (Dallas, TX, USA).

2.2. Cell Cultures

The human alveolar adenocarcinoma cell line (A549), two breast cancer cell lines
(MCF-7 and BT-20), and cervical cancer cell line (HeLa) were obtained from American Type
Culture Association (Rockville, MD, USA). Cells were grown at 37 ◦C in humidified 5%
CO2 atmosphere using RPMI 1640 medium for A549 cells and Dulbecco’s modified Eagle’s
medium for MCF-7, BT-20, and HeLa cells supplemented with 10% fetal bovine serum
(HyClone), 2 mM glutamine, and antibiotics (penicillin and streptomycin, 100 U/mL each).

2.3. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) Assay

The viability of untreated control cells and cells treated with binase and binase-derived
peptides at different concentrations (5, 50, and 125 µM) was determined according to the
mitochondrial nicotinamide adenine dinucleotide phosphate NAD(P)H-dependent cellular
oxidoreductases activity tested by the standard procedure based on the reduction of the
tetrazolium dye MTT) to its insoluble product formazan, which has a purple color. Cells
at the initial concentration of 104 per well were grown in a 96-well plate (CELLTREAT
Scientific Products, Shirley, MA, USA); then, the culture fluid was discarded and fresh
medium with peptides was added. After 48 h, formazan absorption was measured at
570 nm (xMark, Bio-Rad, Hercules, CA, USA). The amount of formazan produced is
proportional to the number of viable cells. The viability of untreated cells was taken
as 100%.

To examine the peptide effect on EGFR signaling, the EGFR-specific monoclonal
antibody cetuximab (Merck, KGaA, Darmstadt, Germany) was added at the concentration
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of 10 µg/mL to cells grown for 24 h in 96-well plates. After 48 h of exposure to inhibitor,
half the wells were treated with the B74–94 peptide at 50 µM concentration, and the cells
were allowed to grow for another 48 h. Afterwards, cell proliferation was assessed by the
MTT assay.

2.4. Peptide Characterization and Modeling

The ExPASy ProtParam tool (http://www.expasy.ch/tools/protparam.html) and
the Prot pi Protein Tool (https://www.protpi.ch/Calculator/ProteinTool) were used to
calculate the physical and chemical parameters of the peptides, namely length, molecular
weight (MW), pI, net charge, instability index, aliphatic index, and grand average of
hydropathicity (GRAVY). The peptides were predicted to be putative ACPs based on amino
acid composition, conserved features, and physicochemical properties by AntiCP [31].
The hydrophobicity, amphiphaticity, total hydrophobic ratio, and Boman index were
computed by AntiCP and APD3 [32]. These peptides were checked by ToxinPred for the
prediction of toxic peptides [33] and by CellPPD for the prediction of cell penetrating
properties [34]. Peptides were modeled by the de novo peptide structure prediction tool
PEP-FOLD3 using 200 simulation runs to sample the conformations [35]. Models were
sorted using the sOPEP energy value, and the best ranked peptide models were selected.
Jmol: an open-source Java viewer for chemical structures in 3D (http://www.jmol.org/)
was used to visualize 3D structures. Pairwise and multiple comparison of protein structures
was performed using FATCAT and POSA [36]. Docking of binase-derived peptides was
performed on ClusPro Server using Receptor-Ligand mode [37] and by the GRAMM-X
protein–protein docking server [38]. For local refinement of the of peptide–protein complex
structures, the Rosetta FlexPepDock server (http://flexpepdock.furmanlab.cs.huji.ac.il/)
was used. The binding pose with the lowest interaction score was analyzed.

2.5. Immunofluorescence Microscopy

A549 cells (25,000 cells/well) and BT-20 cells (150,000 cells/well) were seeded on 4-
well chamber slides and incubated for 24 h in 800 µL of 10% fetal bovine serum containing
RPMI or DMEM, respectively. The medium was replaced with the fresh one, and the
His-tagged B21–50 and B74–94 peptides or tagless binase were applied to each well at the
final concentration of 50 µM. After 30 min of incubation, the medium was removed, and the
cells were washed three times with ice-cold phosphate-buffered saline (PBS). Then, cells
were fixed in a 4% paraformaldehyde solution for 15 min and permeabilized in 0.1%
Triton-X100 solution in PBS for 10 min. Binase-treated cells were incubated overnight with
anti-binase antibodies (1:500) at 4 ◦C [39]. Thereafter, the cells were washed three times
in PBS containing 0.1% Tween for 10 min each and then were incubated with fluorescein
isothiocyanate (FITC)-conjugated mouse anti-rabbit immunoglobulin G (IgG) (H+L) cross-
adsorbed secondary antibody (Thermo Fisher Scientific, Inc., Waltham, MA, USA Cat.#
31584) at the concentration of 2 µg/mL in PBS containing 1% bovine serum albumin at
room temperature for 45 min in the dark. Non-specific binding of the secondary antibodies
was evaluated at the same experiment but without treatment with primary antibodies.
Peptide-treated cells were stained with anti-His-probe Alexa Fluor 647-conjugated mouse
monoclonal antibodies (sc-53073, Santa Cruz Biotechnology, Inc., Dallas, TX, USA) at a
dilution of 1:50 and incubated for 2 h at room temperature in the dark. Nuclear DNA
was labeled with 4′,6-diamidino-2-phenylindole (DAPI) for 15 min at 37 ◦C. Confocal
laser scanning microscope observations were conducted using an LSM 700 instrument
(Carl Zeiss AG, Jena, Germany) with a Plan-Apochromat 63×/1.4 objective (Carl Zeiss)
at the 405 nm excitation wavelength of laser for DAPI, 647 nm laser for Alexa Fluor 647,
and 488 nm laser for FITC.

2.6. Statistical Analysis

All experiments were performed in triplicate. All data are presented as the mean±
standard deviation of the mean (SD). Multiple groups were compared by two-way anal-
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ysis of variance (ANOVA) with Dunnett’s multiple comparison test. Statistical tests and
graphical data presentation were performed using GraphPad Prism 8 software (GraphPad
Software, San Diego, CA, USA).

3. Results and Discussion
3.1. Characterization of Anticancer Potential of Binase-Derived Peptides

To determine the binase regions contributing to its cytotoxicity, we have virtually
cut the binase into several parts (Figure 1): 1–20 (the first α-helix), 21–50 (the second
and the third α-helices, two-stranded parallel β-sheet 1, flexible loop 1), 51–73 (strands
1 and 2 of the antiparallel β-sheet 2, flexible loop 2), 74–94 (strand 3 of the antiparallel
β-sheet 2, flexible loop 3), and 95–109 (strands 4 and 5 of the antiparallel β-sheet 2) [40].
Peptides corresponding to each of these regions have been chemically synthesized. Three-
dimensional models of all peptides, except for the B95–109, have been predicted to have
nearly the same topology as in the whole binase molecule (Figure 1).
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Figure 1. The models of three-dimensional structure of binase-derived peptides in comparison to the
binase structure in solution (PDB 1BUJ). The numbers correspond to the numbering of amino acid
residues in a binase primary sequence. The color of the models matches the rainbow coloring of the
binase spatial structure.

According to the calculated physicochemical properties, the majority of the peptides,
except for B74–94, are basic molecules such as the entire binase (Table 1). The peptide
B95–109 has the most positive net charge but are likely to be less stable in vitro than others.
The hydrophobicity of the peptides decreases in the rows B1–20 ≥ B21–50 > B74–94 > B95–
109 ≥ B51–73 (Table 2). The highest amphipathicity is attributed to B95–109. The peptides
B51–73 and B95–109 have the Boman index higher than two, which gives an overall estimate
of their high potential to bind other proteins [31].

ACPs share similar properties with antimicrobial peptides; most of them are positively
charged, amphiphilic either α-helical or β-sheet peptide molecules [4]. Recent studies
aimed at determining of physicochemical properties that are responsible for antitumor
activity of peptides have shown that the most important role in antitumor potential is
played by the amphipathicity, hydrophobicity, and overall positive charge of peptide
molecules [8,41,42]. The equilibrium between these parameters is more significant than
exact values [43]. Moreover, the structural organization and the susceptibility of peptides
to proteolysis contribute to their cytotoxicity [4]. Most ACPs do not have a well-defined
structure when free in solution, but they adopt an α-helix or β-sheet structure upon
electrostatic interactions with membranes [44].
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Table 1. The physical and chemical parameters of the binase-derived peptides (A) and epidermal growth factor receptor (EGFR)
ligands (B) calculated from their amino acid sequences.

Peptide MW, kDa L 1, aa
Content of aa 2, %

pI NCh at pH 7 3 IIn 4 Ain 5 GRAVY 6
Hyd Ac Bas Neu

A Binase 12.2 109 38.5 10.1 14.7 36.7 9.4 +3.90 27 79 −0.42
B1–20 2.3 20 50.0 10.0 15.0 25.0 8.5 +0.79 36 117 0.14
B21–50 3.1 30 43.3 6.7 10.0 40.0 8.4 +0.83 15 88 −0.14
B51–73 2.5 23 30.4 13.0 17.4 39.1 9.7 +0.77 25 38 −1.08
B74–94 2.5 21 38.1 14.3 9.5 38.1 4.4 −1.17 19 88 −0.37
B95–109 1.9 15 26.7 6.7 26.7 40.0 9.5 +1.86 63 59 −0.76

B EGF 6.2 53 30.2 17.0 13.2 40.0 4.8 −4.45 51 72 −0.43
TGFA 5.6 50 36.0 12.0 16.0 36.0 5.93 −3.02 20 60 −0.08
HBEGF 9.7 86 29.1 12.8 27.9 30.2 8.98 +8.07 49 70 −0.91
AREG 10.1 87 20.7 12.6 27.6 39.1 9.35 +10.34 36 32 −1.54
EREG 5.3 46 28.3 8.7 10.9 52.2 607 −1.35 8 68 0.06
EPGN 14.7 132 38.6 9.1 13.6 38.6 7.32 +0.89 33 91 0.02
BTC 9.0 80 25.0 12.5 17.5 45.0 7.65 +1.66 51 44 −0.79

1 length, number of amino acids (aa); 2 content of hydrophobic (Hyd), acidic (Ac), basic (Bas), and neutral amino acids in peptide; 3 net
charge (NCh); 4 instability index (IIn); 5 aliphatic index (AIn); 6 grand average of hydropathicity (GRAVY).

Table 2. Prediction of anticancer peptides (ACPs) properties of binase-derived peptides as compared
to known anticancer peptides. Scores above the threshold are in bold.

Peptide ACP 1 CPP 2 TP 3 HPho 4 APath 5 BI 6, kcal/mol

A B1–20 0.63 −0.28 −0.80 −0.10 0.43 1.35
B21–50 0.73 −0.53 −1.53 −0.07 0.45 0.84
B51–73 0.47 −0.46 −0.60 −0.33 0.54 3.46
B74–94 0.73 −0.56 −0.94 −0.16 0.23 2.32
B95–109 0.69 −0.31 −0.89 −0.27 0.67 2.98

B LL–37 0.75 −0.2 −1.58 −0.34 1.06 3.00
NRC–07 0.8 −0.09 −0.9 −0.14 0.95 0.87
Roseltide
rT7 0.72 −0.47 1.49 −0.03 0.51 0.5

LfcinB 0.8 0.18 −0.92 −0.34 0.98 2.75
HNp–1 0.83 −0.13 0.18 −0.10 0.41 1.08

1 anticancer properties (ACP), 2 cell-penetrating properties (CPP), 3 toxic properties (TP), 4 hydropho-
bicity (HPho), 5 amphipathicity (APath), 6 Boman index (BI).

Thus, based on the structural and physicochemical properties, the peptides B1–20,
B21–50, and B95–109 represent the best candidates for ACPs. However, the antiCP server,
which takes into account different parameters of peptides cumulatively, has predicted the
peptides B21–50 and B74–94 to be potential ACPs (Table 2). At the same time, none of the
peptides have been predicted to have toxic and membrane-damaging properties.

3.2. Cytotoxic Effects of Binase-Derived Peptides toward HeLa, A549, BT-20, and MCF-7 Cells

To elucidate the cytotoxicity of binase-derived peptides, we have performed MTT
assay based on the reduction of tetrazolium dye to formazan by mitochondrial dehy-
drogenases, whose activity correlates to respiration and allows evaluating cell viability.
The viability of A549 cells treated with 5, 50, and 125 µM of the full-length binase has
decreased by 3%, 26%, and 85% respectively after 48 h of incubation (Figure 2), which
corresponds to previously obtained data [45]. All the peptides at the concentrations 5 and
50 µM have not affected A549 cell viability; it has remained at the level of untreated cells
(Figure 2A). Increased concentrations (125 µM) of the peptides have a stimulating effect:
cell proliferation has risen by 30–65%. So, the binase-derived peptides have no cytotoxic
effect on A549 cells at all tested concentrations.



Biomolecules 2021, 11, 16 6 of 14

Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 6 of 15 
 

 

peptides B21–50 and B74–94 to be potential ACPs (Table 2). At the same time, none of the 
peptides have been predicted to have toxic and membrane-damaging properties. 

3.2. Cytotoxic Effects of Binase-Derived Peptides toward HeLa, A549, BT-20, and MCF-7 Cells 
To elucidate the cytotoxicity of binase-derived peptides, we have performed MTT 

assay based on the reduction of tetrazolium dye to formazan by mitochondrial dehydro-
genases, whose activity correlates to respiration and allows evaluating cell viability. The 
viability of A549 cells treated with 5, 50, and 125 μM of the full-length binase has de-
creased by 3%, 26%, and 85% respectively after 48 h of incubation (Figure 2), which corre-
sponds to previously obtained data [44]. All the peptides at the concentrations 5 and 50 
μM have not affected A549 cell viability; it has remained at the level of untreated cells 
(Figure 2A). Increased concentrations (125 μM) of the peptides have a stimulating effect: 
cell proliferation has risen by 30–65%. So, the binase-derived peptides have no cytotoxic 
effect on A549 cells at all tested concentrations. 

 
Figure 2. The effect of binase and binase-derived peptides on the cell viability of the A549 cells 
(A), the HeLa cells (B), the MCF-7 cells (C), and the BT-20 cells (D) as measured via the MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cells were incubated with the 
indicated concentrations of the compounds for 48 h. The viability of untreated cells was taken for 
100%. Data are representative of three independent experiments; * p < 0.0001 as determined by 
two-way ANOVA with Dunnett’s post-hoc test for multiple comparisons. 

The antiproliferative effect has been observed in the HeLa cell line after treatment by 
increasing concentrations of binase-derived peptides, in particular the peptide B21–50 
(Figure 2B). When 50 and 125 μM of the B21–50 peptide have been applied, the viability 

Figure 2. The effect of binase and binase-derived peptides on the cell viability of the A549 cells (A), the HeLa cells (B),
the MCF-7 cells (C), and the BT-20 cells (D) as measured via the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay. Cells were incubated with the indicated concentrations of the compounds for 48 h. The viability of untreated
cells was taken for 100%. Data are representative of three independent experiments; * p < 0.0001 as determined by two-way
ANOVA with Dunnett’s post-hoc test for multiple comparisons.

The antiproliferative effect has been observed in the HeLa cell line after treatment
by increasing concentrations of binase-derived peptides, in particular the peptide B21–50
(Figure 2B). When 50 and 125 µM of the B21–50 peptide have been applied, the viability of
HeLa cells after 48 h incubation has been statistically significantly lowered by 45% and 93%
respectively, whereas binase itself at the highest concentration has decreased the viability
by 97%.

In the MCF-7 cell line, the percentage of viable cells after binase treatment at 5, 50,
and 125 µM has decreased by 52%, 58%, and 99%, respectively (Figure 2C). The B74–94 was
the only binase-derived peptide that has shown cytotoxicity toward MCF-7 cells, inhibiting
cell proliferation two-fold at 125 µM concentration.

In our experiment, BT-20 cells were the most sensitive cell line to binase and its
peptides (Figure 2D). The viability of BT-20 cells treated with 5, 50, and 125 µM of the full-
length binase has decreased by 65%, 61%, and 98%, respectively, after 48 h of cell treatment
as compared to non-treated cells. The similar cytotoxic effect has been demonstrated by
binase-derived peptides B21–50 and B74–94. The peptide B21–50 at the same concentrations
has reduced cell viability by 28%, 23% and 68%, respectively. The administration of the
peptide B74–94 has significantly inhibited the proliferation of BT-20 cells approximately by
50% at either concentration. The peptides B1–20, B51–73, and B95–109 were also capable of
decreasing cell viability but only by approximately 15–25%.
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Thus, based on MTT assay, it has been found that peptides from binase regions 21–50
and 74–94 have the highest cytotoxic potential as compared with the other binase-derived
peptides. Being cytotoxic, these two peptides have completely different physicochemical
properties. The peptide B21–50 is a cationic and helical molecule, while the peptide
B74–94 has a negative net charge and a β-sheet conformation (Figure 1, Tables 1 and 2).
The peptide B21–50 is slightly more amphipathic and hydrophobic than the peptide B74–94;
as predicted, it has four hydrophobic amino acid residues exposed on the same surface,
while the peptide B74–94 has six residues, which is regarded as a positive aspect of ACPs.
Therefore, the experimental results have corroborated the computational prediction of
anticancer properties of designed peptides and have underlined the importance of balance
between molecule characteristics.

Obviously, the question arises of why the peptides have manifested toxicity toward
BT-20, MCF-7, and HeLa cells in contrast to A549 cells. This can be explained by inability
of peptides to enter cells or by their proteolytic degradation. The poor cell permeability
is one of the limitations of therapeutic peptides. Cell-penetrating ability is considered
to be important for selective cytotoxicity. It depends on the physicochemical properties,
length, concentration, and charge of peptide molecules [46]. Peptides can cross the cell
membrane through energy-independent direct penetration or energy-dependent endo-
cytosis mechanisms [47]. Several models have been reported for peptides penetration,
but the exact mechanism is still obscure [48]. We have determined the ability of B21–50
and B74–94 peptides to enter BT-20 and A549 cells as the most sensitive and insensitive
cells to their action, respectively. Both peptides (50 µM) have been detected inside BT-20
cells by confocal laser scanning microscopy after 30 min incubation with cells; they were
distributed throughout the cell, in cytoplasm and nuclei (Figure 3). At the same time, both
peptides have not been visualized in A549 cells, potentially explaining the absence of their
cytotoxicity toward this cell line. Distinctively, binase has been detected inside both BT-20
and A549 cells (Figure 3).

Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 3. Confocal laser scanning images of A549 and BT-20 cells treated with His-tagged B21–50 
and B74–94 peptides or binase. Peptides (red), binase (green), and nuclei (blue) were stained using 
anti-His-probe Alexa Fluor 647-conjugated mouse monoclonal antibodies, FITC-conjugated mouse 
anti-rabbit IgG (H+L) cross-adsorbed secondary antibodies and DAPI, respectively. Scale bars rep-
resent 10 μm. 

The possibility of being degraded by multiple serum and tissue proteases with dif-
fering specificity limits the systemic application of therapeutic peptides. Host proteases 
play an important role in determining the cell or tissue tropism of different viruses [47]. 
Lung epithelial cells express matrix metalloproteinases (MMPs) and type II transmem-
brane serine proteases (TTSPs); among them transmembrane serine protease 4 (TMPRSS4) 
and 15 (TMPRSS15) are found in A549 cells though at a low expression level [48–50]. Both 
proteases regulate physiological processes as well as tumor development and progression 
notably in lung, pancreatic, thyroid, colon, and gastric cancers [51]. They cleave and acti-
vate growth factors and signaling receptors as well as facilitate cell migration, invasion, 
and angiogenesis [51]. TMPRSS4 and TMPRSS15 are not found in breast cancer cells 
[52,53]; however, these cells produce other proteases, namely TMPRSS13 and MMP1, 13, 
14, and 23 [54]. In our work, we have not detected any difference in proteolytic activity 
between the culture media of A549, BT-20, HeLa, and MCF-7 cell lines during 72 h of 
incubation (data not shown). Therefore, the absence of the B21–50 and B74–94 peptides in 
A549 cells is not connected to the extracellular degradation of the peptides. For A549 cells, 
the multidrug-resistance to chemotherapy mediated by the process of autophagy is re-
ported [55,56]. It has been shown that autophagy depends on the activity of cellular pro-
teases and results in the decreasing of apoptotic potential of cancer cells and enhancing of 
their survival [57]. The increased autophagy during chemotherapy has also been recog-
nized in a luminal type of breast cancer (MCF-7 cell line) but not in the triple-negative one 
[58]. In the triple-negative breast cancer BT-20 cell line, inhibition of autophagy is linked 
to the overexpression of the epidermal growth factor receptor (EGFR) [59]. So, it cannot 
be ruled out that the increased level of protease activity inside the A549 and MCF-7 cells 
leads to the digestion of peptides into the individual amino acids, which are used by cells 
as an additional nutrition source causing growth stimulation. 

The specificity of the peptides action toward certain cell lines can be coupled with 
certain cell mutations or differences in cell surface composition. For instance, A549 cells 
differ from other cell lines by the strong permanent activation of MAPK/ERK signaling 

Figure 3. Confocal laser scanning images of A549 and BT-20 cells treated with His-tagged B21–50 and B74–94 peptides
or binase. Peptides (red), binase (green), and nuclei (blue) were stained using anti-His-probe Alexa Fluor 647-conjugated
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The possibility of being degraded by multiple serum and tissue proteases with dif-
fering specificity limits the systemic application of therapeutic peptides. Host proteases
play an important role in determining the cell or tissue tropism of different viruses [48].
Lung epithelial cells express matrix metalloproteinases (MMPs) and type II transmem-
brane serine proteases (TTSPs); among them transmembrane serine protease 4 (TMPRSS4)
and 15 (TMPRSS15) are found in A549 cells though at a low expression level [49–51].
Both proteases regulate physiological processes as well as tumor development and pro-
gression notably in lung, pancreatic, thyroid, colon, and gastric cancers [52]. They cleave
and activate growth factors and signaling receptors as well as facilitate cell migration,
invasion, and angiogenesis [52]. TMPRSS4 and TMPRSS15 are not found in breast cancer
cells [53,54]; however, these cells produce other proteases, namely TMPRSS13 and MMP1,
13, 14, and 23 [55]. In our work, we have not detected any difference in proteolytic activity
between the culture media of A549, BT-20, HeLa, and MCF-7 cell lines during 72 h of
incubation (data not shown). Therefore, the absence of the B21–50 and B74–94 peptides
in A549 cells is not connected to the extracellular degradation of the peptides. For A549
cells, the multidrug-resistance to chemotherapy mediated by the process of autophagy
is reported [56,57]. It has been shown that autophagy depends on the activity of cellular
proteases and results in the decreasing of apoptotic potential of cancer cells and enhancing
of their survival [58]. The increased autophagy during chemotherapy has also been rec-
ognized in a luminal type of breast cancer (MCF-7 cell line) but not in the triple-negative
one [59]. In the triple-negative breast cancer BT-20 cell line, inhibition of autophagy is
linked to the overexpression of the epidermal growth factor receptor (EGFR) [60]. So, it can-
not be ruled out that the increased level of protease activity inside the A549 and MCF-7
cells leads to the digestion of peptides into the individual amino acids, which are used by
cells as an additional nutrition source causing growth stimulation.

The specificity of the peptides action toward certain cell lines can be coupled with
certain cell mutations or differences in cell surface composition. For instance, A549 cells
differ from other cell lines by the strong permanent activation of MAPK/ERK signaling
pathway due to the G12S mutation in KRAS protein. It can be supposed that binase-derived
peptides are not powerful enough to inhibit the constantly active signaling pathway. In ad-
dition to pore-forming and cell-permeable peptides, a group of tumor-targeting peptides
is distinguished among ACPs [61]. These peptides target certain markers expressed on
the tumor cell membrane, such as integrins, CD13, and other receptors, and they can be
internalized into the cell through receptor-mediated endocytosis [62]. According to their
biological targets, therapeutic peptides can be divided into three groups influencing signal
transduction, cell cycle regulation, and cell death pathways [63]. Since binase-derived pep-
tides has selectively penetrated and inhibited the proliferation of different cancer cell lines,
we have proposed that their cytotoxicity is due to the interaction with specific receptors
or intracellular targets. Among four cancer cell lines, the most sensitive to binase-derived
peptides was BT-20. This cell line is characterized as a triple negative subtype of breast
cancers that do not express progesterone receptors, estrogen receptors, and human epi-
dermal growth factor receptor 2 [64]. In BT-20 cells, the epidermal growth factor receptor
(EGFR) is overexpressed, and its targeting is suggested as one of the strategies in therapy
of triple-negative breast cancer [65].

3.3. Assessment of Putative Interaction between EGFR and Binase-Derived Peptides

Receptor tyrosine kinase EGFR (ErbB1, HER1) belongs to a four-member ErbB family,
which plays a pivotal role in signal transduction that controls cell division and survival.
Therefore, alterations in the functioning of ErbB proteins correlate with the development
and progression of numerous human cancers, including lung, breast, ovarian, and other
types [66]. Seven polypeptide growth factors were shown to bind EGFR, i.e., epidermal
growth factor (EGF), amphiregulin (AREG), transforming growth factor (TGF)-and epi-
gen, which bind EGFR specifically, betacellulin (BTC), heparin-binding EGF (HB-EGF),
and epiregulin (EPR), which are capable of binding both EGFR and ErbB4 [66]. In the
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absence of ligand, EGFR exists as an inactive monomer. Upon ligand binding, EGFR
dimerizes into its active form followed by autophosphorylation, endocytosis and activation
of downstream proteins that enhance cell proliferation, invasion, and metastasis and inhibit
apoptosis.

To test the possibility of whether EGFR could be a potential target for binase-derived
peptides, we have initially compared them with the known EGFR ligands. EGFR ligands
have distinct physicochemical properties such as the binase-derived peptides (Table 1).
The most similar to EGF is the peptide B74–94; both proteins are negatively charged and
have similar hydropathy indexes. The highest similarity in the three-dimensional structure
to EGF has been found in the peptides B74–94 (21 equivalent positions out of 21 amino
acid residues of the peptide with an RMSD of 2.56), B21–50 (22 equivalent positions out of
30 amino acid residues of the peptide with an RMSD of 3.55), and B51–73 (17 equivalent
positions out of 23 amino acid residues of the peptide with an RMSD of 3.29). However,
only the structure of the peptide B74–94 has overlaid completely (all 21 amino acid residues
of the peptide) structures of different EGFR ligands, suggesting the putative specificity of
the peptide for EGFR (Figure 4A). The region of structural similarity is represented by the
A (residues 6–19) and B (residues 20–31) loops of EGF, which constitute the hydrophobic
surface on the protein required for the receptor recognition and binding. Since all the
EGFR ligands have similar structures of their B-loop fragments, it is the primary structure
that mainly accounts for differences in affinity of EGFR ligands to the receptor [67]. These
ligands elicit distinct conformations in EGFR and thereby different cellular responses [68].
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B74–94 peptide. The detailed view of EGFR and B74–94 interface is zoomed in.
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The modeling of interaction between the peptide B74–94 and EGFR has shown that the
peptide can bind EGFR at the same region as EGF but at a slightly different site (Figure 4B).
EGF, similar to other EGFR ligands, binds the receptor at the beta sheets of domains I
(residues 1–165) and III (residues 310–481). In particular, the B-loop of EGF binds to
domain I of EGFR via hydrophobic interactions, while the A and C loops bind with domain
III of EGFR through hydrophobic and electrostatic bonds. The B74–94 peptide also interacts
with both EGFR domains using hydrophobic and electrostatic forces (the total Rosetta
energy score of the complex is -41.259); however, the interaction occurs deeper in the
ligand-binding pocket due to the smaller size of the peptide (Figure 4B). Thus, the Tyr4,
Phe8, Tyr16, and Tyr 20 of the B74–94 peptide form hydrophobic bonds with Ile318 and
Phe357 of the domain III of EGFR protein, while Arg9 and Asp19 of the peptide interact
electrostatically with Asp323 and Arg285 of the receptor. The residues Ile2, Asn3, Ser6,
Asp12, and Leu21 of the peptide B74–94 are involved in interaction with domain I (Gln8,
Asn12, Leu38, ASn86, and Met87) of EGFR. Therefore, the peptide B74–94 potentially could
interact with the EGF receptor, disturbing its activity.

To evaluate the possibility of the B74–94 peptide to interact with EGFR, we have
performed the MTT assay with cetuximab, a monoclonal antibody that inhibits ligand
binding upon interaction with the EGFR. We have found that preliminary cell treatment
with 10 µg/mL cetuximab leads to a decrease of the B74–94 cytotoxicity by 28% (Figure 5).
Probably, the cetuximab-mediated EGFR internalization affects the cytotoxicity of the B74–
94 peptide by partial elimination of the peptide target from the cell surface. In addition
to tyrosine kinase inhibitors and monoclonal antibodies, EGF antagonists are regarded as
possible tools for inhibition of EGFR activity [69]. Several tumor-targeting peptides have
been developed to target EGFR based on the structure of the natural EGF ligand [70,71].
They disrupt EGFR signaling by directly preventing ligand binding. Therefore, it is attrac-
tive to speculate that the cytotoxicity of the binase-derived peptide B74–94, which shares
similar features with EGF, could be mediated by its interaction with EGFR; however, other
targets cannot be ruled out.
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4. Conclusions

The discovery of novel therapeutic peptides contributes to the development of po-
tent anticancer therapy. Pharmaceutical compounds based on these small molecules are
already approved by the United States Food and Drug Administration FDA and used
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for the illness treatment. In this work, we have characterized novel peptides derived
from binase, an antitumor RNase of bacterial origin. Among five binase-derived peptides,
the peptides from the regions 21–50 and 74–94 of binase molecule have exhibited high
cytotoxic activity toward breast and cervical cancer cell lines. The peptides B21–50 and
B74–94 have been computed to have a different structure and molecule net charge but
similar stability and hydrophobicity. Their cytotoxicity is likely to be mediated by the
balance of these properties as well as by the high cell-penetrating ability. The selectivity
of the cytotoxic peptides toward distinct cancer cell lines indicates the presence of certain
molecular targets, the blocking of which by the peptides leads to cancer cell death. For the
peptide B74–94, such a target can be represented by the epidermal growth factor receptor
amplified in the triple-negative cancer cell line BT-20 and overexpressed in several types
of cancer. The peptide’s specificity for EGFR is predicted by its structural similarity with
known EGFR ligands. Moreover, the EGFR blocking by the cetuximab has led to decrease
of B74–94 cytotoxicity, indirectly indicating the targeting of EGFR. Although further study
of direct protein–protein interactions is required, the high sensitivity of BT-20 cells to the
binase-derived peptides can be linked to the overexpressed EGFR, since the prevention
of EGFR activation can happen not only by blocking the growth factor binding sites on
the receptor but also by stabilizing the receptor in the conformation that cannot bind
growth factor with high affinity or by occluding the dimerization interface. However, other
targets cannot be ruled out as well. Thus, the obtained results provide a clue for further
development of certain binase-derived peptides as selective antitumor agents.
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