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Abstract

Genetics ultimately defines an individual, yet the phenotype of an adult is extensively determined 

by the sequence of lifelong exposures, termed the exposome. The redox theory of aging recognizes 

that animals evolved within an oxygen-rich environment, which created a critical redox interface 

between an organism and its environment. Advances in redox biology show that redox elements 

are present throughout metabolic and structural systems and operate as functional networks to 

support the genome in adaptation to environmental resources and challenges during lifespan. 

These principles emphasize that physical and functional phenotypes of an adult are determined by 

gene–environment interactions from early life onward. The principles highlight the critical nature 

of cumulative exposure memories in defining changes in resilience progressively during life. Both 

plasma glutathione and cysteine systems become oxidized with aging, and the recent finding that 

cystine to glutathione ratio in human plasma predicts death in coronary artery disease (CAD) 

patients suggests this could provide a way to measure resilience of redox networks in aging and 

disease. The emerging concepts of cumulative gene–environment interactions warrant focused 

efforts to elucidate central mechanisms by which exposure memory governs health and etiology, 

onset and progression of disease.

Introduction

Redox theory of aging

“Aging is a decline in plasticity of genome–exposome interaction that occurs as a 

consequence of differentiation and exposure memory systems.”

The redox theory of aging [1] was developed in response to improved understanding of 

oxidative stress [2] and advances in central redox theory outlined in the redox code [3,4]. 

The present article provides an update addressing the implications of redox theory in health 

and disease. We start with a summary of progress and refinement in the definition of 

oxidative stress after large-scale, double-blind free-radical scavenging antioxidant trials 

failed to show health benefits in humans. We briefly summarize the redox code, four 

principles by which oxidation–reduction (redox) mechanisms support life, and extend these 
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concepts to the redox theory of aging. The redox theory was originally conceived as an 

extension of the redox hypothesis of oxidative stress, an alternative to free radical 

mechanisms of oxidative stress [5].

As the main points of the redox theory of aging, we discuss the importance of redox 

networks as an interface between an individual and his/her environment [6] and the 

evolution of exposure memory systems to allow animals to adapt to environmental 

conditions during lifespan to enhance survival and reproductive advantage [1]. The 

consequence of adaptation to lifelong exposures is a decline in flexibility and adaptability 

that underlies the theory.

A section is then provided on early life exposures as critical for physical and functional 

structures of adults, followed by a section on the importance of trace metals, some of which 

accumulate throughout life and cause progressive disruption of redox networks. This is 

followed by recent results suggesting that health of redox networks can be measured in 

terms of the ratio of the disulfide cystine (CySS) to the thiol glutathione (GSH), a ratio that 

predicts death as an outcome in coronary artery disease (CAD) patients [7]. Additional data 

are included to suggest that age-associated changes in redox network structures occur with 

many disease processes, including Type 2 diabetes, non-alcoholic fatty liver disease, atrial 

fibrillation, and other proinflammatory or profibrotic diseases. A following section briefly 

addresses the implications of lifelong accumulation of exposure memory in regenerative 

medicine, a rapidly developing area of innovative therapeutics.

Finally, we summarize and extend these concepts to complex systems approaches in 

medicine. This includes introduction of cumulative gene–environment interactions during 

lifespan as a central logic to complex systems research. This is part of a systematic effort to 

understand lifelong exposures in human exposome research [8,9] and will advance 

understanding of lifelong exposures in health and disease outcome. Additional study of 

plasma CySS and CySS/GSH as measures of redox network health could yield new ways to 

measure and manage resilience during aging. We conclude with the need for development of 

a hierarchical set of principles linking exposure memory to health outcome as a way to guide 

personalized health and disease prevention strategies.

Oxidative stress

In 1985, Helmut Sies defined oxidative stress as an imbalance between prooxidants and 

antioxidants that resulted macromolecular damage [10]. The concept was popularized in 

news media and publications for non-scientific audiences and fueled development of a 

multibillion dollar antioxidant supplement industry. More than a billion dollars was invested 

in research to test antioxidants, and these generally showed that supplementation with free 

radical scavengers failed to provide health benefits. This caused confusion in the field and 

also contributed to a transition from oxidative stress of the early 1980s to the contemporary 

view of oxidative stress, as recently reviewed [11]. In the current definition, two aspects of 

oxidative stress are recognized, one with the original concept of macromolecular damage 

and the subsequently recognized disruption of redox signaling and control mechanisms 

leading to diseases of aging (Figure 1). The other encompasses physiologic levels of oxidant 
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production, termed ‘eustress’, contributing to healthy longevity (Figure 1). The distinction 

between deleterious processes of oxidative stress and physiologic processes of eustress is 

important to maintain clarity in discussions of the broad range of oxidative reactions in 

redox biology. In the following sections, we discussed two aspects of oxidative stress further 

as the critical factors leading to differential aspects/consequences of aging and disease. 

Sies’s 1985 definition of oxidative stress included both 1-electron (free radical) and 2-

electron (non-radical) oxidants; subsequent research often referred to reactive oxygen 

species (ROS) without discrimination of radical species, such as superoxide anion radical, 

from non-radical species, such as H2O2. The use of term ‘ROS’ is now discouraged, with the 

suggestion that specific oxidant names be used when possible and the general term ‘oxidant’ 

be used at other times [11]. Similarly, ‘antioxidants’ is a general term that includes different 

types of antioxidant chemicals, such as free radical scavenging vitamins (vitamin C and 

vitamin E) [12,13], singlet oxygen quenching dietary chemicals such as lycopene [14], and 

therapeutic thiol antioxidants such as N-acetylcysteine [15]. Science and medicine are best 

served by use of terminology defining specific antioxidants or types of antioxidants.

Two points are of central importance for the current discussion of the redox theory of aging 

and implications in health and disease. First, a substantial wealth of observational data 

shows evidence for oxidative stress for most major causes of human morbidity and mortality 

(Table 1). Thus, regardless of any specific arguments for or against oxidative stress [2], this 

data cannot be ignored. Second, all aspects of humans depend upon oxidation of foodstuffs 

for energy and maintenance of cellular NADPH pools to support detoxification and 

protection against environmental threats. Consequently, whether oxidative stress occurs is 

not a critical question; instead, critical questions are how to identify critical dysfunction of 

oxidant systems and how to develop useful interventions to minimize or reverse associated 

disease processes.

Denham Harmon proposed a free radical theory of aging in the 1950s [16], and 

observational studies and small interventional studies accumulated to justify large-scale 

double-blind interventional trials for many chronic and age-related diseases [17,18]. By the 

early 2000s, however, results from a sufficient number of these studies had accumulated to 

show that little to no significant health benefits occurred from supplementation with free 

radical scavenging antioxidants in humans [19,20]. Also by 2000, accumulating evidence 

supported a function for low concentrations of the oxidant H2O2 in redox signaling 

mechanisms [21,22]. Additionally, at about the same time, we found that the most abundant 

low molecular weight thiol/disulfide couples in plasma, glutathione/glutathione disulfide 

(GSH/GSSG), and cysteine/cystine (Cys/CySS) were not in thermodynamic equilibrium 

(Figure 2) [23]. Together, these results spawned considerable research into new directions of 

oxidative stress research.

Our finding of disequilibrium of GSH/GSSG and Cys/CySS led us to speculate that Cys 

residues in proteins could also be kinetically limited and this could be used for redox control 

[24]. Specifically, the reactivities of most thiols in proteins are similar to the thiols of GSH 

and Cys, so protein thiols are also likely to be kinetically controlled. We subsequently found 

this to be true in targeted studies of the thioredoxin (Trx)-1 system [5,25] as well as in the 

mitochondrial Trx-2 system [26,27]. More recent mass spectrometry studies also showed 
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this to be correct for the steady-state oxidation of hundreds of specific protein cysteine 

residues in cell culture [28,29] and in mouse tissues [30]. Thus, in the period between 2000 

and today, a major shift has occurred in the focus of oxidants/antioxidants balance from 

radical/radical scavenger balance to thiol/disulfide balance.

Together with recognition that plasma GSH/GSSG is oxidized in association with age and 

with Type 2 diabetes [31], knowledge of the disequilibrium of the GSH and Cys systems in 

plasma led to experimental studies of effects of variation in extracellular thiol/disulfide 

systems in human cells. Remarkably, cells in culture adjusted extracellular Cys/CySS redox 

potential (Eh, calculated from concentrations with the Nernst equation) [32] to the value 

found in young healthy human plasma [32]. Exposure to more reducing conditions caused 

cells to proliferate more rapidly while exposure to more oxidizing conditions caused cells to 

proliferate more slowly [33,34] and have increased sensitivity to apoptosis [34]. Thus, the 

studies established a fundamental importance of thiol/disulfide redox control in the functions 

of human cells. Moreover, the results showed that thiol/disulfide systems activate redox 

mechanisms previously attributed to oxidative stress. In 2002, we found that human plasma 

GSH and Cys redox couples were oxidized at different rates as a function of age [32]. The 

lack of balance between the GSH and Cys thiol antioxidant systems, the failure of the free 

radical scavenger trials, and the accumulating knowledge of thiol systems in redox signaling 

led to the proposal that oxidative stress should be redefined in terms of disruption of redox 

signaling and control [35]. The most critical aspect of this transition was the recognition of 

kinetic limitations in thiol/disulfide systems. Under all aerobic conditions, thiols undergo 

oxidation that is balanced in the steady state by reduction systems.

Transition to redox biology

A focus on oxidative stress transitioned to a more general focus on redox biology as 

knowledge of redox signaling mechanisms improved [35–38] and redox proteomics methods 

began to reveal the organization structure of the redox proteome [29]. An important 

contribution to this transition occurred as functions of NADPH oxidases in different organ 

systems and diseases was elucidated. In this, the term ‘oxidative stress’ was sometimes 

misused in that the oxidants produced were physiologic and not pathologic. Recently, the 

term ‘oxidative eustress’ has been recommended for use to describe beneficial production of 

oxidants so that the term ‘oxidative stress’ retains its original reference to adverse processes 

(Figure 1).

Along with improved understanding of oxidant production in redox signaling, studies of Trx 

systems in cell nuclei, cytoplasm, and mitochondria showed that subcellular compartments 

are maintained at different thiol/disulfide steady states [39]. The mitochondrial and 

cytoplasmic steady states also differ for GSH/GSSG, and the cytoplasmic Cys/CySS differs 

from the steady states for GSH/GSSG and the Trx system [39,40]. Thus, the results 

emphasize that kinetic limitations are widespread in thiol/disulfide systems and that 

differences exist in the characteristics of the central redox hubs [36]. A possible 

organizational structure is illustrated in Figure 3, based upon the scale-free hierarchical 

network proposed for metabolomics [41]. In this global view, environmental exposures 

selectively affect subnetworks of redox-sensitive elements, conceptualized as ‘redox 
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modules’. These redox modules are maintained in steady state by endogenous reduction and 

oxidation systems. Each subcellular compartment has sources of reductants and oxidants. 

These include a relatively small number of NADPH-dependent reductases and a relatively 

small number of oxidants. In a bilateral hierarchical structure, these require only one 

additional level of secondary reductants and secondary oxidants to provide selective 

regulation of each of the 214,000-specific Cys encoded in the human genome [36]. Studies 

of proteins with nuclear import machinery shows selectivity in redox interactions [42], 

supporting this modular network structure. Similarly, import of proteins into mitochondria 

shows selectivity in redox reactions [37], and protein processing within the endoplasmic 

reticulum shows selectivity [43]. Targeted studies further show specificity in redox systems 

during signaling. For instance, redox signaling by NADPH oxidase was found to involve 

H2O2 and occur without detectable changes in either the Trx or GSH/GSSG systems [44]. 

KGF signaling in keratinocytes occurred with selective oxidation of cytoplasmic Trx1 

without oxidation of mitochondrial Trx2 [45]. In contrast, TNF-α triggered oxidation of 

mitochondrial Trx2 without oxidation of cytoplasmic Trx1 [46]. Additionally, selective 

generation of H2O2 in cell nuclei by nuclear-targeted D-amino acid oxidase resulted in 

localized nuclear thiol oxidation without cytoplasmic oxidation [47]. Application of mass 

spectrometry-based redox proteomics has extended these concepts to show that the redox 

network structure has a central function in the tolerance and adaptability of an organism to 

diet and environmental challenges (Figure 3) [29]. Recognition of this redox interface 

between an individual and its environment [48] provided important background to 

formulation of the redox principles of the redox code.

The redox code

The redox code (Figure 4) is a set of principles for redox organization and function of 

metazoans [3]. Living organisms exist in stable thermodynamic disequilibrium with four 

basic characteristics: metabolic and structural organization, delineation from environment 

through semipermeable barriers, reproduction, and extraction and use of energy to maintain 

the other three characteristics. The first principle of the redox code is that energy systems are 

maintained at near-thermodynamic equilibrium through high-flux oxidation–reduction 

(redox) reactions involving NAD and NADP systems. The second principle is that these 

high-flux systems are connected to macromolecular structure and function through an array 

of reversible, kinetically-controlled switches in proteins involving oxidation, acetylation, 

phosphorylation, methylation, and other modifications. The third principle is that reversible 

activation/deactivation of these switches support spatial and temporal signaling and 

organization to control structure and function in cell differentiation and development. The 

fourth principle is that these interactive systems function as networks at molecular, cellular, 

and organ system levels to allow an individual genome to adapt during lifespan to 

environmental resources and challenges [3].

The redox theory of aging

The redox theory of aging was developed from the redox hypothesis of oxidative stress [5], a 

hypothesis to explain oxidative stress without requirement for free radicals. After more than 

50 years of study, lack of firm support for the free radical theory of aging [16,49–51] 
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provided impetus to extend the radical-free concepts of oxidative stress to formulate a 

radical-free theory of aging [1]. The theory (Figure 5) acknowledges that networks of the 

redox proteome and metabolome serve as an adaptive interface [29] to allow an individual to 

adapt during lifespan to environmental resources and challenges. The redox modifications of 

the proteome provide a system to sense, avoid, and defend against oxidants and other toxic 

chemicals from the environment. The theory considers the rise in atmospheric O2 beginning 

2 billion years ago as a driving force for improved energy extraction machinery and 

evolution of multicellularity to avoid O2 toxicity. The theory accommodates the increase in 

Cys content of the proteome with evolution of complexity [52] to improve tolerance to 

different oxidative environments. The theory also accounts for genetic systems directing 

cellular differentiation and organ development as mechanisms to improve adaptability to the 

O2-rich atmosphere.

The theory thus interprets genetic systems for development and response to environment as 

exposure memory systems to allow an individual to adapt during lifespan to environmental 

resources and challenges [1]. Genetically encoded memory systems are emphasized because 

they were essential for transition of unicellular organisms into differentiated multicellular 

organisms. Other forms of exposure memory occur, such as changes in membrane lipid 

composition due to dietary lipid intake and variations in metal-bound structures and 

reactivities dependent upon metal ion exposures. Systematic studies are needed to evaluate 

contributions of different memory systems to long-term adaptability.

A natural consequence of use of memory systems for adaptability is that response to one 

challenge can decrease adaptability to other challenges. Over time, the use of these 

differentiation and environmental response systems results in decreased flexibility to 

accommodate additional environmental challenges. Therefore, aging is a decline in plasticity 

of gene–environment interactions that occurs as a consequence of differentiation and 

exposure memory (Figure 5). The integrated redox networks that are essential for cellular 

energetics, metabolic and structural organization, defense against environmental challenges, 

and reproduction, ultimately fail because of environmental challenges that cannot be 

accommodated [1]. Epigenetics and immune systems provide examples of systems that are 

used to provide memory of prior exposures. These systems allow a genome to adapt to 

environmental exposures during lifespan. Irreversible changes due to the operation of these 

systems ultimately limit their beneficial functions. Similarly, telomere shortening, cellular 

senescence, and stem cell exhaustion reflect cumulative memory of prior differentiation and 

responses to exposures.

The redox theory accounts for other characteristics of aging. For instance, ongoing oxidative 

challenges are opposed by responses of the thiol reducing systems. As any component of the 

redox network system becomes compromised, the entire network responds and becomes less 

tolerant to additional challenge. Thus, increased biomarkers of oxidative stress, such as 

hydroxynonenal and reactive carbonyls, and other general biomarkers of oxidative stress, are 

increased [53,54] even though they may not be directly related to the factors compromising 

the redox network structure. Oxidative modifications of slowly turning over proteins, as well 

as membrane lipids and DNA, create a burden decreasing the flexibility of the network to 

respond to additional challenges. Similarly, oxidative reactions as well as protein 
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modifications from reactive carbonyls contribute to other hallmarks of aging, such as 

accumulation of macromolecular aggregates and failure of proteostasis, intercellular 

communication, and protective barriers. With this theory, genomic instability can occur due 

to failure of the redox network structures, including active defenses, repair systems, and 

adaptive memory systems.

Redox theory also incorporates mitochondrial support of bioenergetic functions in all O2-

requiring cells, including maintenance of central ATP and NADPH pools. While ATP 

requirements are well known, less attention is given to NADPH, the primary reductant to 

maintain redox networks and also a primary precursor for H2O2 generation to maintain 

redox networks [3]. NADPH supply rates vary among cell types but are often much slower 

than rates of NADH supply to support mitochondrial ATP production. In liver, for instance, 

the maximal rate of NADPH supply is only 20% of the rate of NADH supply [55]. 

Furthermore, when mitochondrial ATP supply is insufficient to meet demand, glycolysis is 

stimulated. Both glycolysis and NADPH supply depend upon glucose-6-phosphate, and 

during hypoxia, glucose-6-phosphate is preferentially used for glycolytic ATP production at 

the expense of NADPH supply by the pentose phosphate pathway [55]. Detailed information 

is not available about the relative sensitivities of other systems controlling reversible 

switches within the proteomic networks. In particular, acetylation/deacetylation mechanisms 

controlling sirtuins depend upon the NADH/NAD system. Additionally, acetylation requires 

acetyl-CoA, and methylation requires S-adenosylmethionine; both of these precursors are 

linked to cellular energetics. Consequently, conditions that limit mitochondrial ATP 

production have a widespread impact on NADPH supply and other systems essential for 

maintenance of the redox network structures [55].

This dependence of both NADPH supply and ATP supply upon common precursors links 

bioenergetic responses to diet and oxidants to the flexibility of redox network structures. In 

other words, impaired mitochondrial ATP supply stimulates glycolysis, thereby limiting the 

pentose phosphate pathway supply of NADPH needed to maintain GSH and Trx functions. 

This links energy supply and antioxidant systems in their functions to accommodate 

environmental challenges. Growth factor signaling and nutrient regulation are ultimately 

linked to the same network structures controlled by mitochondria. The integration of these 

systems with epigenetic regulation, DNA repair, immunity, antioxidant defenses, and 

maintenance of cell populations leads to the perspective that strategies to delay aging, 

prevent and manage disease must address the cumulative memory of exposures as they affect 

mitochondrial function and redox control. At the global level, a primary focus for disease 

prevention must include the cumulative impact occurring at this genome–exposome interface 

[6]. For management of disease, a primary focus must include targeted support for these 

hubs controlling the steady-state dynamics of the redox networks [36]. For rejuvenation 

following loss of functions, a primary focus must be reversal of exposure memory that 

caused the loss of resilience [56].
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The redox interface in disease risk

Lifelong consequences of early exposures

The implications of redox theory for disease prevention are closely aligned with developing 

concepts of the human exposome [8]. Most human disease is attributed to cumulative 

lifelong exposures [57]. The foremost implication is that early life exposures affect lifelong 

health because the signaling mechanisms in cellular differentiation and organogenesis were 

driven by redox mechanisms associated with the dramatic rise in atmospheric O2 early in 

metazoan evolution. In a practical sense, there are needs for greater precision in 

understanding the key exposures and windows of vulnerability, not just for severe, early 

onset disease but also for risk of chronic disease. Systematic studies are not available for a 

broad range of exposures, but epidemiologic and model system studies show early life 

exposures affect adult disease [58,59]. Efforts to measure human exposures and associated 

health outcomes will be greatly facilitated if the international research and technology 

communities embrace a ‘Human Exposome Project’ [8,60–63] (http://

humanexposomeproject.com/) to complement the Human Genome Project (https://

en.wikipedia.org/wiki/Human_Genome_Project) in advancing underlying causes of disease.

Several environmental agents, especially endocrine disruptors [64] and obesogens [65] have 

received considerable attention. An extensive list of poorly metabolized, persistent 

chemicals, including plasticizers, flame retardants, and insecticides, act as agonists and 

antagonists in receptor signaling. In the context of development, disrupted signaling can 

have lifelong consequences. Details are beyond the scope of the present article, but the 

implications are extensive. An example from the literature on smoking in pregnancy serves 

to illustrate the point. Nicotine binds to nicotinic acetylcholine receptors, including α7 

nicotinic acetylcholine receptors directing lung organogenesis [66]. In mouse studies, 

nicotine binding to the receptor during a critical developmental window increased airway 

length and decreased airway diameter, resulting in a persistent change in airway geometry 

and impaired lung function in the adults. This example emphasizes that the spectrum of 

impact of early exposures includes size and form of organ systems, as well as more 

commonly considered endocrine and immunologic responses. Many research programs are 

in place, such as HELIX (Human Early-Life Exposome), a European Union-funded project 

to integrate early life exposures and child health across Europe (http://www.projecthelix.eu), 

but the key point for contemporary medicine is that currently, there is no atlas linking early 

exposures to lifelong health and disease. Thus, an important implication of the redox theory 

is that there are needs to establish programs for ‘deep-sequencing’ of the human exposome 

[63], with the ultimate goal to be able to evaluate early exposures as beneficial or harmful in 

long-term health outcomes. Barriers include cost and lengthy longitudinal follow-up. 

Computational methods, such as a framework to address the large number (a million or 

more) human exposures [67], are beginning to provide ways to overcome the barriers, but 

will need to be extended to study of large populations and model systems.

Lifelong accumulation of metals

A second important aspect of the redox interface involves environmental metals. Metal 

content in the soil varies considerably by geography, and metals entering the food chain 
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reflect this variation. Several metals such as iron (Fe), copper, and manganese (Mn) are 

redox active and essential for bioenergetics and other metabolic functions. Others, such as 

zinc, are not redox active but essential in macromolecular structures. Others, such as 

cadmium (Cd), mercury, and lead, are toxic. For some metals such as Cd and Fe (in men and 

post-menopausal women), there are no effective elimination mechanisms.

The redox network structure is effective in accommodating moderate deficiencies of 

essential nutrients through widespread adjustments. For instance, decreased growth rate and 

decreased size can accommodate moderate deficiencies. Operation of a system at lower rates 

means that longer recovery time may be needed to deliver the same product, so response and 

recovery to stress can be delayed. But the key implication in redox theory is that excesses, 

which cannot be eliminated, are more disruptive by decreasing flexibility to adapt to other 

challenges. This is true for essential nutrients such as Fe and Mn, and also true for toxic 

metals such as Cd. A balloon provides a simple analogy. If inflated but not completely filled 

with air, the balloon is resilient to repeated deformation. If overfilled, however, the balloon 

has no remaining flexibility and easily fails. Redox systems with metals have this same 

character. With extensive number of relatively weak metal-binding sites in proteins, redox 

systems can accommodate a wide variety of metals and retain function. In redox theory, 

many of these binding sites are functional in the coupling of bioenergetics to 

macromolecular structure and function (second principle of the redox code) and show 

progressive impairment with excess. The major implication in health and disease is that 

excesses of metals must be avoided. This is true for individual metals including essential 

metals, and perhaps more importantly, is true for metals collectively.

Plasma CySS/GSH as a mechanistic biomarker of death in coronary artery 

disease

The recent finding that elevated cystine/glutathione (CySS/GSH) ratio in plasma predicts 

death as outcome in CAD patients [7] provides some of the strongest evidence for the 

importance of redox networks in human health. This study followed a cohort of 

cardiovascular disease patients over 7 years and showed that the ratio of plasma CySS to 

GSH predicted all-cause mortality after adjustment for all other known risk factors. 

Consideration of redox control mechanisms allows interpretation of this finding in terms of 

integrated redox networks. Molecular O2 is the ultimate oxidant for maintenance of 

bioenergetic functions and also for maintaining H2O2 pools for the redox proteome 

networks. NADPH oxidase (Nox)-4 in mouse mitochondria is a source of H2O2 generation 

in cardiomyocytes and promotes aging [68,69], providing a possible mechanism for 

oxidation with age. H2O2 serves in intracellular communication and control of 

macromolecular structure and function but is present at nanomolar concentrations and 

cannot be measured in a practical way in patients. CySS also oxidizes protein thiols, 

however, and has an advantage that it is present at micromolar concentrations in tissues and 

plasma and is readily measureable. Thus, CySS provides a surrogate to evaluate overall 

oxidation in vivo.

Go and Jones Page 9

Clin Sci (Lond). Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NADPH is the ultimate reductant to maintain the steady state of the redox proteome, but like 

H2O2, is difficult to measure in patients. In tissues, NADPH supports Trx and GSH systems, 

which directly interact with the redox proteome to maintain redox networks. Trx is released 

into plasma under some conditions but does not preserve its redox function outside the cell. 

In contrast, GSH is transported into plasma to maintain an interorgan system for redox 

homeostasis. The plasma GSH concentration can therefore provide a surrogate for the 

NADPH systems in tissue, which maintain the stable, non-equilibrium steady states of the 

redox networks. GSH is released from cells as a function of cell concentration [70] and is 

only a minor component in human plasma. While tissue concentrations of GSH are in the 

millimolar range, human plasma contains only low micromolar GSH [32,71]. The low 

concentration in plasma has been an important limitation to its usefulness in clinical 

medicine but this limitation can be overcome with appropriate sample collection and 

processing procedures [72]. There is evidence that ratio of GSH/GSSG is important in 

platelet activation [73], but the GSH concentration in human plasma is typically 3- to 10-

fold lower than plasma Cys [23] and 50- to 100-fold lower than albumin thiol concentration 

[74]. Thus, we interpret the plasma GSH mostly as a reflection of the health of NADPH-

dependent reduction systems in tissues rather than supporting important functions in the 

plasma compartment.

The mechanisms to control plasma CySS/GSH are summarized in Figure 6; long-term 

failure of these systems could contribute to the increase in CySS/GSH linked to death in the 

CAD patients. The central reactions controlling plasma CySS/GSH involve GSH export 

from tissue, with major contributions from liver and skeletal muscle, and CySS clearance by 

transporters, with xCT− having a major contribution ((1) in Figure 6) [75,76]. The interorgan 

CySS → Cys → GSH → GSSG → CySS cycle is kinetically limited at multiple sites, 

with different mechanisms for thiol oxidation, reduction of CySS to Cys, and control of 

GSH levels [77].

CySS is the most abundant low molecular weight disulfide in human plasma, formed from 

the oxidation of amino acid, Cys or from the degradation of GSH oxidation products [23]. 

CySS is increased in human plasma in association with demographic factors and health 

behaviors, e.g. age [32,71,78,79], obesity [80], cigarette smoking [78,81], and alcohol abuse 

[32,82], and also with multiple disease processes, e.g. HIV-1 infection [83], carotid intima 

media thickness [84], endothelial cell function [85], Type 2 diabetes [31], and age-related 

macular degeneration [86]. Mechanistic studies have addressed the impact of elevated 

extracellular CySS on cellular functions. Most studies address steady-state CySS/Cys redox 

potential; in these studies, however, CySS is the most abundant variable. High CySS 

activates NF-κB signaling in mouse aortic endothelial cells, increases expression of cell 

adhesion molecules, and activates monocyte adhesion [78]. The process involves oxidation 

of integrins and other plasma membrane proteins [78], stimulation of mitochondrial oxidant 

production, and increase in expression of proinflammatory cytokines [87]. High CySS 

increased IL-1β in U937 monocytes [88] and IL-1β-related transcripts in THP1 monocytes 

[89]. High CySS inhibited proliferation in Caco2 cells [33] and retinal pigment epithelial 

cells [34] but stimulated proliferation in lung fibroblasts [90]. High CySS blocked TGF-α 
signaling in CaCo2 cells [91] and activated apoptosis in retinal pigment epithelial cells [34]. 
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These studies show that elevated concentrations of CySS as found in CAD patients activate 

processes that contribute to many disease processes and adverse health outcomes.

CySS/GSH as a mechanistic biomarker

Combining the results of the mechanistic studies with the results on death in CAD patients 

leads to the interpretation that CySS/GSH could be a mechanistic biomarker relevant to 

CAD outcome and also a more general measure of the health of redox networks affecting 

many age-related diseases. In this interpretation, CySS provides a measure of the oxidant 

burden in the redox network and GSH provides a measure of the NADPH-dependent 

reductive capacity. In Figure 6, critical steps are identified that are possible targets for 

intervention. Nrf2 controls expression of the CySS transporter xCT−, a transcription factor 

controlling many redox systems [92]. Nrf2 activity is controlled by interaction with actin-

associated inhibitory binding protein, KEAP-1, and small Maf proteins in nuclei. Perhaps 

most importantly, the maximal inducible Nrf2 activity decreases with age [93]. Thus, 

development of approaches to control this activity may enable control of redox networks to 

protect against disease and disease outcomes.

Much less is known about the reduction of CySS after transport into cells. Kinetic studies for 

plasma CySS following consumption of a high sulfur amino acid meal showed that the 

volume of distribution is equivalent to the total body water, indicating that the rate of 

reduction of CySS is slow relative to the rate of uptake. Within tissues, Trx and GSH-

dependent systems have low CySS reductase activity [94], and recently, a Trx-related 

protein, Trp14, has been identified as a CySS reductase ((2) in Figure 6) [95]. The 

dependence upon CySS concentration indicates that the reductase activity may become 

saturated at higher CySS concentrations and thus limit the capability to remove excess 

CySS. Thus, mechanisms to enhance expression or activity of this system could provide 

another potential target to maintain or improve redox networks.

Many approaches have been used to enhance GSH concentrations in model systems and in 

humans; results have been mixed and details cannot be provided here. Most importantly, the 

interpretation that circulating GSH is an indirect surrogate for tissue NADPH ((3) in Figure 

6) implies that focus on GSH, per se, may not be the best strategy. A relatively small number 

of NADPH supply systems provide most NADPH in tissues. These include glucose-6-

phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) in the 

pentose phosphate pathway, the NADP-dependent malic enzyme (ME1), NADP-isocitrate 

dehydrogenase (IDH2), and mitochondrial proton-translocating NAD(P)+ transhydrogenase 

(NNT). If limitation of the redox networks lies with the function of NADPH supply, then 

these would appear to be the most appropriate targets. The reductive hubs supported by 

NADPH may also be appropriate targets. Inhibition of the selenoproteins, Trx reductase 1 

and 2, showed widespread protein oxidation [96]. These enzymes are sensitive to 

environmental toxicants such as Cd and reactive aldehydes like acrolein [97]. Interventions 

to enhance Trx reductases as well as GSSG reductase provide potential targets to support or 

restore redox networks.

In efforts to preserve or restore redox networks, attention must be given to diurnal variations 

in redox systems. The GSH and Cys redox systems, each undergoes diurnal variation, with 
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greatest oxidation in the morning [98]. The GSH changes are delayed relative to the Cys 

changes and have lesser extent of variation. Additionally, the amplitude of variation of the 

Cys system was 1.4-fold greater in individuals >60 years compared with individuals <40 

years [98]. Similarly, diurnal variations occur in oxidation of peroxiredoxins [99]. Whether 

such variations affect outcomes in CAD or other disease processes is unknown and warrants 

additional study.

Implications for regenerative medicine

As described in the previous sections, redox theory emphasizes the importance of early life 

and cumulative lifelong exposures as critical determinants of health and disease and directs 

attention to central hubs controlling the thiol/disulfide systems, which have been linked to 

health behaviors, disease, and death. Redox theory also has implications for regenerative 

medicine, i.e. research in biologics, medical devices, and combination products to 

regenerate, replace, or repair tissues and organs [1,56]. Advances in stem cell research and 

tissue engineering have catapulted forward regenerative medicine. Yet redox theory predicts 

that cumulative lifetime exposures and adaptive responses will result in tissue scaffolds with 

molecular and macromolecular scarring, such as damaged extracellular matrix, as well as 

mutations, senescent cells, abnormal cell populations and epigenetic changes, which must be 

addressed to enable tissue regeneration [56]. Preconditioning regimens are likely to be 

needed to address these molecular and macroscopic impediments to efficient repair and 

regeneration.

The age-associated decline and failure of lung function provide an example for consideration 

of this important subject. A conceptual overview of barriers to regeneration in the lungs, 

with approximately 40 cell types and complex anatomy and cell physiology, is available 

[100]. A broad spectrum of lung diseases occurs with multiple molecular pathways, 

anatomic diversities, temporal behaviors, and relative intensities of disease phenotypes 

[100–104]. Consequently, effective regeneration is likely to require conditioning approaches 

specific for disease processes and/or personalized exposure histories. These conditioning 

steps are needed to clear scars and replace dysfunctional extracellular matrix, eliminate 

mutated and senescent cells, reset adaptive systems, and reverse epigenetic marks. This 

conditioning will allow tissue engineers and stem cell biologists to induce new lung 

regeneration niches for expansion and development of architecture and cell populations to 

regenerate lung function [105].

Redox theory also emphasizes the role of spatial and temporal redox control in the 

developmental programs. Recapitulation of polarity of O2 delivery, pH control and H2O2 

and redox potential gradients, in organogenesis, as well as avoidance of xenobiotic 

chemicals affecting critical receptor signaling will be essential for full functional recovery of 

airway epithelium and alveolar lined spaces. Thus, an implication of redox theory is that 

emphasis on understanding the human exposome and exposure memory will not only 

enhance ability to prevent and manage human health and disease, but also help usher in the 

promising new approaches to regenerate, rather than stop and repair, organ system functions.
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Summary and perspective

Loscalzo et al. [106] presented a complex systems approach to disease, which anticipates 

many of the conclusions derived from redox theory. They note that a single genetic change 

in sickle cell disease results in multiple disease phenotypes and that in cardiovascular 

disease, multiple etiologies result in a single disease. Redox theory provides a foundation for 

cause–effect relationships in complex systems, starting from individual genetics and 

sequentially incorporating environmental effects within developmental programs, growth, 

and maturation. From this perspective, the exposome can be viewed as an integral of gene–

environment interactions over a lifespan. This provides logic for development and function 

of complex systems. An individual is a complex system of cell types, tissues, and organs, 

which work together as a functional unit. The design of the functional unit is molded during 

development, growth, and maturation, through responses of subnetworks to environmental 

exposures. This sequence of exposures and cumulative responses determines subsequent 

performance of the functional unit, from cognitive to physical capabilities as well as 

responses to food intake, infection, and other exposures.

The interaction of organ systems within the overall network is responsible for onset of 

specific diseases and to the most common outcome, multimorbidity [107]. In broad terms, if 

the lung function is impaired, other organ systems must accommodate the decreased 

capabilities for O2 delivery, CO2 elimination, and respiratory pH control. Poor lung function 

must affect functions in the heart, peripheral vasculature, kidneys, intestines, and other organ 

systems. Thus, as shown by Barnett et al. [107], more than 70% of patients with COPD have 

other chronic health conditions. A central implication of redox theory is that multimorbidity 

is a general consequence of morbidity. Each organ system is dependent upon all other 

systems to optimize utilization of environmental resources and protect against environmental 

threats, so declining function of one system necessarily adds strain and decreases 

adaptability of other systems. The integrated nature provides stability and can obscure 

underlying disease etiologies. Ultimately, an atlas of network responses to common 

exposure–outcome relationships will help early diagnosis and development of interventions 

to delay or prevent decline in network functions.

More specific implications of redox theory for human health and disease are summarized in 

Table 2. The importance of early life exposures on health outcomes is well recognized, but 

details are missing. For instance, if adult size represents an adaptive influence of 

environment on individual genetics during development, then optimized adult health may 

depend more upon behaviors and exposures matched to this gene–environment interaction 

than to adult size, per se. Redox theory points to a need for systematic studies of effects of 

essential nutrients and physiologic parameters on adult phenotype as a foundation for 

consideration of possible effects of more recently introduced pesticides and personal care 

products. Without such details, personalized health management will remain tied to 

population averages and not progress to desired personalized level.

Redox theory also emphasizes the cumulative impact of exposures within the adaptive 

network structures (Table 2). A natural consequence of decline in resilience is that excesses 

of all types must be viewed with caution, whether those include excessive time on a sofa or 
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excessive super-marathons. Strenuous physical conditioning, fasting, immunizations, and 

other common stressors warrant further study to understand when a stressor enhances 

resilience as opposed to causing a loss of resilience. Appropriate life-stage adjustment of 

behaviors and exposures can be expected to preserve resilience with age (Table 2).

The availability of CySS/GSH as a potential measure of the fitness of an individual’s redox 

networks has implications for interventions to improve individual resilience (Table 2). 

Widespread utility of CySS/GSH is limited by sample collection needs for GSH, but plasma 

CySS is readily measurable and provides predictive value independent of GSH. As indicated 

above, some options are available to limit CySS accumulation, and studies in patients with 

cystinuria further suggest that restriction of methionine intake could be beneficial.

Finally, the redox theory of aging reveals a need to elucidate the central principles of 

exposure memory, i.e. the central guidelines for lifelong exposures to optimize an individual 

exposome for healthy longevity (Table 2). Cellular differentiation and development in 

animals are ultimately linked to the benefits of having oxidizable food sources for energy 

and metabolism and control systems to manage O2 delivery, oxidative stress, and 

environmental threats. Simple principles of the redox code are followed in redox 

organization and function, and the resulting redox networks and exposure memory systems 

effectively account for the hallmarks of aging. A critical need exists to elucidate the 

hierarchy of exposure memory systems that the genome uses to sense, respond, and 

remember environmental resources and challenges. This includes the signaling structure to 

maintain mitochondrial integrity, bioenergetics, and oxidative and xenobiotic defenses, as 

well as optimized systems for metabolic regulation and regenerative capacity, DNA repair, 

and immunity.

A central focus for etiology of complex disease is refined, therefore, to a need to understand 

the logic for early environmental responses that affect adult health and disease risk. When 

viewed as an integral of gene–environment interactions over lifespan, the critical nature of 

these early exposures in adult disease risk is magnified. Human expo-some research is 

poised to elucidate these central mechanisms of exposure memory and support use of this 

knowledge to improve individual health and provide strategies to prevent and manage 

disease.
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Cys cysteine

CySS cystine

Eh redox potential

GSH glutathione

GSSG glutathione disulfide

IL-1 beta interleukin-1 beta

KGF keratinocyte growth factor

keap-1 Kelch-like ECH-associated protein 1

ROS reactive oxygen species

Trx thioredoxin

TNF-alpha tumor necrosis factor alpha

Nrf2 nuclear erythroid 2-related factor 2

NF-kB nuclear factor kappa b
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Figure 1. Oxidative stress and oxidative eustress within redox biology
Advances in oxidative stress and redox signaling have led to improved definitions for 

considerations in health and disease. Oxidative stress is defined in a pathologic sense, while 

physiologic oxidant production is termed oxidative eustress. Redox biology embraces the 

continuum of oxidation–reduction reactions in normal biology and pathology, including non-

enzymatic as well as enzymatic reactions. This broader view recognizes that an individual 

has continuous environmental interactions that have major impact on health and disease.
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Figure 2. Plasma glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) 
redox potentials in humans
Results show that these redox couples are not equilibrated and become oxidized with age 

[23,32,78]. The lack of equilibration of these systems implied that protein thiol/disulfide 

systems also exist in a non-equilibrium state, and this was subsequently confirmed (see text). 

Cross–sectional and longitudinal studies in humans showed oxidation of thiol/disulfide 

systems with age, suggesting that progressive changes occur due to lifelong interaction of 

individuals with environment. Eh is the steady-state redox potential calculated from the 

measured concentrations using the Nernst equation [78].
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Figure 3. Protein thiols exist within modules having similar redox behavior
The human genome encodes 214,000 Cys in proteins that vary in percent oxidation 

according to functional pathways (Redox Modules, center) [28]. The steady-state oxidation/

reduction of these Cys is controlled by opposing oxidative (bottom right) and reductive (top 

right) systems. A bilateral scale-free network structure involves subcellular compartments, 

and primary reductant and oxidant systems only require one additional layer of secondary 

reductants and oxidants to provide selective control of each protein Cys [36]. Evidence for 

specific systems supports this redox network structure. These redox network structures are 

stable and protect the individual against a broad range of oxidative exposure from diet and 

environment (left). Image credits: Smokestacks from Alfred Palmer—US Library of 

Congress CALL NUMBER LC-USW36-376, reproduction number LC-DIG-fsac-1a35072; 

food photo by Peggy Greb, USDA Agricultural Research Service; Prozac photo, Tom Varco 

(tomvarco@gmail.com); runners: Mike Baird from Morro Bay, USA (http://www.flickr.com/

photos/mikebaird/3539161615/) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], 

via Wikimedia Commons; Campylobacter jejuni photo by De Wood and digital colorization 

by Chris Pooley.
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Figure 4. Four principles of the redox code
The molecular logic of life includes four redox principles for organization of bioenergetics, 

metabolism, and macromolecular structure and function. In this structure, energy is derived 

from oxidation reactions involving NAD and NADP systems. The energetic systems 

maintain metabolic and macromolecular organization through molecular switches in the 

proteome, and activation/deactivation of these switches provides spatial and temporal 

organization in complex multicellular systems. The overall network structure provides an 

adaptive interface for an organism to maintain delineation and interact with its environment. 

From [3].
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Figure 5. The redox theory of aging
The principles of the redox code (Figure 4) provide a basis for a new interpretation of aging. 

The redox metabolome and redox proteome provide an important interface between an 

individual and his/her environment [6]. An increase in atmospheric O2 enhanced the 

magnitude of the intracellular/extracellular redox gradients and provided driving forces for 

multicellular differentiation and evolution of complexity in metazoan speciation. Genetic 

systems evolved programs to support this speciation, with the important characteristics that 

the systems provided memory systems to facilitate adaptation to environment during the 

lifespan of an individual. Within the overall redox network structure, accumulation of 

adaptive responses during development and lifelong exposures results in decreased 

adaptability over time. Aging is the decline in adaptability due to irreversible characteristics 

acquired in response to exposures during differentiation, maturation, and subsequent adult 

life. From [1].
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Figure 6. CySS/GSH as a mechanistic biomarker of the health of redox networks affecting age-
related diseases
This scheme describes possible control mechanisms for CySS/GSH that contribute to redox 

health, generalized from the finding that CySS/GSH is an independent predictor of CAD 

death outcome after control for all other known risk factors. (1) CySS is cleared from plasma 

by xCT− and other transport systems. No direct pharmacokinetic analyses are available for 

CySS clearance, but indirect estimates show an apparent volume of distribution equal to the 

total body water. This implies that plasma CySS is a surrogate for whole body thiol/disulfide 

oxidation status. (2) Within tissues, Trx and GSH-dependent systems have low levels of 

CySS reductase activity [94], and recently, a Trx-related protein, Trp14, has been identified 

as a CySS reductase [95]. The kinetic characteristics of this system suggest that it may 

become saturated and have limited capacity at high physiologic concentrations of CySS. 

GSH is the major low molecular weight cellular thiol antioxidant that is synthesized from 

the amino acid cysteine in two ATP-requiring steps. The first step catalyzed by glutamate–

cysteine ligase forms γ-Glu-Cys and the second catalyzed by GSH synthetase produces 

GSH. The first step is rate limiting with feedback inhibition of enzyme activity by GSH and 

transcriptional regulation by the Nrf2 system [92]. (3) GSH release from tissues occurs 

through ubiquitous Mrp (multidrug resistance-associated proteins) family transporters [187]. 

GSH release is concentration dependent and affected by multiple factors [187]. The present 

interpretation is that GSH in plasma provides a surrogate for tissue NADPH supply. NADPH 

is used to reduce GSSG to GSH and thereby maintain plasma GSH concentrations. GSH in 

human plasma is metabolized by two interconnected pathways, one involving hydrolysis by 

γ-glutamyltransferase (GGT) and dipeptidases to form Cys, which is oxidized to CySS, and 

the other involving thiol–disulfide exchange with CySS to form glutathione–cysteine 

disulfide, which is then hydrolyzed to form CySS [23,188]. CySS/GSH in plasma is 

correlated to CAD death outcome [7]. Not shown: Cys export from cells occurs at rates 

greater than GSH export, but plasma Cys/CySS redox potential is insufficient to reduce 

GSSG to GSH; Cys is generated from Met at rates greater than GSH synthesis; rates of Cys 
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incorporation into protein exceed rates of GSH synthesis; rates of GSSG reduction to GSH 

exceed rates of GSH synthesis [189].
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Table 2

Health implications of redox theory and future needs

Health implications of redox theory

Redox theory Implication/Limitation

Early exposures determine lifelong physical form and 
functional capacities

Population norms are poor guide for personalized health and disease 
prevention

Exposures have cumulative impact throughout life Extremes of all types should be avoided

Differentiation and exposure memory progressively limit 
adaptability of redox networks

Life-stage activities and exposures can be adjusted to improve lifelong 
resilience

Plasma CySS/GSH provides the best available measure of 
healthy redox networks

Measures of plasma CySS are reliable but GSH can be overestimated due to 
trace hemolysis

Definition of ‘exposure memory code’ would facilitate research 
to erase and restore network resilience

Research lags progress in stem cell research and tissue engineering and 
warrants investment

Perspective: needs for the future healthy longevity project

1. Optimize an individual exposome for healthy longevity/aging

2. Elucidate the hierarchy of exposure memory systems in association with personal medical record

3. Apply an advanced systems biology approach to integrate redox proteomics, metabolomics, (epi)genomics, and exposomics, to understand 
functional network responses with life (aging) and predict individual health and disease
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