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Simple Summary: Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous
system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH)
mutation and is associated with a clinically favorable overall survival (OS). The long non-coding RNAs
(lncRNAs) protects the mRNA from degradation by binding with the same miRNA by acting as a
competitive endogenous RNA (ceRNA). Recently, although there is an increasing interest in lncRNAs
on glioma studies, however, studies regarding their effects on OD and the 1p/19q codeletion remain
limited. In our study, we performed in silico analyses using low-grade gliomas from datasets obtained
from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs.
We constructed 16 coding RNA–miRNA–lncRNA networks and the ceRNA network participated
in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM)
changes. In conclusion, our results can provide insights into the possibility in the different tumor
microenvironments and OS following 1p/19q codeletion through changes in the ceRNA network.

Abstract: Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system.
The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation
and is associated with a clinically favorable overall survival (OS); however, the exact underlying
mechanism remains unclear. Long non-coding RNAs (lncRNAs) have recently been suggested to
regulate carcinogenesis and prognosis in cancer patients. Here, we performed in silico analyses using
low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of
ceRNA with 1p/19q codeletion on ODs. Thus, we selected modules of differentially expressed genes
that were closely related to 1p/19q codeletion traits using weighted gene co-expression network analysis
and constructed 16 coding RNA–miRNA–lncRNA networks. The ceRNA network participated in ion
channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes.
In conclusion, ceRNAs with a 1p/19q codeletion can create different tumor microenvironments
via potassium ion channels and ECM composition changes; furthermore, differences in OS may
occur. Moreover, if extrapolated to gliomas, our results can provide insights into the consequences
of identical gene expression, indicating the possibility of tracking different biological processes in
different subtypes of glioma.
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1. Introduction

Gliomas are the most frequently occurring tumors in the central nervous system [1,2].
Oligodendrogliomas (OD), a subtype of gliomas, account for <10% of all primary gliomas [3,4].
In 2016, the World Health Organization (WHO) established a new classification system for central
nervous system tumors by adding newer genetic molecular markers to existing histopathological
characteristics. IDH1 and IDH2 (collectively referred to as IDH hereafter), which encode isocitrate
dehydrogenase and cause mutations and 1p/19q codeletion, were included as characteristic prognostic
markers of ODs [5]. Although the 1p/19q codeletion is a prognostic marker of ODs with IDH1/2
mutations [6,7], 30–40% of all ODs are not codeleted at 1p/19q and have a worse prognosis [8–10].
Hence, the 1p/19q codeletion is reportedly associated with diagnosis, prognosis, and clinically favorable
overall survival (OS) in glioma; however, the exact underlying mechanism remains unclear [3,11–16].

With the development of high-throughput sequencing, the genomic functions of approximately
2% of the human genome have been identified [17–19], including those of long non-coding RNAs
(lncRNAs) with pseudogenes [20]. However, most lncRNAs have not been identified based on their
biological importance [21]. lncRNAs are regulatory RNA transcripts with a length >200 nucleotides [22]
and have recently been reported to play various important roles in the regulation of transcription and
translation as well as in epigenetic modification [19,23].

The miRNAs play roles as inhibitory regulators at the post-transcriptional level by binding
their specific target site known as miRNA response element (MRE) [24]. The lncRNAs share MRE
sequences with a coding gene, which protects the mRNA from degradation by binding with the same
miRNA and also by acting as a competitive endogenous RNA (ceRNA) [20,25]. The epigenetic change
of their expression has been related with various diseases. To be more specific, several oncologic
studies have reported that lncRNAs, particularly ceRNAs play important roles in tumorigenesis
and tumor progression [26–28]. The first report of the ceRNA in cancer is phosphatase and tensin
homolog pseudogene 1 (PTENP1), a pseudogene of phosphatase and tensin homolog (PTEN), and it
showed tumor suppressive effect by binding miRNAs such as miR-17, miR-19, and miR-21 which were
ultimately targeting PTEN [29]. The tumor suppressive effects of PTEN in the ceRNA network have
also been reported in conjunction with growth arrest-specific 5 (GAS5), Itchy E3 Ubiquitin Protein
Ligase (Circ-ITCH), Fer-1-like protein 4 (FER1L4) [30–32]. On contrary, some noticeable studies also
reported on the oncogenic effect of lncRNA such as KRAS proto-oncogene, GTPase pseudogene
1 (KRASP1), and H19 imprinted maternally expressed transcript (H19). KRASP1 affects tumor
growth and development by competitive binding for shared miRNAs with KRAS proto-oncogene,
GTPase (KRAS) [29]. H19 is mutually counter-regulated by tumor suppressor p53 [33].

In a glioma study, they report on the oncogenic role of maternally expressed 3 (MEG3) as a
tumor suppressor lncRNA that is downregulated in gliomas [34] and nuclear paraspeckle assembly
transcript 1 (NEAT1) on by competing for miR-let-7e and modulating the expression of signal
transducer and activator of transcription 3 (STAT3) and NRAS proto-oncogene, GTPase (NRAS) [34,35].
The functions of lncRNAs as biomarkers and therapeutic targets in glioma are well reported [36–38];
Collectively, these findings showed that the interactions among lncRNAs, mRNA, and miRNA in ceRNA
network implicate a potential role as tumor suppressive or oncogenic effects. However, data regarding
their effects on OD and the 1p/19q codeletion remain limited. Hence, in this study, we identified
16 lncRNA–miRNA–mRNA networks in ODs with 1p/19q codeletion using The Cancer Genome Atlas
(TCGA) database.
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2. Materials and Methods

2.1. Processing Genomic and Clinical Profiles from TCGA Database

Gene expression quantification data of mRNA, lncRNA, pseudogene, and miRNA isoforms of
low-grade gliomas (LGG), inclusive of OD, and the corresponding clinical profiles were downloaded,
normalized, and processed within the TCGAbiolinks pipeline (version 2.15.3) in R software
(version 3.5.2) [39].

We downloaded harmonized data from TCGA database as reference of hg38 (platform
“Illumina HiSeq”) for 189 patients with OD who had IDH mutation information and selected 168 patients
with IDH mutation. The function GDCprepare used with the options legacy = FALSE, datacategory =

“Transcriptome Profiling”, datatype = “Gene Expression Quantification”, workflowtype = “HTSeq
−Counts” for obtaining mRNA transcripts data. The function GDCprepare used with the options legacy
= FALSE, datacategory = “Transcriptome Profiling”, datatype = “Isoform Expression Quantification”
and workflowtype = “BCGSC miRNA Profiling” for obtaining miRNA transcripts data (reads per
million mapped reads, RPM).

Then, we performed the pre-processing steps according to the TCGA’s workflow and
standard pipeline as recommended in TCGAbiolinks [39,40]. We checked to possible outliers
for mRNA transcript data using the TCGAanalyze_Preprocessing function with the options
cor.cut = 0.6 (Correlation coefficient). Then, we normalized mRNA transcripts data using the
TCGAanalyze_Normalization function to adjust for the GC contents effect and followed gene filtering
steps using the TCGAanalyze_Filtering functions. The miRNA transcripts data was filtered by quantile
using the TCGAanalyze_Filtering functions, and lowly expressed miRNA with less than overall
average RPM 3 was filtered out and transformed into log2(RPM + 1). Moreover, all genes of both
mRNA and miRNA for which the expression level in one patient was greater than one-third of the
sum of total patients’ gene expression levels were excluded.

To classify non-coding RNAs, protein-coding gene, long non-coding gene, and pseudogene
datasets were downloaded from the HUGO Gene Nomenclature Committee (HGNC) database.
Furthermore, the data from the HGNC dataset were used to identify Ensembl IDs. miRBase accession
numbers were converted to miRNA symbols using miRBaseConvertor (version 1.10.0), and miRNA
expression levels were re-quantified for every miRNA symbol [41].

2.2. Analysis of Differentially Expressed Genes and Their Visualization

Differentially expressed genes (DEGs), including coding RNAs (DEcodingRNAs), non-coding
RNAs (DEncRNAs) such as lncRNAs (DElncRNAs), pseudogenes (DEpseudogenes), and miRNAs
(DEmiRNAs), were identified using the edgeR package provided in the TCGAbiolinks differential
expression analysis (DEA) process. The filter criteria were |Log2 fold change| > 1 and p value of
<0.05 using false discovery rate (FDR) correction; results were presented via heatmaps generated
using the TCGAbiolinks package [32]. For better identification and analysis in terms of the
distribution and chromosomal locations of DEGs, ShinyGO [42], and Genome Decoration Page
(GDP, source: http://www.ncbi.nlm.nih.gov/genome/tools/gdp) [43] were used for visualizing the data.
ShinyGO serves as a statistical analysis tool and identifies gene characteristics such as genotypes,
GC content distribution, and chromosomal locations between query genes and background data.
GDP is a visualization tool which shows distribution of query genes on the genome.

2.3. Weighted Gene Co-Expression Network Analysis

We calculated the similarity matrix (Sij) of expression between DEcodingRNAs and DE-ncRNAs
using Pearson’s correlation coefficients. Next, for measuring contributions among genes and to
transform the similarity matrix into an adjacency matrix (aij), the following formula was used:

ai j =
∣∣∣0.5 × (1 + cor(i, j))

∣∣∣β (1)

http://www.ncbi.nlm.nih.gov/genome/tools/gdp
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The soft threshold statistical powers (β) of upregulated DEcodingRNAs and DEncRNAs and
downregulated DEcodingRNAs and DEncRNAswere both set to 4. Accordingly, scale-free topology
fit index and mean interconnectivity were measured and topological overlap matrix (TOM) was
performed. Next, topological overlap dissimilarity measure (dissTOM) was assessed, and using the
obtained value, a hierarchical clustering tree was constructed using the average hierarchical clustering
method to group the DEcodingRNAs and DEncRNAs. A dynamic cut tree algorithm with minimum a
module size of 15 and merging threshold over similarity of 0.7 (cutoff of 0.3) was used to generate the
appropriate number of and densely interconnected modules between DEcodingRNAs and DEncRNAs.
Next, the function of module eigengenes (MEs) was found to be represented as the first principal
component of the expression matrix, and we could identify highly correlated modules with clinical
traits using Pearson’s correlation tests using MEs in WGCNA [44]. We evaluated the profile of each
module by comparing it to the correlation between the modules and the clinical traits of OD having an
IDH mutation with a 1p/19q codeletion.

2.4. Construction of a CeRNA Network

We performed DEA and WGCNA to select candidate genes for the ceRNA network and obtained
positively co-expressed DEcoding RNAs and DEncRNAs and negatively expressed DEmiRNAs in OD
patients with IDH mutations and 1p/19q codeletions. Next, the following bioinformatics tools were used
to predict the interactions among the selected DEcodingRNAs, DEncRNAs, and DEmiRNAs. RNAInter
(https://www.rna-society.org/rnainter/) [45] is a platform containing comprehensive RNA-associated
interactomes utilizing 35 integrated computationally predicted and experimentally validated databases,
including TargetScan, miRcode, and miRanda. ENCORI (http://starbase.sysu.edu.cn/index.php;
version 3.0) [46] and mirDIP 4.1 (http://ophid.utoronto.ca/mirDIP/) [47] provide integrated data of
miRNA–target interactions from across diverse resources. Basically, we acquired both the prediction of
DEncRNA–DEmiRNA interactions and DEcodingRNA–DEmiRNA interactions using these databases.
Additionally, we used other databases for supplementary and validation purposes. DIANA-TarBase v8
(www.microrna.gr/tarbase) [48] and miRWalk (http://mirwalk.umm.uni-heidelberg.de/; version 3.0) [49]
were used for DEcodingRNA–DEmiRNA interactions and the DIANA-LncBase v2 was used for
DEncRNA–DEmiRNA interactions.

2.5. Evaluation and Visualization of CeRNA Network

We evaluated the ceRNA network using adjusted rand index (ARI) with DEcodingRNAs belonging
to each ceRNA network and selected it as the final ceRNA network having a high concordance with
traits of IDH mutations with 1p/19q codeletion. Finally, the ceRNA network with an ARI of over
0.6 was visualized using Cytoscape software 3.7.2 [50].

2.6. Gene Ontology and Pathway Enrichment Analysis

Gene ontology (GO) analyses—including those for biological processes, cellular components,
and molecular functions—were performed using ShinyGO with an FDR of <0.05 [42]. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) and reactome pathway enrichment analyses were
performed using ClueGO software with a Bonferroni step-down of <0.05 in Cytoscape [51]. The results
of the enrichment analyses were visualized using ShinyGO and Cytoscape software.

2.7. Statistical Analysis for Validation of the CeRNA Network

Agglomerative unsupervised clustering using the ward method was performed for validating the
ceRNA network, with an expression pattern of gene sets of DEcodingRNA belonging to each ceRNA
network, and the results were compared with actual clinical data of patient subgroups using Python
software (version 2.7; Python Software Foundation, Wilmington, DE, USA). The number of clusters
(set on unsupervised clustering) was 2 for OD and 3 for low-grade glioma patients. We also compared
the survival rate between the actual subgroup and clusters from unsupervised clustering using the

https://www.rna-society.org/rnainter/
http://starbase.sysu.edu.cn/index.php
http://ophid.utoronto.ca/mirDIP/
www.microrna.gr/tarbase
http://mirwalk.umm.uni-heidelberg.de/
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Kaplan–Meier survival analysis. Furthermore, two-dimensional K-means clustering and survival
rate were assessed to identify significant clinical effects of lncRNAs as ceRNA in R (version 3.5.2;
R Foundation, Vienna, Austria) software and GEPIA [52].

3. Results

3.1. Differentially Expressed Gene Analysis of mRNAs, miRNAs, and ncRNAs

TCGA is the world’s largest cancer database and is supported by the National Cancer Institute
(NCI) and the National Human Genome Research Institute (NHGRI). TCGA is a bounty of multi-omics
data and clinical information, including genetic information for various cancers. In this study,
the expression data of codingRNAs, ncRNAs, and miRNAs of a total of 168 OD patients from the
TCGA lower grade glioma (LGG) database were analyzed. Most of these patients had IDH mutations,
but only 127 patients had 1p/19q codeletions. We also performed differential expression analysis of
codingRNAs, lncRNAs, and miRNAs according to fold change values and significance levels to identify
the quantitative differences among genes. The distribution of DEcodingRNAs (Figure 1), DE lncRNAs,
DEpseudogenes (Figure S1), and DEmiRNAs (Figure 2) was directly visualized using volcano plots and
ideogram. There were 342 upregulated DEcodingRNAs and 573 downregulated DEcodingRNAs in IDH
mutations with 1p/19q codeletions than in those with non-codeletions (Figure 1A). Next, we confirmed
the types and positions of genes using ShinyGO. The types of all inputted DEcodingRNAs were
codingRNAs, and downregulated codingRNAs were significantly distributed on chromosome 1 and
19 compared to the background data (Figure 1B). Although there was no statistically significant
difference from the background data, many of the upregulated codingRNAs were relatively distributed
on chromosome 17. Furthermore, 38 DElncRNAs and 7 DEpsuedogenes were upregulated, and many
of these genes were relatively upregulated on chromosomes 6 and 17. Moreover, 42 DElncRNAs and
5 DEpseudogenes were downregulated and distributed on chromosomes 1 and 7 (Figure S1). We also
detected 3 upregulated DEmiRNAs and 29 downregulated DEmiRNAs (Figure 2A). The upregulated
miRNAs were distributed on chromosomes 6 and X. Many of the downregulated miRNAs were
relatively distributed on chromosomes 1, 8, 9, 17, and X (Figure 2B). The upregulated DEmiRNAs
of chromosome X (hsa-miR-888 and has-miR-891a) were located very closely together, therefore
indicated by a single arrow in the Figure 2B. Downregulated DEmiRNAs which have 5p/3p pairs from
same family (i.e., hsa-miR-204-5p/3p on chromosome 9, hsa-miR-301a-5p/3p, hsa-miR-3065-5p/3p on
chromosome 17 and hsa-miR-1298-5p/3p, hsa-miR-2114-5p/3p on chromosome X) are also presented
with single arrows in Figure 2B.
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Figure 1. Volcano plots and distribution of genes on chromosomes for DEcodingRNAs between the OD
1p/19q codeletion group and the non-codeletion group. The volcano plot of DEcodingRNAs. The red
dots represent significantly upregulated genes, the green dots represent significantly downregulated
genes (|log2 FC| ≥ 1 and FDR < 0.05) (A). Histogram of input gene sets and distribution on
chromosomes for upregulated DEcodingRNAs (left) and downregulated DEcodingRNAs (right)
(B). * indicates significant p value.
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Figure 2. Volcano plot and distribution of genes on chromosomes for DEmiRNAs between OD 1p/19q 
codeletion group and non-codeletion group. The volcano plot of DEmiRNAs (A). The red dots 
represent significantly upregulated miRNAs in OD’s patients with 1p/19q codeletion, the green dots 
represent significantly downregulated miRNAs in OD’s patients with 1p/19q codeletion (|log2 FC| ≥ 
1 and FDR < 0.05). The ideogram plot of DEmiRNAs (B). The red regions of chromosomes represent 
centromeres and the light blue regions represent highly condensed heterochromatin regions. Red 
arrows represent the distribution of upregulated DEmiRNAs and blue arrows represent the 
distribution of downregulated DEmiRNAs on the chromosomes. 

3.2. Analysis of a Weighted Co-Expression Network and Identification of Key Modules 

For ncRNAs such as lncRNAs and pseudogenes to function as ceRNAs, coding RNAs within the 
ceRNA network is a potential regulatory target of ncRNAs, and the gene expressions of ncRNAs and 
coding RNAs are positively correlated. Weighted gene coexpression network analysis (WGCNA) can 
cluster highly correlated genes between DEcodingRNAs and DEncRNAs into the same module and 
identify significant candidate modules related to the clinical traits of cancer. We obtained a total of 
915 DEcodingRNAs (342 upregulated and 573 downregulated) and 92 DEncRNAs (45 upregulated 
and 47 downregulated) from previous DEAs for constructing the coexpression network via WGCNA. 
In the first step of WGCNA, the soft-threshold power (β) from 1 to 20 was calculated considering 
scale independence and mean connectivity and was confirmed to be 4 in both network topology with 
upregulated and downregulated genes (Figure 3A). Next, we set 15 as the minimum module size and 
identified co-expression modules between DEcodingRNAs and DEncRNAs using dynamic cut tree. 
We also calculated the similarity and dissimilarity among modules to merge modules having 

Figure 2. Volcano plot and distribution of genes on chromosomes for DEmiRNAs between OD
1p/19q codeletion group and non-codeletion group. The volcano plot of DEmiRNAs (A). The red dots
represent significantly upregulated miRNAs in OD’s patients with 1p/19q codeletion, the green dots
represent significantly downregulated miRNAs in OD’s patients with 1p/19q codeletion (|log2 FC| ≥ 1
and FDR < 0.05). The ideogram plot of DEmiRNAs (B). The red regions of chromosomes represent
centromeres and the light blue regions represent highly condensed heterochromatin regions. Red arrows
represent the distribution of upregulated DEmiRNAs and blue arrows represent the distribution of
downregulated DEmiRNAs on the chromosomes.

3.2. Analysis of a Weighted Co-Expression Network and Identification of Key Modules

For ncRNAs such as lncRNAs and pseudogenes to function as ceRNAs, coding RNAs within the
ceRNA network is a potential regulatory target of ncRNAs, and the gene expressions of ncRNAs and
coding RNAs are positively correlated. Weighted gene coexpression network analysis (WGCNA) can
cluster highly correlated genes between DEcodingRNAs and DEncRNAs into the same module and
identify significant candidate modules related to the clinical traits of cancer. We obtained a total of
915 DEcodingRNAs (342 upregulated and 573 downregulated) and 92 DEncRNAs (45 upregulated
and 47 downregulated) from previous DEAs for constructing the coexpression network via WGCNA.
In the first step of WGCNA, the soft-threshold power (β) from 1 to 20 was calculated considering
scale independence and mean connectivity and was confirmed to be 4 in both network topology with
upregulated and downregulated genes (Figure 3A). Next, we set 15 as the minimum module size and
identified co-expression modules between DEcodingRNAs and DEncRNAs using dynamic cut tree.
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We also calculated the similarity and dissimilarity among modules to merge modules having extremely
similar expression profiles. MEDissThres, the threshold for dissimilarity, was set as 0.3 and modules
having high correlation >0.7 were merged into one (Figure S2). We finally obtained 6 modules each in
the upregulated and downregulated co-expression network (Figure 3B) and assessed which modules
correspond more with the clinical traits by evaluating the associations between the modules and
clinical traits (Figure 3C). The results were that the blue module had the strongest positive relationship
with the 1p/19q codeletion of IDH mutation in ODs, with a correlation value of 0.69 (left panel of
Figure 3C); the turquoise module had the strongest negative relationship, with a value of −0.71 (right
panel of Figure 3C).

Cancers 2020, 12, x 8 of 22 

 

extremely similar expression profiles. MEDissThres, the threshold for dissimilarity, was set as 0.3 and 
modules having high correlation >0.7 were merged into one (Figure S2). We finally obtained 6 
modules each in the upregulated and downregulated co-expression network (Figure 3B) and assessed 
which modules correspond more with the clinical traits by evaluating the associations between the 
modules and clinical traits (Figure 3C). The results were that the blue module had the strongest 
positive relationship with the 1p/19q codeletion of IDH mutation in ODs, with a correlation value of 
0.69 (left panel of Figure 3C); the turquoise module had the strongest negative relationship, with a 
value of −0.71 (right panel of Figure 3C). 

 

Figure 3. Cont.



Cancers 2020, 12, 2543 9 of 22

Cancers 2020, 12, x 8 of 22 

 

extremely similar expression profiles. MEDissThres, the threshold for dissimilarity, was set as 0.3 and 
modules having high correlation >0.7 were merged into one (Figure S2). We finally obtained 6 
modules each in the upregulated and downregulated co-expression network (Figure 3B) and assessed 
which modules correspond more with the clinical traits by evaluating the associations between the 
modules and clinical traits (Figure 3C). The results were that the blue module had the strongest 
positive relationship with the 1p/19q codeletion of IDH mutation in ODs, with a correlation value of 
0.69 (left panel of Figure 3C); the turquoise module had the strongest negative relationship, with a 
value of −0.71 (right panel of Figure 3C). 
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3.3. Construction of CeRNA Network and Prediction of Function in Oligodendroglioma

According to the ceRNA theory, ncRNAs competitively bind to miRNA response elements
(MREs) of miRNA and act as positive regulators for the regulation of mRNA activity. Thus, we built
26 ceRNA networks such that DEmiRNAs matched with gene sets from the blue and turquoise modules.
The target prediction of DEmiRNA was achieved using RNAInter, ENCORI (starBase v3.0), mirDIP,
miRWalk, LncBase, and Tarbase. In the blue module, 24 downregulated DEmiRNAs interacted with
218 upregulated DEcodingRNAs, 24 upregulated DElncRNAs, and 4 upregulated DEpseudogenes.
Furthermore, 2 upregulated DEmiRNAs were matched with 290 downregulated DEcodingRNAs,
6 downregulated DElncRNAs, and 2 downregulated DEpseudogenes from the turquoise module.

Next, we evaluated the ceRNA networks to select networks that better reflect clinical characteristics.
Adjusted rand index (ARI) has been used as criterion to measure the similarity between two data
partitions. An ARI value close to 1 indicates an almost perfect agreement, whereas a value of 0 indicates
discordance between the partitions. Thus, we evaluated each gene set of DEcodingRNAs involved
in 26 ceRNA networks using ARI; finally, 16 ceRNA networks having with an ARI of >0.6 remained
from just the blue module, and these networks included 16 downregulated miRNAs, 209 upregulated
codingRNAs, 24 lncRNAs, and 4 pseudogenes (Tables S1 and S2). We visualized these ceRNA networks
using Cytoscape version 3.7.2 software (Figure 4A).

Subsequently, we performed Gene Ontology (GO) and KEGG analyses and the reactome pathway
enrichment analysis using ShinyGo and ClueGO to clarify the potential functions of the ceRNA
networks that may be involved in tumorigenesis and carcinogenesis (Figure 4B,C and Table S3).

The genes related to the ceRNA network were significantly enriched in nervous system
development, cell-to-cell signaling, cell differentiation, neuron projection terminus, collagen network,
MAP kinase phosphatase activity, DNA-binding transcription activator activity, and RNA polymerase
II-specific processes (Figure 4B). Furthermore, enriched pathway terms were mainly associated
with ECM–receptor interactions, RAF-independent MAPK1/3 activation, collagen biosynthesis and
modifying enzymes, prostate cancer, platelet homeostasis, NCAM1 interactions, and signaling by
NTRKs (Figure 4C). The results of the functional enrichment analyses suggested that these genes
from the ceRNA network could participate in the tumorigenesis and development of OD with 1p/19q
codeletion by regulating the related biological processes and key pathways.
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Figure 4. Construction and biological identification of the ceRNA network comprising upregulated
DEcodingRNAs and DEncRNAs expected to be candidate targets of downregulated DEmiRNAs.
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The visualization of the ceRNA network. Blue rectangles indicate downregulated DEmiRNAs (A).
Red circles and yellow rhombuses indicate upregulated DEcodingRNAs, upregulated DElncRNAs,
and DEpseudogenes from the blue module. The results of GO analyses of DEcodingRNAs belonging
to ceRNA network, include biological process (BP), cellular component (CC), and molecular function
(MF) (B). Annotations of the KEGG and reactome pathway enrichment analysis (C).

3.4. Extending the CeRNA Network to Lower Grade Gliomas and Verifying the Clinical Significance through
Survival Analysis

Additionally, we assessed the ceRNA network using ARI in low glioma gliomas to determine
the potential effects of ceRNA networks in other types of glioma cancers. The evaluation was based
on 1p/19q codeletion, 1p/19q non-codeletion, and wildtype, and the results surprisingly confirmed
that all ceRNA networks distinguish well between the 1p/19q codeletion and wildtype in lower grade
gliomas (Table 1). This result indicates that the ceRNA network, according to the 1p/19q codeletion,
distinguishes each subgroup well not only in OD but also in the entire lower grade glioma and that it
has characteristics that can represent the biological differences among subgroups.

Table 1. Comparison between OD and LGG using ARI evaluation of the ceRNA network.

Network Source
miRNAs

No. of Target
Coding Genes

No. of Target
Non-Coding Genes

ARI

OD (k * = 2) LGG (k * = 3)

Network01 hsa-miR-296-5p 78 6 0.872 0.724
Network02 hsa-miR-455-3p 68 1 0.692 0.671
Network03 hsa-miR-760 92 1 0.896 0.761
Network04 hsa-miR-1298-5p 43 4 0.871 0.747
Network05 hsa-miR-197-3p 78 5 0.872 0.770
Network06 hsa-miR-301a-5p 25 2 0.801 0.756
Network07 hsa-miR-1262 62 2 0.801 0.497
Network08 hsa-miR-186-5p 99 9 0.921 0.806
Network09 hsa-miR-301a-3p 83 2 0.847 0.834
Network10 hsa-miR-383-5p 97 1 0.872 0.728
Network11 hsa-miR-2114-3p 30 2 0.778 0.637
Network12 hsa-miR-204-5p 138 7 0.824 0.714
Network13 hsa-miR-7156-5p 31 6 0.896 0.888
Network14 hsa-miR-92b-3p 76 4 0.800 0.594
Network15 hsa-miR-3074-5p 31 9 0.896 0.789
Network16 hsa-miR-1298-3p 30 2 0.778 0.704

K *, Number of agglomerative clusters obtained using ARI.

Next, we performed the OS analysis to confirm ceRNAs of clinical importance according to their
expression levels in the ceRNA network. As the clinically important ceRNAs were expected to exhibit
a strong negative relationship with target miRNAs, expected ceRNA levels were assessed for the
correlation coefficient between miRNAs in each ceRNA network, and a value of less than −0.3 was
selected. Subsequently, k-means were used to classify groups with high and low expression levels, and
the OS of each group of patients in OD and lower grade glioma was compared (Table 2).
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Table 2. Kaplan–Meier survival analysis with miRNA and ceRNA having negative correlation coefficients of less than −0.3.

Subtype miRNA
Symbol

CeRNA
Symbol

First Cluster Second Cluster
p FDR

Median 95% CI * No. Median 95% CI * No.

OD

hsa-miR-186-5p INHBA-AS1 4084 2907 to NA 113 2660 1011 to NA 48 0.002 0.023
hsa-miR-301a-3p LINC01551 4084 2907 to NA 115 2660 1011 to NA 46 0.002 0.023
hsa-miR-186-5p ZNF876P 4084 2907 to NA 102 2660 1886 to NA 59 0.023 0.168
hsa-miR-186-5p TM4SF19-AS1 4084 2907 to NA 107 2660 1886 to NA 54 0.033 0.183
hsa-miR-186-5p FZD10-AS1 4084 2907 to NA 80 2660 1886 to NA 81 0.055 0.211
hsa-miR-204-5p NXF4 4084 2907 to NA 98 2660 1886 to NA 63 0.058 0.211
hsa-miR-301a-5p SMCR5 4084 2907 to NA 99 2875 1886 to NA 62 0.113 0.356
hsa-miR-186-5p LPAL2 4084 2907 to NA 104 2660 1886 to NA 57 0.150 0.366
hsa-miR-197-3p SMCR5 4084 2907 to NA 92 2875 2000 to NA 69 0.148 0.366
hsa-miR-197-3p CD81-AS1 4084 2907 to NA 107 2660 1886 to NA 54 0.235 0.518
hsa-miR-301a-5p FZD10-AS1 2907 2875 to NA 85 2660 1886 to NA 76 0.286 0.571
hsa-miR-186-5p LINC01460 4084 2907 to NA 97 2875 2000 to NA 64 0.364 0.575
hsa-miR-197-3p LINC02076 4084 2907 to NA 98 2875 2000 to NA 63 0.366 0.575

hsa-miR-760 LPAL2 3470 2907 to NA 76 2875 2000 to NA 85 0.349 0.575
hsa-miR-204-5p TM4SF19-AS1 4084 4084 to NA 81 2875 2000 to NA 80 0.410 0.602
hsa-miR-204-5p EPN2-AS1 3470 2660 to NA 86 2875 2000 to NA 75 0.472 0.615
hsa-miR-204-5p SMCR5 4084 2660 to NA 86 2875 2000 to NA 75 0.479 0.615
hsa-miR-204-5p GUCY1B2 4084 2907 to NA 101 2875 1401 to NA 60 0.503 0.615
hsa-miR-92b-3p TBX5-AS1 4084 2660 to NA 71 2907 2282 to NA 90 0.620 0.717
hsa-miR-197-3p FZD10-AS1 3470 2907 to NA 95 2875 2000 to NA 66 0.694 0.763
hsa-miR-7156-5p MROCKI 4084 1886 to NA 68 3470 2875 to NA 93 0.831 0.871
hsa-miR-204-5p MROCKI 3470 2875 to NA 89 2907 2000 to NA 72 0.933 0.933

LGG

hsa-miR-1262 CISTR 4445 4084 to NA 211 2000 1762 to 2875 256 0.000 0.000
hsa-miR-186-5p INHBA-AS1 4084 2907 to NA 213 2286 1933 to 4412 254 0.000 0.002
hsa-miR-3074-5p INHBA-AS1 4084 2875 to NA 254 2286 1915 to NA 213 0.000 0.002
hsa-miR-186-5p LPAL2 4084 2907 to NA 174 2433 1933 to 4412 293 0.002 0.005
hsa-miR-186-5p ZNF876P 4084 2907 to NA 178 2433 1933 to 4412 289 0.006 0.012
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Table 2. Cont.

Subtype miRNA
Symbol

CeRNA
Symbol

First Cluster Second Cluster p FDR
Median 95% CI * No. Median 95% CI * No.

hsa-miR-455-3p LINC01586 4068 2907 to NA 251 2286 1915 to NA 216 0.005 0.012
hsa-miR-186-5p LINC01460 4084 2907 to NA 181 2433 1933 to 4412 286 0.014 0.026
hsa-miR-186-5p TM4SF19-AS1 4084 2907 to NA 186 2433 1933 to 4412 281 0.020 0.032
hsa-miR-204-5p GUCY1B2 3470 1891 to NA 230 2907 2286 to NA 237 0.023 0.033
hsa-miR-301a-3p LINC01551 4084 3470 to NA 249 2235 1915 to 3978 218 0.029 0.037
hsa-miR-204-5p NXF4 4084 2907 to NA 214 2433 1933 to 4068 253 0.072 0.085
hsa-miR-301a-5p FZD10-AS1 3470 2875 to NA 216 2433 1933 to NA 251 0.203 0.220
hsa-miR-197-3p CD81-AS1 4068 2907 to NA 202 2660 1933 to 4445 265 0.399 0.399

CI *, Confidence interval; Bold, Significant p-value with FDR, Correlation coefficients of all results were less than −0.3.



Cancers 2020, 12, 2543 14 of 22

 

3 

 
Figure 5. Evaluation of the ceRNA network through by unsupervised clustering and comparing survival
to actual OD patients with IDH mutation. Heatmap for unsupervised analysis of DEcodingRNAs
and DEncRNAs related to hsa-miR-301a-3p in ceRNA network (A). Kaplan–Meier plot for comparing
the survival between actual oligodendroglioma patients with IDH mutation from TCGA database
and unsupervised group (B). The yellow line indicates survival data for OD patients with 1p/19q
codeletion and deep green line for OD patients with 1p/19q non-codeletion (Top). Olive green and
coral pink line indicate groups from unsupervised clustering analysis with miR-301a-3p related ceRNA
network (Bottom). Scatter plot for clustering group by K-means in OD patients with IDH mutation (C).
Scatter plot resenting negative correlations between LINC01551 expected with ceRNA and related to
miRNA in ceRNA network (left). Kaplan–Meier survival plot according to the expression levels of
ceRNA and miRNA (right).

As a result, patients with IDH mutations in OD had different survivals according to the expression
levels of lncRNA INHBA-AS1 and LINC01551. This is a clinically meaningful result considering
that the 1p/19q codeletion group and the non-codeletion group were not statistically significantly
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divided in terms of the data of patients with OD with IDH mutation. In addition, in the data of
patients extended to lower grade glioma, a higher number of non-coding RNAs in the ceRNA network
showed a difference in OS rate according to the expression level. In particular, the ceRNA network
containing LINC01551 and hsa-miR-301a-3p similarly classified subgroups of 1p/19q from both OD and
lower glioma including wildtype compared to the actual subgroup (Figure 5A,B and Figure S3A,B).
In addition, the survival rate according to the expression level of LINC01551 was also significantly
different in both OD and lower grade glioma patients (Figure 5C and Figure S3C).

4. Discussion

Based on the WHO classification and various research reports, the 1p/19q codeletion is used as a
prognostic biomarker [53]. Some parts of genes related to the 1p/19q codeletion can promote tumor
progression, but in many cases, this is a positive prognostic indicator not only for OD but also for
glioma [8,11]. Recently, the functional studies on ncRNA, which are expected to play a role in ceRNA,
are being conducted, and important roles of ncRNAs in various biological processes have been reported
in studies related to tumorigenesis and metastasis [26–28]. In studies on gliomas, various studies on
ncRNAs that are expected to play a role as ceRNAs, including lncRNA, are in progress, but no studies
on 1p/19q have been reported. Therefore, a better understanding of the effect of 1p/19q codeletion on
OD will be of great help to an improved understanding of treatment and cancer progression in OD as
well as overall glioma.

Based on the ceRNA hypothesis, a total of 16 mRNA–lncRNA–miRNA networks reflecting 1p/19q
codeletion characteristics were constructed, and 16 miRNAs, 209 mRNAs, and 28 ncRNAs were
mapped in our study. The ceRNA network we discovered was evaluated using ARI, and the network
is very similar to the classification of the actual subgroup indicated in the clinical data of the actual
TCGA data and reflects its characteristics well (Table S1).

We performed the GO and KEGG/reactome pathway analyses to identify the biological processes
and molecular functions of ncRNA in the ceRNA network and revealed features that can play a pivotal
role in tumorigenesis (Figure 4B,C).

The results of the GO and pathway enrichment analyses were enriched in terms related to ion
channel activity, insulin secretion, and MAP kinase phosphatase activity as well as extracellular matrix
(ECM)-related terminologies such as ECM degradation, collagen network, etc.

Potassium ion channels are known as cancer hallmarks and play roles in the evasion of apoptosis,
proliferation, and invasion by their potential to alter membrane polarization [54–56]. Two-pore
domain (K2P) potassium channels enable the resting currents of potassium ions. KCNK1, KCNK3,
and KCNK10 are substrate genes of the two-pore-domain (K2P) potassium channel family and
are differentially distributed in the CNS and are known to be involved in neuronal functional
maintenance and modulation [57,58]. In a related study, KCNK1, KCNK3, and KCNK10 were
significantly downregulated in brain glioblastoma (GBM) [59]. In particular, the expression of
KCNK1 was decreased more in cancers of the overall CNS—such as astrocytomas (AC), GBMs, ODs,
medulloblastomas, and melanomas—than in the normal tissue. Additionally, ATP-sensitive potassium
channels, which comprise pore-forming subunit (Kir6.2) and regulatory sulfonylurea receptors (SUR1),
are known to control the glucose-stimulated release of insulin. In our research, several genes, such as
ABCC8 and KCNJ11, related to insulin and diabetes and encoding Kir6.2 and SUR1 have also been
found in the ceRNA network.

The repression of Kir6.2/SUR1 channels stimulates the release of insulin [60], and it has been
reported that mutations and deficiencies of ABCC8 and KCNJ11 induce hyperinsulinism [61–65].
In various studies and clinical reports, the hypersecretion of insulin has been linked to the development
of several types of cancer, including breast, colon, liver, and kidney cancers [66,67], and the survival
rates through GEPIA in our research also confirmed that higher the expression levels of the two genes,
the better is the survival rate (Figure S4A). These genes were relatively upregulated as per the results
of our study, and these results suggest that potassium channels play important roles in the brain tumor
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microenvironments related to proliferation, apoptosis, and migration; this can be one of the survival
advantages of the 1p/19q codeletion in gliomas.

The ECM is composed of diverse biochemical components including collagens and glycoproteins
such as tenascins. The tumor microenvironment, including the ECM, is subject to changes in various
biological conditions—including the structure, content, and distribution—during most of the cancer
development duration and progression, unlike that in normal cells [68]. Tenascins are a family of
multioligomeric glycoproteins that are primarily expressed in the CNS, and these are known as one of
the ECM components participating in cell adhesion, migration, development, and proliferation.
Tenascins normally exist in the hexameric form, such as tenascin-C (TNC), tenascin-X (TNX),
and tenascin-W (TNW), or in the trimeric form, such as tenascin-R (TNR). TNC is overexpressed in
malignant gliomas such as high grade astrocytomas and glioblastomas and promotes the invasion of
malignant gliomas [69–71]. In contrast, TNR is highly expressed in normal oligodendrocytes, neurons,
and non-invasive gliomas such as pilocytic astrocytic tumors, but its expression decreases in malignant
astrocytoma [72]. Interestingly, the high expression of TNR gene has been observed in ODs with a
high grade in this report, and the expression of TNR is upregulated in OD having a 1p/19q codeletion.
Thus, we performed survival analysis using GEPIA and confirmed that the higher the expression
level of TNR the better is the survival rate in OD patients (Figure S4A). Moreover, in a recent study,
the expression of TNR was reported as a new prognostic marker for GBM using machine learning [73].

The invasion process of cancer involves the degradation of these ECM components by matrix
metalloproteinases (MMP) as well [74]. MMP24 is a gene encoding matrix metalloproteinase-24 and
has recently been reported to negatively regulate the aggressiveness of cancer cells in breast cancer as a
target gene of yes-associated protein (YAP) [75].

In a previous study on glioma, the expression of MMP24 was high in brain tumors and was
reportedly to related to tumor progression [76], but the available data for MMP24 in later study
seemed to be contradictory [77]. The interpretation of our findings on MMP24 was also challenging.
The expression of MMP24 was observed to be high in GBM and OD, similar to that reported in previous
studies, but patients with a high level of MMP24 had better survival in OD (Figure S4A). For these
reasons, further studies on MMP24 in glioma are needed.

In addition, SLC8A2, which is a member of the solute carrier family 8, is a tumor suppressor gene
of GBM [78] and shows a difference in the survival rate, according to the expression level in OD of
TCGA. SLC8A3 from our findings also exhibited the same pattern in expression and survival rate
as SLC8A2 in OD of TCGA, but the related reports are still insufficient and further studies need to
be conducted.

Kaplan–Meier survival analysis was performed to investigate the clinical characteristics in the
ceRNA network we discovered. The k-means analysis was performed based on the gene set of the
mRNA contained in the ceRNA to divide the unsupervised subgroups and then compare survival rates
with actual subgroups. The results were confirmed to be similar to the survival rate according to the
clinical information of actual TCGA OD patients with IDH mutations. Characteristically, the difference
in survival rate among patients according to actual 1p/19q codeletion subtypes in the OD data of
TCGA was not statistically significantly separated, but a difference of survival rate in the group as
per the expression level of ceRNA was divided (Figure 5B). The results indicate that the expression
pattern of the gene depending on the 1p/19q codeletion is an important factor that greatly influences
the survival and prognosis of patients with glioma. In addition, the Kaplan–Meier survival analysis
was performed by classifying the expression level of ncRNA compared to that of miRNA into high
and low expression groups (Figure 5C), and we found clinically important ncRNAs within the ceRNA
network (Table 2). Based on these results, we wanted to extend the characteristics identified in OD
to lower grade glioma and confirm valid results. The excavated ceRNA networks classified the
subgroups of lower grade glioma to the correct level (Figure S3A,B) and showed a difference in the
survival rate (Figure S3C), which have applicable potential to demonstrate a fairly similar pattern
and biological influence derived from the 1p/19q codeletion in the development and progression
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of glioma (Figure S3). Additionally, we analyzed the clinical key roles of expected ncRNAs in the
ceRNA network and confirmed diverse potentials, which highlighted few limitations of this study
(Table 2). Although a previous report on hepatocellular carcinoma indicated that LINC01551 promotes
tumorigenesis [79], the result of LINC01551 belonging to the ceRNA network related to hsa-miR-301a-3p
was clinically positive in our study. Furthermore, the comparison results of gene expression among the
subtype of lower grade glioma through GEPIA, the expression amount of LINC01551 in OD, was more
similar to that of normal brain tissue than to that of other subtypes (Figure S5A). hsa-miR-301a-3p,
which was downregulated in our study, promotes the invasion of glioma, and these results are
supported by the findings of our previous research [80,81]. INHBA-AS1 had mostly negative reports in
tumorigenesis [82], but the results were the same as those for LINC01551 in our study with OD with
IDH mutations (Figure S5A).

In addition, in the results of an expanded study on lower grade glioma, more statistically significant
genes were found. There were reports with findings consistent with those of ours on hsa-miR-1262,
hsa-miR-455-3p, LPAL2 [83–86], and some reports even contradicted our findings on hsa-miR-204-5p
and hsa-miR-197-3p [87,88]. Although related studies are still insufficient, the previous report about
hsa-miR-186-5p in glioblastoma contradicted our findings [89]. Interestingly, the survival pattern of
LINC01551 and INHBA-AS1 related to this miRNA also were different in astrocytoma (Figure 5C and
Figure S5B). This compelled us to think about the possibility of producing different results for each
cancer cell type, even subtypes. In our study, this means that the expression of the same gene may
have different biological effects as per the cancer subtype.

5. Conclusions

Genes participating in the ceRNA network in OD can provide different tumor microenvironments
via potassium ion channels and composition changes in ECM, and these may cause differences in
survival due to the 1p/19q codeletion. Our study also demonstrates that subtypes of glioma have
a high IDH mutation frequency and that these are known to improve survival and exhibit similar
traits; however, different effects can be derived from the same gene, and this would result in survival
differences in different subtypes such as ODs and astrocytomas. However, our study is based on in
silico analysis with limited knowledge about the in vivo expressions and functions of many lncRNAs
against endogenous mRNA. Thus, further vigorous studies are required to validate this finding with
in vivo and in vitro experiments in the near future.
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