
Feature Blending: An Approach toward Generalized Machine
Learning Models for Property Prediction
Swanti Satsangi,‡ Avanish Mishra,‡ and Abhishek K. Singh*

Cite This: ACS Phys. Chem Au 2022, 2, 16−22 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: From studying the atomic structure and chemical
behavior to the discovery of new materials and investigating
properties of existing materials, machine learning (ML) has been
employed in realms that are arduous to probe experimentally.
While numerous highly accurate models, specifically for property
prediction, have been reported in the literature, there has been a
lack of a generalized framework. Herein we propose a novel feature
selection approach that enables the development of a unified ML
model for property prediction for several classes of materials. It
involves an ingenious blending of selected features from various
classes of data such that the resultant feature set equips the model
with global data descriptors capturing both class-specific as well as
global traits. We took accurate band gaps of three distinct classes of
2D materials as our target property to develop the proposed feature blending approach. Using Gaussian process regression (GPR)
with the blended features, the ML model developed here resulted in an average root-mean-squared error of 0.12 eV for unseen data
belonging to any of the participating classes. The feature blending approach proposed here can be extended to additional classes of
materials and also to predict other properties.
KEYWORDS: 2D materials, empirical model, Gaussian process regression, feature blending, bandgap, property prediction

■ INTRODUCTION

The three paradigms of science namely empirical, theoretical,
and computational have not only been contributing to and
benefiting from each other through decades, but have also
resulted in the generation of a huge amount of data over these
years leading to a fourth paradigm. This fourth paradigm shift
in materials science with computational methods leading to
material discovery and property predictions is now driving the
era of materials-informatics.1,2 The workflow of material-
informatics involves extraction of knowledge via data-driven
machine learning (ML) methods from large amounts of
unexplored computational and experimental data. ML has been
utilized in the field of material science for various applications
such as the discovery of new materials,3−5 force-field
generation,6−10 microstructure analysis,11−15 and property
prediction.16−30 Despite immense progress in the application
of ML in material science, the applicability of all of these
models thus far has been for a specific family/class of materials.
Several attempts to develop multiclass generalized property
prediction models surpassing the barrier of descriptor
dependence have also been made. These include development
of crystal graph convolutional neural networks,31 universal
graph networks,32 SchNet,9 and message passing neural
network,33,34 etc. Similarly, a general-purpose ML framework
using a Random Forest method was proposed by Ward et al.35

in which the data set was partitioned into sets of similar
materials based on their composition, followed by the
designing of several models for the various classes of materials.
Since ML-based predictions depend primarily on the

availability of a pristine data set employed for training, the
resultant models focused on a particular class of materials show
poor transferability across different classes. Increasing the
variability in the data results in high prediction errors
compared to specific class data since the descriptors are
incapable of describing global data trends. This insufficiency
can only be compensated by increasing the amount of training
data of any new incoming class, which is not always feasible.
Therefore, to make predictions on a class of materials with
insufficient training data, it would be highly desirable to have a
pre-existing generalized ML model that has previously been
trained on the desired class using a bigger data set of the same
class, belonging, however, to a different database. The lack of
such a generalized ML framework that works across data sets
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poses a serious challenge in realizing the full potential of data-
driven approaches and calls for a scheme that enables the
development of generalized multiclass unified ML models.
In this work, we propose a feature blending approach to

develop one such unified ML model generalized to unseen data
from multiple participating classes of materials. A data set of
272 materials belonging to two different databases was utilized
by splitting it into three different classes based on their
spacegroups. The GW gap of these materials served as the
target property. Blended features capture the patterns and
trends elicited by the individual as well as mixed class data. The
best GPR model using this feature set resulted in an rmse of
0.14/0.14 eV and R2 of 0.99/0.99 for train/test sets and an
rmse of 0.14/0.09/0.13 eV (average of 0.12 eV) and R2 of
0.99/0.96/0.99 for validation sets belonging to the three
considered classes P6̅m2, P3m1 and P3̅m1, respectively. The
unprecedented accuracy can be attributed to the judicious
selection of features using this approach, that represent each
focused class and at the same time can also capture the
complex details of the combined data set. Furthermore, some
of the features belonging to the final blended set have been
shown to display a universal empirical relationship with the

target property that can be utilized to accelerate the estimation
of the bandgap for materials with no training data.

■ METHODOLOGY

For developing the proposed generalized feature selection
approach, structure, first-principle properties, and the property
of interest (GW band gap) are extracted from open material
databases.29,36,37 Our initial feature set comprised DFT
calculated properties38 and standard deviation and mean of
elemental properties,39,40 resulting in 44 primary features.
These properties, along with their corresponding symbols, have
been listed in Table S1 in the Supporting Information. Other
than the computed properties, elemental features (Table S1)
are considered in the feature set due to their ease of availability
and their role in structure formation (bonding). Selection of
relevant features is performed using least absolute selection
and shrinkage operator (LASSO) and neighborhood compo-
nent analysis (NCA)(section 3 in Supporting Information).
Once the reduced set of features is obtained, to develop the

prediction models, Gaussian process regression (GPR) is
implemented along with automatic relevance determination
(ARD) kernel. ARD kernel provides an opportunity to find the

Figure 1. (a) Voilin plot showing the data distribution for model development with the GW band gap range, along with the template structure for
different space groups. (b) Feature blending schematic: Stepwise selection and blending of various features to obtain global feature set for all
participating classes. Ii denotes the individual feature for i

th class, Cij denotes combined class features for ith and jth class and Bij is the blended feature
set for these classes.
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relevance of different features (proportion of contribution in
the model) by selecting a different length scale for each. The
relevance of features for the given output is obtained by
calculating the inverse of the length scale for each feature. A
larger length scale suggests smaller variation over the
distribution of the function; hence, a smaller effect on
prediction or lesser contribution and vice versa. GPR has
been discussed further in the Supporting Information.

■ RESULTS AND DISCUSSION

The 2D-materials data set was collected from two online
repositories, that is, the computational 2D-materials database
(C2DB)36,37 and aNANt.41 C2DB hosts 2D-materials of
numerous structural, thermodynamic and electronic properties
from 30 different crystal classes, whose properties are
calculated using DFT within Perdew−Burke−Ernzerhof
(PBE) approximation.36 This C2DB contains well converged
many-body perturbation theory (GW) quasi-particle band gaps
for ∼232 2D-materials. The majority of data belonged to
classes P6̅m2 and P3̅m1 comprising 109 and 79 compounds,
respectively. Around 44 other compounds belonging to space
groups such as P1, Pm, P4/nmm, Pma2, Pmmn, P3m1, and
Pmn21 were collected and only utilized for testing the
generalizability of the derived empirical model. The GW
band gap of C2DB spans from 1 to 10 eV for different classes.
MXenes selected from the aNANt41 database are a relatively
new class of 2D-materials with chemical formula Mn+1XnT2 (n
= 4−1), where M is early transition metals, X is either C or N,
and T is functional groups attached to the top and bottom
surface of MXene. This family of layered materials belongs to
either space group P3m1 or P3̅m142−44 and the GW band gap
value ranges from 0 to 3 eV (shown in Figure 1a). In this data
set, 84 compounds belonging to P3m1 space group are
randomly selected. Thus, the final data set used here for ML
comprised 272 compounds belonging to classes P6̅m2, P3̅m1,
and P3m1.
The feature blending algorithm for the three classes was

performed in three stages and can be understood pictorially
from Figure 1b. Here, for any given class i with dataset Di its
individual class feature set derived after feature selection is
represented by Ii. Similarly, Cij denotes combined class features
set obtained after applying feature selection on mixed data of
ith and jth classes. Bij on the other hand is the feature set which
is obtained when three feature sets, individual sets Ii, Ij, and
combined feature set (Cij), are simply appended together and
feature reduction is performed. Thus, Cij = F(Di + Dj) while Bij
= F(Cij + Ii + Ij) where F(.) represents feature selection. When
a third class is to be included, Bij is taken as individual class
feature set Iij for the first two classes and process of finding
combined class and blended feature sets is replicated with a
new class as the second class. This procedure can be
generalized for any n number of classes.

Individual Class Models

At the first stage, each class was considered individually. The
first data set to be utilized was P6̅m2. Feature selection using
LASSO followed by NCA resulted in eight individual-class
features namely Tb

mean, Cg
mean, Cg

std, Cmol
std , He

std, Tm
std, rcov

std and Eg
PBE.

During the process of feature selection for any class, it was
ensured that the features had a low correlation with each other
and, at the same time, have moderate to high Pearson
correlation with the response variable, Eg

GW (PCC (Eg
GW)). For

class P6̅m2 this has been shown in Figure 2a and Figure 2c,

respectively. From Figure 2d, it can be noticed that Eg
PBE is the

most important feature in the model, also having the highest
correlation with the target property. Tb

mean is another feature
that has a high correlation with Eg

GW; however, it has moderate
relevance in the model. Cmol

std has the least relevance for this
GPR model.
After removing the 10% validation data, the remaining 90%

data set was further split into a 90−10% ratio and used for the
training-testing purpose. This process of splitting the train-test
data was performed 2000 times, and a GPR model was built
iteratively for each train-test combination by optimizing the
kernel hyperparameters. The best-optimized hyperparameters
were selected based on model performance on test data. This
best model gave an rmse and R2 of 0.10/0.11 eV and 0.99/
0.99, respectively, for train/validation sets.
At this stage, the transferability of the model is ascertained,

which is done by utilizing the optimized hyperparameters
obtained for class P6̅m2 and training with additional 90% data
from the remaining two classes, one at a time, along with the
original P6̅m2 training data. On combining class P3m1 data
while training, the model gave an rmse and R2 of 0.21/0.26 eV
and 0.98/0.70, respectively, for train/validation sets. Likewise,
when trained with additional P3̅m1 data, model resulted in an
rmse and R2 of 0.21/0.37 eV and 0.99/0.98, respectively, for
train/validation sets. The performance of this model for all
three classes has been shown in Figure 2b. Evidently, this
model only performed well for its parent class.
Similarly, the features selection process was repeated for

class P3m1, and the above-mentioned validation process was
performed on the 10% validation data. The features obtained
were Pmean, Cg

mean, He
std, χp

std, mstd, ratom
std , κl

std, and Eg
PBE. Using

these individual-class features, the rmse and R2 were 0.08/0.08
eV and 0.96/0.94 for train and validation data, respectively.
The correlation plot (Figure S2c) for these features with Eg

GW

showed a low correlation between Eg
PBE and Eg

GW; however, the
relevance of Eg

PBE in the model was quite significant (Figure
S2d). Feature selection on the third class P3̅m1 resulted in
features namely, Tb

mean, EAmean, ρmean, χp
std and Eg

PBE. The model

Figure 2. (a) Correlation heatmap for feature selected using P6̅m2
data set with all three data sets; (b) scatter plot for the model
developed using P6̅m2 data set; (c) Pearson correlation coefficient of
features with GW band gap (PCC (Eg

GW)); and (d) feature
importance (inverse of length scale).
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for this class gave an rmse and R2 of 0.10/0.10 eV and 0.99/
0.99, respectively, on train/validation sets. Next, transferability
of both P3m1 and P3̅m1 individual class models was tested on
the remaining two classes. The resultant performance has been
displayed in Figure S3 in the Supporting Information and the
class features have also been listed in Table S2 there. In Table
S3, we can see that all of the above-developed models using
individual-class features were highly efficient in making
predictions for the parent class, however, they were not
sufficient for predictions on another class despite the inclusion
of data of new class while retraining the models. Thus, the
localized behavior of the class features impedes generalization
to other classes.
Two-Class Combined and Blended Models

At the second stage, we mixed the data of two classes and
performed feature selection to obtain combined class features.
The first combination comprised classes P6̅m2 and P3m1
(Figure S4). The selected features of combined data set
included He

mean, Gmean, ratom
mean, κl

mean, Tb
std, EAstd, Gstd, ratom

std , rcov
std ,

ECBM, and Eg
PBE. The hyperparameters for the best-optimized

model were obtained for this set of features, and the resultant
model gave an rmse and R2 of 0.17/0.17 eV and 0.98/0.97,
respectively, for the train/test sets. When this model was tested
on the validation data of the two classes, it gave an rmse and R2

of 0.20/0.18 eV and 0.99/0.87 for P6̅m2/P3m1 data as shown
in Figure 3a. The prediction accuracy using these two-class

combined features was better than the accuracies obtained for
validation using any of the individual-class features. A
comparison of P6̅m2 and P3m1 individual-class features, with
these features revealed that other than a few common ones, the
combined feature set comprised several additional features.
The improvement in the performance of the model for both
classes can be attributed to these additional descriptors that
provided a better representation of the latent behavior of this
mixed data.
To harness the capabilities of both individual and combined

class features, feature blending for the two classes was

performed. For the two classes P6̅m2 and P3m1, when their
individual features were simply appended to their combined
feature set, 23 features were obtained, which were reduced
using LASSO and NCA. The new set termed as two-class
blended feature set consisted of 10 features including Eg

PBE, χp
std,

κl
std, rcov

std , Cg
std, He

std, Tb
mean, Gmean, ratom

mean, and Tb
std. The best model

using these blended features gave an rmse and R2 of 0.14/0.14
eV and 0.99/0.98 for combined train/test sets, respectively.
Further, on the 10% validation data, the rmse and R2 were
0.13/0.16 eV and 0.99/0.90 for P6̅m2/P3m1 data as shown in
Figure 3b. This model with blended features gave a better
accuracy than the models using individual or combined class
features, thus improving generalizability. Two-class combined
and blended features were next derived for pairs P6̅m2 and
P3̅m1, as well as P3m1 and P3̅m1, and similar observations
were made. The features and the results for these combinations
have been tabulated in Tables S2 and S3 and displayed in
Figure S4. The observation that generalizability has been
achieved with improvement in prediction accuracy at the same
time, can be credited to the fact that this feature set reflects a
balanced blend of both localized and group behavior.

Three-Class Combined and Blended Models

The feature blending scheme was next extended to all three
classes, that is, P6̅m2, P3m1, and P3̅m1. For this, we begin by
generating the combined class features for all three class mixed
data as done in the case of two classes. A set of 13 three-class
combined features were obtained. This combined feature set
consisted of He

mean, IE1
mean, χA

mean, Tm
mean, κl

mean, Cg
std, EAstd, IE1

std,
mstd, ratom

std , rvdw
std , EVBM and Eg

PBE. The best model using these
combined features gave an rmse of 0.16/0.16 eV and R2 of
0.99/0.99 for combined train/test data. For validation data,
rmse of 0.20/0.14/0.22 eV and R2 of 0.99/0.90/0.99 was
obtained for classes P6̅m2/P3m1/P3̅m1, respectively, as shown
in Figure 3c. This again was a significant improvement
compared to the performance of individual class models on
validation sets.
For obtaining blended features for any number of classes, all

we need is two sets of individiual class features and a set of
their combined features. Thus, a remarkable facet of the feature
blending approach is that it can always be reduced to a two-
class problem whenever a new class needs to be included. For
the three-class scenerio, this was achieved by utilizing the 10
two-class blended features obtained in stage two as the first
individual feature set (for P6̅m2 and P3m1 combined data)
along with the seven individual-class features of the new
incoming class P3̅m1 (obtained at stage one) as second
individual feature set and finally the 13 three-class combined
features. Feature reduction on this set gave eight features,
namely, χP

std, Tb
mean, rcov

std , Eg
PBE, Gmean, ratom

mean, He
mean, and κl

mean. The
unified model designed using these three-class blended features
gave an rmse of 0.14/0.14 eV and R2 of 0.99/0.99 for
combined train/test data, respectively, whereas an unprece-
dented rmse of 0.14/0.09/0.13 eV and R2 0.99/0.96/0.99 were
obtained for 10% validation data of P6̅m2/P3m1/P3̅m1,
respectively, as shown in Figure 3d.
Similar calculations were performed by changing the

sequence in which the classes are selected for inclusion.
When we begin with P6̅m2 and P3̅m1 and consider P3m1 as
the third incoming class, the three-class blended feature set
obtained comprised Tb

mean, He
mean, κl

mean, EAstd, IEl
std, χP

std, mstd,
EVBM, and Eg

PBE. The model using these features gave an rmse
of 0.12/0.14 eV and R2 of 0.99/0.99 for combined train/test

Figure 3. Scatter plots for 2 class (a) combined and (b) blended
feature, and 3 class (c) combined and (d) blended features,
respectively.
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data, whereas an rmse of 0.13/0.14/0.12 eV and R2 0.99/0.91/
0.99 were obtained for 10% validation data of P6̅m2/P3m1/
P3̅m1, respectively. With P3̅m1 and P3m1 as the first two
classes and P6̅m2 as the third class, the feature set Tb

mean, He
mean,

IE1
mean, κl

mean, Cg
std, χP

std, rcov
std , and Eg

PBE resulted in an rmse of
0.14/0.15 eV and R2 of 0.99/0.99 for combined train/test data
and an rmse of 0.14/0.15/0.14 eV and R2 of 0.99/0.90/0.99
for 10% validation data of P6̅m2/P3m1/P3̅m1, respectively. It
was interesting to note that the order in which the classes were
included for blending, did not have a major impact on the
performance of the final unified three-class blended model.
This was due to the fact that all three blended feature sets had
majority features namely Tb

mean, He
mean, κl

mean, χP
std, and Eg

PBE in
common. The performance of the above-discussed models has
been shown in Figure S5.
Two intriguing observations emerged as a result of the

feature blending process. First, an analysis of the individual,
combined, and blended models showed that the relevance of
each feature of the blended feature set in the unified model,
whether belonging to an individual or the combined feature
set, was almost the same as its relevance in its parent model,
that is, individual or combined class model. This was true for
two as well as three-class models. This relevance or importance
of the selected features in the regression model for the first set
of three-class blended features, shown in Figure S6(a,b), can be
seen to be comparable to those in their parent model. This
conservation of relevance of each feature in the unified model
plays a significant role in the consistent performance of
blended features for all its participating classes.
Second, apart from promoting generalizability in prediction

models, the blending process emanated a few features that
recurred in almost all feature sets. Some of these features not
only had high relevance in the statistical model, but they also
displayed a notable relationship with each other and with the
Eg
GW. Features, namely χP

std, Tb
mean, and Eg

PBE, present in all the
three final three-class blended feature sets, were found to not
only have high Pearson correlations with Eg

GW but also
captured the right physics in the trends in the band gap.
From Figure 4a two conclusions were drawn: first, increase/

decrease in bandgap at PBE levels shows a similar shift at the
GW level, and second, Eg

GW varies with χP
std and Tb

mean, that is,
increase in the standard deviation of elemental electro-
negativity, and subsequent decrease in the mean elemental
boiling temperature leads to increase in the bandgap. The
increase in χP

std indicates a broader spread (larger difference) in
the electronegativity value from the mean, hence, strong
interaction among the atoms, such firm overlap causing a larger

splitting and consequently a wider bandgap. Besides, the
boiling temperature of elements with larger electronegativity
(>2.6) is comparably low (<1000 K); however, for elements
with smaller χP (<2.6), the boiling temperature varies (up to
5000 K). Therefore, materials with a larger χP

std usually have
lower Tb

mean. Nevertheless, depending upon the constituent
elements, the mean boiling temperature for a system could be
higher with the larger value of χP

std. For example, a material with
the combination of C and F would have both larger χP

std and
Tb
mean. Furthermore, other pairwise distribution plots of the

individual class feature provide further physical insights
between different features of the particular class. Additional
discussion on this is included in the Supporting Information
and pictorially explained in Figure S7.
Moreover, the relationship between χP

std and Tb
mean was also

found to partition different classes of materials and can thus be
exploited for expediting selection of 2D materials in general,
having bandgap in the desired range as shown in Figure 4b.
P3m1 lies at the top right with large electronegativity and
boiling temperatures, P6̅m2 lies in the middle, followed by
P3̅m1 at the bottom of the plot. The interpretation of these
three relationships provided an opportunity to model an
empirical relation between them for estimating the GW band
gap. This relation was derived by generating a set of compound
features by applying various mathematical operations on these
three selected features and correlating them with the calculated
GW bandgap.26 Some of the mathematical operations used
here were x2, x3, 1/x, log (x), exp (x), etc., where x is any
feature. As the dimensionality increases, x will include more
than one feature. Combination of these mathematical
operations on these three features gave an empirical formula
represented as

i

k

jjjjjjjj
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zzzzzzzz
E

E

T E
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log( )
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+
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The estimated value Eg
estimated using this empirical formula

showed a strong correlation of 0.93 with Eg
GW and the fitted

linear equation results in a high coefficient of correlation R2 of
0.83, as shown in Figure S8a. This equation was also utilized
for estimating bandgaps of the 44 compounds belonging to
space groups P1, Pm, P4/nmm, Pma2, Pmmn, Pmn21, and
P3m1 from the CMR database that were neither sufficient to
build an individual class model nor for feature blending. As
shown in Figure S8b, the small residuals obtained exhibit the
potential of this relationship in making predictions on unseen
classes and corroborate the significance of the selection of the
right features.

■ CONCLUSION
In summary, we attempted to extend the transferability of any
pretrained machine learning model across different databases
by introducing the concept of feature blending. Feature
blending is shown to enable the selection of features with
global relevance in contrast to local scope offered by individual
class features, by iteratively mixing and selecting features
obtained for various classes at different stages. Thorough
validation of models at different stages of development has
been performed and significance of judicious selection of
features for a general-purpose machine learning framework has
been instantiated. The reported unified model developed for
bandgap prediction, has been shown to perform on previously

Figure 4. (a) The three-dimensional color map showing the variation
of Eg

PBE with χP
std and Tb

mean, and variation in their Eg
GW, shown by

colorbar. (b) Pair distribution plot between χP
std and Tb

mean, with
colored zone for different class of materials.
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unseen data from all the participating classes with comparable
accuracy. The most prominent outcome of the scheme was
identification of certain universal features which exhibited vital
influence on the band gap of all the participating classes in a
similar manner. A detailed study of physical relationships
between these cross cutting features made it possible to
develop a generic empirical relation for the approximation of
Eg
GW for 2D materials. This developed equation using the three

important features was found to be applicable on all 9 classes
of 2D materials available in the initial data set with reasonable
accuracy. Although classes in this work were formed based on
space groups, classification can be done based on any other
parameter. The applicability of the proposed feature blending
approach can be seemingly extended to large classes of
materials.
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