
https://doi.org/10.1007/s12021-020-09496-2

ORIGINAL ARTICLE

RippleNet: a Recurrent Neural Network for Sharp Wave Ripple
(SPW-R) Detection

Espen Hagen1,2 · Anna R. Chambers3 ·Gaute T. Einevoll1,2 · Klas H. Pettersen4 · Rune Enger5 ·
Alexander J. Stasik2

Accepted: 2 November 2020
© The Author(s) 2021

Abstract
Hippocampal sharp wave ripples (SPW-R) have been identified as key bio-markers of important brain functions such
as memory consolidation and decision making. Understanding their underlying mechanisms in healthy and pathological
brain function and behaviour rely on accurate SPW-R detection. In this multidisciplinary study, we propose a novel, self-
improving artificial intelligence (AI) detection method in the form of deep Recurrent Neural Networks (RNN) with Long
Short-Term memory (LSTM) layers that can learn features of SPW-R events from raw, labeled input data. The approach
contrasts conventional routines that typically relies on hand-crafted, heuristic feature extraction and often laborious manual
curation. The algorithm is trained using supervised learning on hand-curated data sets with SPW-R events obtained under
controlled conditions. The input to the algorithm is the local field potential (LFP), the low-frequency part of extracellularly
recorded electric potentials from the CA1 region of the hippocampus. Its output predictions can be interpreted as time-
varying probabilities of SPW-R events for the duration of the inputs. A simple thresholding applied to the output probabilities
is found to identify times of SPW-R events with high precision. The non-causal, or bidirectional variant of the proposed
algorithm demonstrates consistently better accuracy compared to the causal, or unidirectional counterpart. Reference
implementations of the algorithm, named ‘RippleNet’, are open source, freely available, and implemented using a common
open-source framework for neural networks (tensorflow.keras) and can be easily incorporated into existing data
analysis workflows for processing experimental data.

Keywords Machine learning · Deep learning · Recurrent neural networks · Neuroscience · Sharp wave ripples (SPW-R) ·
Hippocampus CA1

Introduction

Transient and persistent oscillations or rhythms are ubiq-
uitous in recordings of the brain’s activity (Buzsáki 2004;
Wang 2010). Electric recordings of neural activity are indis-
pensable tools in order to understand specific brain func-
tions, but the measurements are commonly subject to poor
signal-to-noise ratios due to noise and artefacts, especially
in vivo. For accurate detection of specific neural signatures,
improved methods for use in experimental and clinical work
therefore need to be developed.

� Espen Hagen
espenhgn@gmail.com

� Alexander J. Stasik
a.j.stasik@fys.uio.no

Extended author information available on the last page of the article.

Sharp wave ripples (SPW-R) are brief, highly syn-
chronous, fast oscillations observed in the CA1 region of
the hippocampus of mammals. SPW-Rs arise in sleep and
resting states, and originate in the hippocampal CA3 region
(‘sharp waves’) and can elicit fast oscillations in the hip-
pocampal CA1 region (‘ripples’). Features of SPW-Rs are
highly preserved across species, and are linked to mecha-
nisms that play important roles in memory function such as
memory consolidation and recall of episodic memory. Exci-
tatory output from the CA1 region during ripples encodes
sequences of neuronal activation of awake experiences, that
reaches wide areas of the cortex as well as subcortical nuclei.
For a comprehensive review on SPW-Rs, their origin and func-
tion, see for example Buzsáki (2015).

SPW-Rs occur as large amplitude oscillatory deflections
of the local field potential (LFP) signal, the low-frequency
(� 300 Hz) part of extracellularly recorded electric poten-
tials measured in neural tissue. The SPW-R oscillations are

Neuroinformatics (2021) 19:493–514

/ Published online: 4 January 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-020-09496-2&domain=pdf
http://orcid.org/0000-0002-1321-5970
http://orcid.org/0000-0003-2737-0637
http://orcid.org/0000-0002-5425-5012
http://orcid.org/0000-0003-3078-3301
http://orcid.org/0000-0001-9418-7117
http://orcid.org/0000-0003-1646-2472
mailto: espenhgn@gmail.com
mailto: a.j.stasik@fys.uio.no

observed above the cortical γ -band frequencies (30−90 Hz)
(da Silva 2013) of the LFP, and lie between 160 − 180 Hz
in mice (Buzsáki et al. 2013, 2003), and between 130 −
160 Hz in rats (Buzsáki et al. 2013, 1992; O’Keefe and
Nade 1978). Features of one such example SPW-R event are
illustrated in Fig. 1. The wide-band LFP (Fig. 1a) contains
a transient oscillation in the 150-250 Hz range (Fig. 1b),
which is evident in the time-frequency resolved LFP spec-
trogram (Fig. 1c). The filtered signal and spectrogram is
typically used by the experimentalist for SPW-R detection
and manual verification.

Understanding the varying mechanisms linked to SPW-
R events remains a highly active field of research,
and mandates the continued development of precise and
automated detection algorithms of these heterogeneous
events. Their detection is further complicated by that the
fractions of neurons in hippocampal regions CA1 and
CA3 which are active during different SPW-R events vary
greatly, and the number of small and medium-sized events
outnumber large, highly synchronous events (Csicsvari et al.
1999a; Buzsáki 2015). Hence, the resulting distributions
of SPW-R power are skewed as the synchrony between
neurons throughout the network (i.e., correlations) greatly
affects the LFP power in the SPW-R band (Csicsvari et al.
2000; Schomburg et al. 2012; Buzsáki 2015; Hagen et al.
2016). Consequently, defining a fixed threshold for SPW-R
detection based on e.g., the power or envelope of the LFP in
a chosen frequency band (Csicsvari et al. 1999a, b; Einevoll
et al. 2013; Ramirez-Villegas 2015; Norman et al. 2019;
Tingley and Buzsáki 2020) remains heuristic. Detection

methods may however incorporate adaptive thresholding
(Fritsch et al. 1999; Jadhav et al. 2012).

Recent years have seen a surge in different super-
vised and unsupervised learning algorithms, propelled by
hardware acceleration, better and larger training datasets,
the advent of deep convolutional neural networks (CNN)
in image classification and segmentation tasks (see e.g.,
LeCun et al. 2015; Rawat and Wang 2017) and high level
software frameworks for neural networks (e.g., Tensorflow,
Abadi et al. 2015; Keras, Chollet et al. 2015; Gulli and Pal
2017; PyTorch, Paszke et al. 2017). Deep CNNs are, how-
ever, not yet as commonplace for time series classification
tasks (Fawaz et al. 2019). Unlike traditional neural networks
(NNs) and CNNs which typically employ a feed-forward
hierarchical propagation of activation across layers, recur-
rent neural networks (RNN) have feedback connections,
and is suitable for sequential data such as speech and written
text. One architecture of RNNs is Long Short-Term Mem-
ory (LSTM) RNNs (Hochreiter and Schmidhuber 1997),
capable of classifying, processing and predicting events in
time-series data, even in the presence of lags of unknown
duration. In speech recognition, deep RNNs with multiple
stacked LSTM layers have been successful in classifying
phonemes (Graves et al. 2013). Bidirectional LSTM RNNs
were also found to improve classification performance over
unidirectional LSTM RNNs, which can only account for
past context (Graves et al. 2013). The present context of
SPW-R detection is analogous and amounts to recognition
of a single phoneme or word in a temporal sequential signal
such as sound.

Fig. 1 Example of a single
detected SPW-R event and
application of RippleNet to LFP
data. a Raw LFP data with an
SPW-R event. b Band-pass
filtered LFP signal
(150–250 Hz). c LFP
spectrogram. d Illustration of a
bidirectional RippleNet instance
and its application to LFP signal
X(t) (bottom trace) for
predicting time-varying
probabilities of SPW-R events
ŷ(t) (top trace). The subscript
and superscripts annotating each
layer denotes input and output
dimensions respectively for an
input sequence of length N

a d

b

c

Neuroinform (2021) 19:493–514494

Here, motivated by RNNs shown to be successful on
speech-recognition tasks, we propose the utilization of
LSTM-based RNNs for the automated detection of SPW-
R events in continuous LFP data. As illustrated in Fig. 1d,
our open-source implementation, RippleNet, is built with
a combination of convolutional, (bidirectional) LSTM and
dense layers with non-linear activation functions. Notably,
RippleNet accepts raw, single-channel LFP traces (bottom
trace) of arbitrary length as input. Thus the typical SPW-
R detection steps of band-pass filtering the input LFP as
well as manual feature extraction such as computing the
signal envelope via the Hilbert transform or time-frequency
resolved spectrograms are omitted. Using training data
with labeled SPW-R events in real-world datasets from
different sources we trained RippleNet instances to predict a
continuous signal representing the time varying probability
of SPW-R event in the input. A simple search of local peaks
above a fixed threshold can then be applied with the output
probabilities (ŷ(t) in Fig. 1d).

Zuo et al. (2019) proposed one of few deep CNN
based algorithms specifically designed for detection of
high-frequency oscillations (HFO), that is, epileptogenic
zone seizures in intracranial electroencephalogram (iEEG)
recordings. While HFOs in epilepsy may be phenomeno-
logically similar to hippocampal SPW-Rs, their origin is
different. The RippleNet algorithm differs from Zuo et al.
(2019) in that (1) explicit conversion of 1D input sequences
with multiple rows into gray-scale images are avoided; (2)
normalization of the input to zero mean and standard devi-
ation to unity is not required; (3) input segments can be
of arbitrary length (i.e., continuous) but segments within
single batches have to be of the same length; (4) a fairly
low number of parameters are trainable which may reduce
overfitting; and (5) its outputs are continuous signals that
represent the time varying probability of an SPW-R event
at all time points of the inputs, in contrast to classifying
whether or not a HFO class occurs in each fixed-size input
segment. Similar to our approach, also Medvedev et al.

(2019) used LSTM layers, but in a categorical classification
task on fixed-size input spectrograms spanning eight fre-
quency bands and three time steps. Our method uses the raw
time series as input and does not rely on such preprocessing
of the signal.

For the two main RippleNet variants we propose, one
causal using unidirectional LSTM layers and a non-causal
version using bidirectional LSTM layers, our main findings
are that causal RippleNet instances can detect nearly the
same number of actual SPW-R events as their non-causal
variants (511 ± 8.24 vs. 527 ± 5.11), but at the cost
of significantly higher error rate (84.3 ± 3.60 vs. 108 ±
1.75) on our validation data. Subsequent application of a
candidate non-causal RippleNet instance to continuous test
data demonstrate high temporal precision of event detection,
high rate of true and false positives and low rate of false
negatives, however, the false positive predictions overlap in
features with true SPW-R events as judged by an expert.
RippleNet also runs faster than real-time on typical CPUs,
and even faster on graphical processing units (GPU).

Methods

Experimental Data

Mouse Data

Male and female mice (C57Bl/6J; Janvier labs) underwent
LFP electrode implant surgery at approximately 10–14
weeks of age. All mice had previously been implanted 2–
3 weeks earlier with a custom made titanium head bar
glued to the skull and covered with a dental cement cap
as illustrated in Fig. 2a. For electrode implant surgery,
mice were anesthetized with isoflurane (3% induction,
1.5% maintenance, in pure oxygen) with body temperature
maintained at 37 ◦C. Burr holes were drilled for the LFP
electrode and reference electrode over the dorsal CA1

Fig. 2 Experimental setup. A
set of recordings used for this
study were acquired
concomitant to two-photon
microscopy from head-fixed
mice. a Mice were prepared
with a single electrode in the the
hippocampal CA1 region and a
contralateral reference electrode,
chronic glass window for
two-photon microscopy and a
head bar for head fixation.
b LFP recordings were recorded
concomitant to two-photon
microscopy in head-fixed mice

a b

Neuroinform (2021) 19:493–514 495

region of the hippocampus (A/P −2 mm, M/L 2 mm) and
contralateral primary somatosensory cortex (A/P −0.5 mm,
M/L 3 mm), respectively. Silver wire electrodes (0.125 mm
diameter, insulated, GoodFellow) were lowered to a depth
of 0.8 mm for dorsal CA1. The reference electrode was
implanted at the brain surface. Mice were allowed to recover
from isoflurane anesthesia while head fixed for at least
15 minutes, and electrode placement was confirmed by
monitoring the LFP signal online. Electrodes were affixed
to the head bar with cyanoacrylate glue and a thin layer of
dental cement.

LFP recordings were band-pass filtered (0.1–1000 Hz)
and amplified (1000×) with a DAM50 differential amplifier
(World Precision Instruments Inc). Line noise was removed
using a HumBug 50/60 Hz Noise Eliminator (Quest
Scientific Inc). For experiments, mice were head fixed under
a two-photon microscope objective after brief isoflurane
anesthesia. They were given at least 15 minutes to recover
from anesthesia before recordings were taken. In most
cases, LFP recordings were performed concurrently with
two-photon calcium imaging through a chronic cranial
window over the retrosplenial cortex (Fig. 2a, b), in 10
minute sessions. During recordings, mice were able to walk
freely on a disc (Fig. 2b) equipped with a rotary encoder
to record locomotion, grooming and postural adjustments.
Experiments were performed in the dark. LFP and rotary
encoder signals were acquired at 20 kHz and downsampled
to a final sampling frequency fs = 2500 Hz in LabView
(National Instruments). The LFP signals were saved in units
of millivolts (mV).

The different animals, number of sessions, total record-
ing durations and number of SPW-R events are listed in
Table 1. All procedures were approved by the Norwegian
Food Safety Authority (project: FOTS 19129). The exper-
iments were performed in accordance with the Norwegian
Animal Welfare Act and the European Convention for the
Protection of Vertebrate Animals used for Experimental and
Other Scientific Purposes.

SPW-R Detection Procedure Pre-processing for manual
SPW-R detection was performed using MATLAB (MAT-
LAB 2018).1 The LFP signal was first band-pass filtered
between 150 and 250 Hz using a digital filter filtfilt.
The coefficients for the order 600 finite impulse response
(FIR) filter were generated using the fir1 function. The
band-pass filtered LFP was then used to compute the abso-
lute of the Hilbert transform of the data. The output was
smoothed by convolving with a 1052-point Gaussian filter
with σ = 40 ms using gaussfilt (Conder 2020). The
findpeaks function was used to find peaks which were 3
standard deviations above mean in a moving time window

1https://www.mathworks.com

Table 1 Summary of data acquisition, and extracted training,
validation and test data

Animals and sessions

Mouse ID # sessions Duration (s) # SPW-R

4028 4 2412 425

4029 1 603 86

4030 4 2412 658

4031 2 1206 176

4046 4 2410 596

4104 1 603 181

4105 3 1809 231

4106 4 2412 382

4214 3 1812 491

4215 3 1812 440

6102 3 1812 467

6112 3 1812 376

Rat ID # sessions Duration (s) # SPW-R

2 1 29283 4498

7 1 25575 3714

9 1 26434 3677

Extracted datasets

X, y nSPW−R: {4461, 4400} (mouse and rat)

shape: (nSPW−R, 1250, 1)

Xtrain, ytrain ntrain: {4175, 4000}
shape: (ntrain, 1250, 1)

Xval, yval nval: {200, 200}
shape: (nval, 1250, 1)

Xtest, ytest ntest: {1, 0}
shape: (ntest, 753914, 1)

with duration 1 s. A minimum peak width at half height of
15 ms and a minimal peak distance of 25 ms were required,
calculated based on data reported in Axmacher et al. (2008),
Davidson et al. (2009), and Caputi et al. (2012). Potential
ripple locations where then manually inspected using the
symmetric one second time window around it, based on the
Hilbert transformation and the raw LFP signal.

Rat Data

To supplement the training and validation datasets con-
taining SPW-R events that could be extracted from the
in-house datas described above, we utilized publicly avail-
able datasets from the Buzsáki lab webshare2 (Petersen
et al. 2018). The datas were obtained in the adult rat
(Long Evans) in awake and sleep states using chronically
implanted probes with a total of 96 or 128 channels (Tingley
and Buzsáki 2018, 2020). The datasets were

2https://buzsakilab.com/wp/datasets

Neuroinform (2021) 19:493–514496

https://www.mathworks.com
https://buzsakilab.com/wp/datasets

– DT2/DT2 rPPC rCCG 3612um 1360um 20160303
160303 084915,

– DT7/20170324 576um 144um 170324 123932,
– DT9/20170509 468um 36um 170509 103451.

The LFP signal of contacts located in CA1 was extracted
and converted to units of mV, along with the corresponding
times and durations of labeled CA1 SPW-R events. SPW-R
events were identified and labeled as described in Tingley
and Buzsáki (2020). We here defined SPW-R event times as
the mean of onset and offset times. All events in awake and
sleep states were extracted. The sampling frequency of the
LFP data was here fs = 1250 Hz.

The different animals, number of sessions, total record-
ing durations and number of SPW-R events are summarized
in Table 1.

Data Preprocessing

The mouse LFP data were downsampled to a common
sampling frequency fs = 1250 Hz and temporal reso-
lution Δt = 1/fs. For temporal downsampling we used
the scipy.signal.decimate function with default
parameters. The rat LFP datasets were used as is. For visual-
ization, we extracted the band-pass filtered LFP φBP(t) from
the LFP φ(t) using 2nd-order Butterworth filter coefficients
computed with critical frequencies fc ∈ {150, 250} Hz. Fil-
ters were applied to φ(t) using a zero phase shift, forward-
backward filter implementation. Filter coefficients were
computed using scipy.signal.butter and applied
with scipy.signal.filtfilt.

Wavelet Spectrograms

To compute spectrograms of LFP data φ(t) we relied on the
complex Morlet transform with parameters ω = 6, scaling
factor s = 1 and lengths Mf = 2sfsω/f for fundamental
frequencies f ∈ {100, 110 . . . , 240, 250} Hz. The numbers
Mf were rounded down to the nearest integer. The set of
discrete wavelet coefficients for each frequency f were
computed using the function scipy.signal.morlet
as

Ψf = π−0.25e−0.5x2
(ejωx − e−0.5ω2

) with (1)

x ∈
{
−2πs, −2πs

(
1 − 2

Mf

)
, . . . , 2πs

}
. (2)

Each row of the spectrograms S(t, f) = [Sf (t)] were
then computed for all frequencies in f as

Sf (t) = |(φ ∗ Ψf)(t)|2, (3)

where the asterisk denotes a convolution. We used
the discrete 1D implementation by scipy.signal.

convolution in ‘full’ mode. To visualize the spec-
trograms, we employed a log-linear matplotlib.
cm.inferno color map, with lower and upper limits
determined as exp(c), where c is the 1st and 99th percentiles
of log(S), respectively.

Training, Validation and Test Data

Input Data We chose to use the raw single-channel LFP
data segments as input to the neural network algorithm,
that is, by defining X(t) = [φ(t)]. For reasons related to
the RNN implementation we defined each segment X(t)

as shape (ntimesteps, 1) arrays, even if we here work with
single-channel LFP data.

One-Hot Encoding of SPW-R Events The train of n labeled
times t 〈i〉 of the SPW-R events in each continuous LFP data
segment can be expressed mathematically as

T (t) =
n∑

i=1

δ(t − t 〈i〉), (4)

where δ(·) denotes the dirac delta distribution, and i the
index of the event in a session. We then assumed that each
SPW-R has a typical duration D = 50 ms on the interval
[t 〈i〉 −D/2, t 〈i〉 +D/2). A binary ‘one-hot’ encoding vector
for the SPW-R events y(t) was then computed as

y(t) = min (ϕ(t), 1) , where (5)

ϕ(t)=
((

θ(t−t 〈i〉+D/2)−θ(t−t 〈i〉 − D/2)
)

∗ T
)

(t),(6)

for the entire duration of each LFP segment. Here θ(·)
denotes the Heaviside step function. The vector y(t) can
be interpreted as the time-varying, binary probability p ∈
[0, 1] of an SPW-R occurring at any given time t .

Datasets As the SPW-R occurrence in the data was sparse
(that is, y(t) = 0 for most t), training the neural network
on entire data segments of different durations is impractical.
A likely training outcome is predicting ŷ(t) = 0 for all
times t of the input. For each labeled SPW-R event we
therefore extracted temporal segments of duration Tsample =
1000 ms from X(t) and y(t), that is, on the interval [t 〈j〉 −
T

〈j〉
offset − Tsample/2, t 〈j〉 − T

〈j〉
offset + Tsample/2). The offsets

T
〈j〉
offset ∈ [−(Tsample − 3D)/2, (Tsample − 3D)/2) were

randomly drawn for each event. The superscript 〈j〉 here
denotes a sample indexed by j from any LFP recording
session.

For the total number nSPW−R of SPW-R samples across
all animals and sessions, the shapes of the combined input
and output dataset matrices X and y for training, validation
and testing were both (nSPW−R, Tsample/Δt, 1).

All data entries except for a hold-out set were randomly
reordered along their first axis, and then split into 2

Neuroinform (2021) 19:493–514 497

separate file sets for validation and training, each of
sizes summarized in Table 1. The validation set was
used to monitor loss during training and quantification
of performance as detailed below. The hold-out test set
constructed from the entire session of one animal (mouse
4029) was only utilized for final evaluation of the RNN
after training and validation. For visualization purposes
we also stored the corresponding segments of band-pass
filtered LFP (φ〈j〉

BP (t)) and spectrograms (S〈j〉(t, f)) for
every labeled event.

In an effort to balance the set of features that can be
learned by RippleNet from datas obtained mice and rat, we
extracted a similar count of SPW-R events for training and
validation from the rat data as for the mouse data.

RippleNet Implementations

The causal and non-causal RippleNet implementations,
summarized schematically and with parameters in Table 2,
consist of a Gaussian noise layer applied to the input
(Matsuoka 1992), then one 1D convolutional layer (LeCun
et al. 1990) followed by a dropout layer (Srivastava et al.
2014), followed by another 1D convolutional layer followed
by batch-normalization (Ioffe and Szegedy 2015), rectified-
linear (ReLu) activation (Nair and Hinton 2010) and dropout
layers. The output of the last convolutional layer are
consecutively fed to the first (bidirectional) LSTM layer
(Hochreiter and Schmidhuber 1997) followed by batch-
normalization and dropout. The final (bidirectional) LSTM

Table 2 RippleNet neural
network structure and
parameters for both
unidirectional and bidirectional
variants

RippleNet architecture and settings
tf . keras . layer: Parameters:
Input shape: (None, 1)

Gaussian standard deviation: 0.001

Conv1D filters: 20
kernel size: 11
strides: 1
use bias: False
padding: same
activation: None
parameters: 240

Dropout rate: 0.8

Conv1D filters: 10
kernel size: 11
strides: 1
use bias: True
padding: same
activation: None
parameters: 2210

BatchNormalization parameters: 40
Activation activation: ReLu
Dropout rate: 0.8

LSTM/Bidirectional(LSTM) units: 20/6
activation: tanh
recurrent activation: sigmoid
return sequences: True
parameters: 2480/816

BatchNormalization parameters: 80/48
Dropout rate: 0.8

LSTM/Bidirectional(LSTM) units: 20/6
activation: tanh
recurrent activation: sigmoid
return sequences: True
parameters: 3280/912

Dropout rate: 0.8
BatchNormalization parameters: 80/48
Dropout rate: 0.8

TimeDistributed(Dense) nodes: 1
activation: sigmoid
parameters: 21/13

Neuroinform (2021) 19:493–514498

layer is followed by a dropout, batch-normalization and
a final dropout layer. Bidirectional layers are optionally
applied using a wrapper function. The output is governed by
a time-distributed layer wrapping a dense layer (Rosenblatt
1958) with sigmoid activation, which facilitates application
of the dense layer to every temporal slice of the input.
Hence, the output is a matrix with the same dimension as
the input.

The Gaussian noise layer and dropout layers are only
active during training in order to prevent overfitting of
the training set, and inactive during validation and testing.
The kernel weights of the convolutional, dense and LSTM
layers are initialized with the Glorot uniform initializer.
Recurrent connections in LSTM layers are initialized using
the Orthogonal initializer. For optimization we chose the
Adam algorithm which implements an adaptive stochastic
gradient descent method (Kingma and Ba 2014). The
settings for model compilation, optimization algorithm and
model fitting are summarized in Table 3.

Layer dimensions were hand tuned, with the aim
of reducing the amount of trainable parameters and
reducing evaluation times and overall training times, while
maintaining achievable loss J and MSE reasonably low.

For training the RNN we used the binary cross
entropy loss function (tf.keras.losses.Binary
Crossentropy)

J = − 1

N

N∑
n=1

[
y(n) log ŷ(n) + (1 − y(n)) log

(
1 − ŷ(n)

)]
,

(7)

Table 3 Summary of settings for model compilation, optimization and
fitting of training data set

Model and optimizer settings

tf.keras method: Parameters:

Model.compile loss: binary crossentropy

optimizer:
tf.keras.optimizers.Adam

metrics: mse

optimizers.Adam lr (learning rate): 0.005/0.01

beta 1: 0.9

beta 2: 0.999

epsilon: 1e-07

Model.fit Xtrain: shape (ntrain, 1250, 1) array

ytrain: shape (ntrain, 1250, 1) array

batch size: 20

epochs: 50

Xval: shape (nval, 1250, 1) array

yval: shape (nval, 1250, 1) array

where N = Tsample/Δt is the number of temporal samples
in the label array y and RNN prediction ŷ. To monitor
training and validation performance of the RNN we used the
mean squared error

MSE = 1

N

N∑
n=1

(
y(n) − ŷ(n)

)2 . (8)

For 3-fold cross-validation of different causal and
non-causal RippleNet variants, each instance is initial-
ized using different random seeds affecting pseudo-
random number generation for initializers, Gaussian noise
and dropout layers and optimization. We set the envi-
ronment variables PYTHONHASHSEED=<seed value>
and TF DETERMINISTIC OPS=‘1’. These steps ensure
methods reproducibility (Plesser 2018) and deterministic
training results (i.e., network weight updates) on similar
GPU hardware and software versions.

Data Analysis

Thresholding of RippleNet Predictions

The output ŷ〈j〉(t) ∈ (0, 1) of RippleNet is a discrete
signal of same temporal duration and resolution as an
input segment X〈j〉(t). The signal ŷ〈j〉(t) can be interpreted
as the time-varying probability of an SPW-R ripple
event. To extract time points t̂SPW−R of candidate ripple
events, we ran the peak-finding algorithm implemented by
scipy.signal.find peaks using an initial threshold
of 0.5, minimum peak inter-distance of 50 ms (same as D)
and peak width of 20 ms. Other parameters were left at
their default values. Further analyses of SPW-R detection
performance were conducted in a discrete grid search by
varying the threshold between 0.1 and 0.95 in increments of
0.5 and peak width between 0 and 50 ms in increments of
5 ms, assessing the influence on the metrics defined next.

Quantification of True and False Detections

On the validation and test data sets, we counted a true
positive (T P) for the predicted time t̂SPW−R of an SPW-R
event if y(t̂SPW−R) = 1, false positive (FP) if y(t̂SPW−R) =
0 and false negative (FN) if no peaks above threshold in
ŷ(t) were found in time intervals where y(t) = 1. ŷ(t) can
be above threshold if FP predictions occur next to labeled
SPW-R events and result in FN counts. Negative samples,
where y(t) = 0 for all times spanned by the LFP samples,
were not included in any of the training, validation or test
sets. Hence, evaluation of true negative (T N) predictions
were not performed. Note, however, that by construction,
each sample y〈j〉(t) was equal to zero up to 95 % of the

Neuroinform (2021) 19:493–514 499

time spanned by the sample, and that more than one SPW-R
event may exist in each segment.

Precision, Recall and F1 Metrics

The following quantification metrics of SPW-R detection
performance are used:

Precision = T P

T P + FP
, (9)

Recall = T P

T P + FN
, (10)

F1 = 2 · Precision · Recall
Precision + Recall

. (11)

Recall is sometimes referred to as True Positive Rate
(TPR) and Sensitivity in the literature (e.g., by Zuo et al.
2019). Precision is also known as Positive Predictive Value
(PPV). The F1 score represents the harmonic mean of
Precision and Recall. These metrics are all defined on the
interval [0, 1], with 1 implying perfect performance.

Temporal Correlation Analysis

To quantify the temporal agreement with labeled and
predicted SPW-R event times, we compute the cross-
correlation coefficients between predicted ripple event
times t̂ 〈j〉 and labeled event times t 〈j〉 as function of time
lag τ as (Eggermont 2010, Eq. 5.10):

ρυυ̂ (τ) =
(

Rυυ̂(τ)− NυNυ̂

N

)((
1− Nυ

N

) (
1− Nυ̂

N

))− 1
2

, where

(12)

Rυυ̂(k) = 1

N

N∑
n=1

υ(n)υ̂(n + k). (13)

Here, υ and υ̂ are the time binned Nυ and Nυ̂ times
of labeled and predicted SPW-R events using a bin width
Δ = 2 ms, where N = Nυ + Nυ̂ .

Quantification of Signal Energy

To quantify ‘strengths’ of ripples in the band-pass filtered
LFP, we compute the signal energy (not to be confused with
energy in physics) as

E
〈j〉
s =

N∑
n=1

|φ〈j〉
BP (n)|2, (14)

where N = 2τ/Δt and τ ∈ [−100, 100] ms denotes time
relative to the SPW-R event time.

Technical Summary

The Python-based preprocessing and data extraction
steps used Python3 (v3.6.10), jupyter-notebook4 (v6.0.3),
numpy5 (v1.18.1, van der Walt et al. 2011), scipy6 (v1.4.1,
Vurtanen et al. 2020), h5py7 (v2.10.0, Collette et al.
2019), matplotlib8 (v3.2.1, Hunter 2007), pandas9 (v1.0.3,
McKinney 2010) with the Anaconda Python Distribution10

(v4.8.3) running on a 13-inch 2016 Macbook Pro with
macOS Mojave (v10.14.6).

The main training, analysis and visualization of
performance of RippleNet was implemented and exe-
cuted using Python (v3.6.9), jupyter-notebook (v5.2.2),
numpy (v1.18.2), scipy (v1.4.1), h5py (v2.10.0), matplotlib
(v3.2.1), seaborn11 (v0.10.1, Waskom et al. 2020), pan-
das (v1.0.3) and tensorflow12 (v2.1.0, Abadi et al. 2015)
running on the Google Colaboratory portal13 using GPU
hardware acceleration (using single Nvidia K80s, T4s, P4s
or P100s cards).

Results

We here present our main findings and analysis of
RippleNet, a set of automated, trainable recurrent neural
network algorithms for detecting SPW-R events in single-
channel LFP recordings. For training and evaluation of
RippleNet instances, the full dataset (X, y) with LFP
segments and labels is split into separate training, validation
and test sets with dimensions detailed in Table 1.

Experimental Datasets for Training and Validation

Brain signals such as the LFP are characterized by low-
frequency fluctuations, with spurious oscillatory events that
may occur in different parts of the frequency spectrum.
A few 1 s samples of mouse hippocampus CA1 LFP
from our validation data X〈j〉(t) ∈ Xval are shown in
Fig. 3a. Each sample contains at least one labeled SPW-
R event verified by a domain expert at times marked
by the diamond symbols. The SPW-R events identified

3python.org
4jupyter.org
5numpy.org
6scipy.org
7h5py.org
8matplotlib.org
9pandas.pydata.org
10www.anaconda.com
11seaborn.pydata.org
12tensorflow.org
13colab.research.google.com

Neuroinform (2021) 19:493–514500

https://www.python.org
https://jupyter.org
https://numpy.org
https://www.scipy.org
https://www.h5py.org
https://matplotlib.org
https://pandas.pydata.org
https://www.anaconda.com
https://seaborn.pydata.org
https://www.tensorflow.org
https://colab.research.google.com

a

b

c

Fig. 3 Snapshots of experimental data. a Samples of raw LFP traces
(X〈1〉(t), X〈2〉(t), . . .) with at least one labeled SPW-R event. The dia-
monds mark the times of the labeled events. Each column corresponds

to samples j from the validation dataset. b Band-pass filtered LFP
traces φ

〈j 〉
BP (t). c Wavelet spectrograms S〈j 〉(t, f) computed from the

LFP traces

using a conventional method involving manual steps (cf.
“Methods”), are hardly discernible by eye. They stand
out, however, in the corresponding band-pass filtered LFP
signals φ

〈j〉
BP (t) (Fig. 3b) and in the time-frequency resolved

spectrograms S〈j〉(t, f) (Fig. 3c). Individual samples may
also include potential SPW-R events that were not labeled.
Events may have amplitudes of ∼ 0.1 mV in the filtered
signal. Their durations are also short (� 100 ms).

Training and Validation of RippleNet Variants

We next continue with 3-fold cross validation of two main
variants of RippleNet during and after training, that are
either unidirectional (causal) or bidirectional (non-causal).
The RippleNet model instances are initialized in each
trial with different random seeds affecting initial weights,
parameters, Gaussian noise, dropout and subsequent weight
updates during training. The counts of trainable parameters
is kept about a factor two higher for the unidirectional vari-
ant (cf. the full descriptions of each variant in Table 2). The
computational load during training was approximately a fac-
tor two higher for the bidirectional variant. We observed ∼90
and ∼170 ms/step on Tesla P4 GPUs during training, respec-
tively. One step corresponds to one batch of 20 samples.

The training and validation loss J and MSE as function
of training epoch are shown in Fig. 4a, b and c, d,
respectively. Model instances M1-3 in Fig. 4a, c are of
the unidirectional variant, while models M4-6 in Fig. 4b
and d are bidirectional. Instances of each variant, except
M1, display similar and stable trajectories during training.

Validation loss J and MSE are as expected inherently
more variable across epochs, due to the smaller number
of validation samples. Both in terms of loss J and MSE

the bidirectional instances performs consistently better than
the unidirectional instances after just a few training epochs.
Validation loss J and MSE are reduced compared to
training outcome as noise and dropout layers are inactive
during validation. The different trajectories indicate no
signs of over-fitting either to the training or validation sets.
For further analysis we therefore chose trained network
instances after the final 50th training epoch.

Validation Set Performance

Training and validation losses J and MSE only provide
an indication of the ability to detect SPW-R events using
the different model instances. First, in Fig. 5 we visually
compare a subset of predictions ŷ〈j〉(t) on LFP samples
from a validation set (X〈j〉(t) ∈ Xval(t)), to one-hot
encoded SPW-R events y〈j〉(t) (see “Methods”). Here,
all model instances produce predictions (Fig. 5c–d) with
responses above the detection threshold for labeled events,
but spurious threshold crossings may occur elsewhere.

The non-causal bidirectional RippleNet instances (mod-
els M4-6, Fig. 5d) produce output with notably less spu-
rious fluctuations below threshold, when compared to the
causal instances (M1-3, Fig. 5c). These spurious fluctu-
ations reflect the fact that signal power in the expected
frequency range of SPW-R events do not vanish due to
other ongoing neural processes, measurement noise etc. The

Neuroinform (2021) 19:493–514 501

a

c d

b

Fig. 4 a Training and validation loss J as function of training epoch for for unidirectional RippleNet variants. Each instance M1-3 are instantiated
using different random seeds. b same as panel (a), but for the non-causal bidirectional variant. c, d Training and validation MSE as function of
training epoch

bidirectional models do an overall better job at predicting
the boxcar shapes of the one-hot encoded SPW-R events in
Fig. 5b, owing to the fact that the full input time series are
factored into their predictions.

We next quantify the different model instances’ per-
formance in terms of counts of true positives (TP), false
positives (FP) and false negative (FN) on the full validation
set. Summarized in Table 4, trained instances of each variant
(uni- vs. bidirectional RippleNets) show similar numbers of
TP events, 495 ± 17.5 vs. 506 ± 13.9, using the initial set-
tings for the peak-finding algorithm when applied to the
predictions ŷ〈j〉(t). However, total error counts (FP plus FN
counts) are consistently higher for the unidirectional Rip-
pleNets compared to their bidirectional counterparts (131 ±
7.02 vs. 86.7 ± 7.09).

Summarized in Table 4 we also compute the correspond-
ing measures of performance from the TP, FP and FN
counts: Precision, the ratio between TP predictions and total
number of predictions; Recall, the ratio between TP predic-
tions and the sum of TP and FN predictions; and F1, the
harmonic mean between Precision and Recall. Bidirectional
instances show on average higher Precision than unidirec-
tional instances (0.935 ± 0.012 vs. 0.881 ± 0.018), while
Recall values are similar (0.886 ± 0.031 vs. 0.908 ± 0.024).

Bidirectional models which show an overall better perfor-
mance in terms of TP, FP and TN counts with F1 scores
of 0.921 ± 0.008, above the corresponding values for the
unidirectional instances (0.883 ± 0.008).

Effect of Detection Threshold andWidth Parameters

The above analysis assumes fixed hyper-parameters for
the peak-finding algorithm (cf. “Methods”) applied to the
predictions by RippleNet instances on the validation set.
These hyper-parameters include threshold, minimal peak
interdistance and width (in units of time steps of size Δt).
We next hypothesize that the total error counts (FP+FN)
can be minimized and correct prediction counts (TP) can
be maximized using a hyper-parameter grid search, and
choose to optimize thresholds and widths for each network
with respect to the F1-score. We keep the minimal peak
interdistance the same as the boxcar filter width used to
construct y(t). Summarized in Fig. 6, the TP and FP
counts for each model instance increased when lowering the
threshold and width. FN counts increase for high threshold
values and widths. Bidirectional model instances (M4-6 in
Fig. 6b) are less affected by the width setting compared to
instances of the unidirectional variant (M1-3 in Fig. 6a).

Neuroinform (2021) 19:493–514502

a

b

c

d

Fig. 5 Comparison of RippleNet predictions on samples from the val-
idation set. Each column corresponds to different input LFP samples
X〈j 〉 shown at the top. a) Input LFP samples X〈j 〉. The diamonds mark
the times of labeled SPW-R events. b One-hot encoded label vectors

y〈j 〉(t). c Predictions ŷ〈j 〉(t) made by the different instances of the
unidirectional RippleNet variant. SPW-R events found by the peak-
finding algorithm are marked with diamond markers. d Same as panel
(c), but for the bidirectional RippleNet variant

The different instances display different ‘sweet spots’ in
terms of total number or errors (FP+FN). These counts are
reflected in the calculated Precision and Recall values.
The F1 space show for some instances multiple local
maxima as summarized in Table 5. Here model 4 (M4) has
the overall best performance, both in terms of least amounts
of errors and highest F1 score. For further analysis and

later application to a hidden test set we therefore choose
that model, with detection threshold 0.7 and peak width
of 0 time steps. In passing, we note that the other two
bidirectional RippleNet instances achieve nearly similar
levels of performance, while unidirectional instances have
higher error counts as reflected in the F1 values (0.926 ±
0.003 vs. 0.905 ± 0.0).

Table 4 TP, FP, TN counts and
performance metrics for
RippleNet models on
validation data

Model performance summary

Variant Model T P FP FN FP + FN Prec. Recall F1

unidir. 1 512 83 47 130 0.861 0.916 0.887

2 477 57 81 138 0.893 0.855 0.874

3 495 61 63 124 0.89 0.887 0.889

unidir. mean 495 67 63.7 131 0.881 0.886 0.883

st.dev 17.5 14 17 7.02 0.018 0.031 0.008

bidir. 4 522 43 36 79 0.924 0.935 0.93

5 499 36 57 93 0.933 0.897 0.915

6 497 28 60 88 0.947 0.892 0.919

bidir. mean 506 35.7 51 86.7 0.935 0.908 0.921

st.dev 13.9 7.51 13.1 7.09 0.012 0.024 0.008

Neuroinform (2021) 19:493–514 503

a

b

Fig. 6 Effect of varying threshold and width parameters for the peak
finding algorithm on counts of TP, FP and FN events in the vali-
dation dataset and derived metrics for different RippleNet instances.
a Each row corresponds to different model instances of the unidirec-
tional RippleNet variant. The columns correspond to different metrics.

Colorbars are shared among panels in each column. The cross hatches
in the last F1 column correspond to parameter combinations maximiz-
ing the F1 score as summarized in Table 5. b Same as panels in (a) but
for instances of the bidirectional RippleNet variant

Table 5 TP, FP, TN counts and performance metrics for different RippleNet instances on validation datasets, using threshold settings optimized
with respect to maximizing F1

Optimized models performance summary

Variant Model thresh. width T P FP FN FP + FN Prec. Recall F1

unidir. 1 0.25 37.5 518 71 38 109 0.879 0.932 0.905

1 0.3 37.5 518 71 38 109 0.879 0.932 0.905

1 0.4 37.5 517 70 39 109 0.881 0.93 0.905

2 0.35 31.2 498 47 58 105 0.914 0.896 0.905

3 0.3 31.2 512 64 44 108 0.889 0.921 0.905

3 0.55 31.2 505 55 51 106 0.902 0.908 0.905

unidir. mean 0.358 34.4 511 63 44.7 108 0.891 0.92 0.905

st.dev 0.107 3.42 8.24 9.98 8.24 1.75 0.014 0.015 0

bidir. 4 0.7 0 522 43 36 79 0.924 0.935 0.93

5 0.4 0 534 63 24 87 0.894 0.957 0.925

5 0.45 0 527 56 30 86 0.904 0.946 0.925

6 0.5 0 525 53 32 85 0.908 0.943 0.925

bidir. mean 0.512 0 527 53.8 30.5 84.2 0.907 0.945 0.926

st.dev 0.131 0 5.1 8.3 5 3.59 0.013 0.009 0.003

Neuroinform (2021) 19:493–514504

a

b

c

d

Fig. 7 Examples of validation samples j resulting in at least one
FP prediction per sample. FN predictions may also occur. Columns
show a input sequences with times of labeled SPW-R events denoted
by diamond markers, b band-pass filtered LFP, c spectrograms and

d predictions with detected events. The diamond and upward/downward
pointing triangle markers denote times of TP, FP and FN events,
respectively

False (FP & FN) Predictions

Having assessed the best performing bidirectional Rip-
pleNet model instance and corresponding combination
of width and threshold parameters on the validation set
(Table 5), we next inspect features of FP and FN predic-
tions on the validation dataset. This step can expose latent
issues with the data and/or the predictions made by the

trained network. LFP samples resulting in FP and FN pre-
dictions are illustrated in Figs. 7–8, respectively. From this
subset of samples, FP predictions appear to occur for tran-
sient events carrying power in the 150-250 Hz range as
reflected in both band-pass filtered LFPs (panels b) and LFP
spectrograms (panels c), similar to correct (TP) predictions.
One explanation may be that the procedure used to pro-
cess the data initially either missed SPW-R events with poor

a

b

c

d

Fig. 8 Same as Fig. 7, but showing a set of samples with at least one FN prediction per sample

Neuroinform (2021) 19:493–514 505

signal-to-noise ratio, or that they were rejected manu-
ally based on some criteria. The prediction vectors ŷ〈j〉(t)
approach a value of 1 in some FP cases, implying a high
probability of an actual SPW-R event.

For the set of samples resulting in FN predictions shown
in Fig. 8, the RippleNet instance may make predictions
ŷ(t) with magnitudes during the labeled SPW-R events that
simply fail to produce a large enough amplitude and/or
width for the peak-finding algorithm to detect the event.
Here, a reduction of the threshold value for example will
reduce FN counts, and increase FP and TP counts (cf. row
1 in Fig. 6b). Other cases resulting in both a FN and FP
registration occurs if the predicted event time is outside of
the boxcar shapes of the one-hot encoded signal. One such
case is occurring in column 2 of Fig. 7.

Ripple Detection in Time-Continuous LFP Data

We next pay attention to the litmus test of this project,
that is, applications to time continuous LFP recordings of
arbitrary durations. We choose the same RippleNet instance
as in the previous section, and the 10 minute duration LFP

signal of one session of one animal excluded from training
or validation data (mouse 4029, session 1, see Table 1).
This hold-out data set mimics new recordings unavailable
at the time of training the networks. Predicted events within
1 s of movement periods are removed from the analysis to
suppress FPs resulting from e.g., muscle noise.

By construction, the RippleNet algorithm can, in
principle, be run on LFPs of arbitrary duration, even if
all training samples are the same duration. We considered
two operating modes: Either feeding in the entire LFP
sequence as a single sample, or reshaping the LFP sequence
into many sequential samples of the same duration. For
the latter the predictions made on each sample (ŷ〈j〉(t))
can be concatenated together to form a continuous signal
spanning the duration of the LFP entirely. In practice, 5-fold
zero-padding by various amounts and splitting of the LFP
signal into samples of duration 0.5 s, running predictions,
concatenating predictions, realigning and computing the
median output followed by a single, final peak-detection
step worked well on the hidden test set.

For the 10 s segment X(t) shown in Fig. 9a, with
corresponding band-pass filtered LFP, spectrogram and

a

b

c

d

e

Fig. 9 Application of RippleNet on continuous data. a 10 s excerpt
of input LFP signal X(t) = φ(t). The diamonds marks the times
of manually labeled SPW-R events. b band-pass filtered LFP φBP(t);
c Time-frequency resolved spectrogram S(t, f) of the LFP. d label

array y(t); e prediction ŷ(t). The diamond and triangle markers rep-
resents the times of detected TP and FP SPW-R events using the
threshold and width parameters that maximize the F1 score for the
model

Neuroinform (2021) 19:493–514506

Table 6 TP, FP, TN counts and
performance metrics on
continuous test set

Model performance summary on continuous test dataset

model T P FP FN FP + FN Prec. Recall F1

4 78 85 8 93 0.479 0.907 0.627

one-hot encoded events (Fig. 9b–d), all labeled SPW-R
events are found (Fig. 9e). Unsurprisingly, other significant
responses with strengths above the peak-finding detection
threshold are also found, resulting in an overall larger
count of FPs compared to TPs (summarized in Table 6).
Based on the above analysis on a validation set with no
negative samples that result in an error rate of about one
per seven TP SPW-R event, a higher frequency of FP
predictions when predictions are made on samples spanning
the entire 10 minute session can be expected. The chosen
RippleNet instance finds about two times the number of
events compared to the number of labeled SPW-R events
in the input LFP sequence, see Fig. 10a and Table 6.
The cumulative count of predicted events appears linearly
dependent on the cumulative count of labeled events.
The cross-correlation coefficients ρyŷ(τ) between predicted
event times and labeled events in the test set (in bins of 2 ms)
in Fig. 10b demonstrates a temporally precise prediction of
event times, well within the 50 ms boxcar window around
each labeled SPW-R event in y(t) (Fig. 9d).

Features of Predicted SPW-R Events are Similar to Labeled
Events

Having established that the chosen RippleNet instance
predicts presumed FP events at a high rate relative to TP rate
in continuous LFP data, we question if features of predicted

events differ from SPW-R events judged by an expert. We
first investigate the dependence between predicted SPW-
R probability (ŷ〈j〉) and signal energy in the band-pass
filtered LFP E

〈j〉
s (14). The RippleNet instance fares well

with the labeled events in the hidden test set, with only a
handful of FNs but many FPs (summarized in Table 6). The
majority of labeled samples result in probabilities ŷ〈j〉 above
the detection threshold 0.7. The eight samples with highest
predicted probability are shown in Fig. 11 rows 1–3, and the
eight samples with lowest predicted probability in rows 4-
6. The RippleNet model instance recognizes SPW-R events
with high amplitudes and quite stereotypical appearance
both in the band-pass filtered LFP and spectrograms. At
the lower end of the scale, SPW-R events show irregular
fluctuations at lower amplitudes. The same holds true for the
SPW-R events detected above threshold by the RippleNet
algorithm (Fig. 12). Detected events have transient activity
around 150 Hz in their respective spectrograms, but may
otherwise display heterogeneous features.

It thus appears that features of SPW-R events detected
by the RippleNet algorithm share features of the manually
scored events. In Fig. 10c we plot the signal energy E

〈j〉
s

(14) dependence on probability of non-event (1 − ŷ〈j〉)
as predicted by the RippleNet instance. In this double-
logarithmic plot, the distributions are overlapping, but many
more RippleNet-detected events have lower energy and
predicted probability. This finding is in agreement with the

a c d

b

Fig. 10 a Cumulative counts of predicted SPW-R events as function of
labeled SPW-R events. b Cross-correlation coefficients between pre-
dicted ripple event times and labeled event times as function of time
lag τ (2 ms bin size). c Band-pass filtered LFP SPW-R event energy
(EφBP 〈j〉) as function of (1 − ŷ〈j 〉) of SPW-R events (orange dots).

The contour lines show the bivariate kernel density estimate of the
kdeplot method in the Seaborn plotting library. The top and bottom
panel shows labeled and predicted SPW-R events, respectively. d Aver-
aged spectrograms for labeled (top) and predicted (bottom) SPW-R
events

Neuroinform (2021) 19:493–514 507

Fig. 11 Labeled events (input LFP, band-pass filtered signal, spectro-
grams) from the hidden test set with highest and lowest RippleNet
confidence. Columns in rows 1–3 show eight events which maximized

the RippleNet-predicted probabilities (ŷ(t 〈j 〉) ≈ 1), while rows 4–6
shows labeled events with the lowest predicted event probability

observed skewed distributions of SPW-R power (see e.g.,
Csicsvari et al. 1999a). By visual inspection, the averaged
spectrogram of labeled and predicted events in Fig. 10d are
also very similar in appearance.

Discussion

In this paper we have introduced the RippleNet algorithm
for detecting SPW-R events in time-continuous LFP data as
recorded with single- or multi-channel probes in hippocampus
CA1. Its development was motivated by high-performance

speech recognition systems which utilize deep LSTM based
RNNs (Graves et al. 2013; Michalek and Vanek 2018). In
the present context, the binary problem of detecting SPW-R
events is even simpler than speech recognition which must
distinguish between different phonemes making up a spoken
language. As such, the SPW-R detection task is analogous
to mobile device wake up call detection to commands such
as “Hello Siri!” or “OK, Google!” in noisy environments.

We trained two different variants of RippleNet, each
instantiated multiple times with different random weights
on the same samples from the full set of manually
scored data obtained in both mouse and rat CA1. On

Neuroinform (2021) 19:493–514508

Fig. 12 Same as Fig. 11 but for eight FP SPW-R events detected at or above threshold by the RippleNet algorithm

our validation dataset with mouse and rat data, the best-
performing RippleNet instance resulted in 522 TP, 43 FP
and 36 FN SWP-R predictions and a combined F1 score
of 0.93 (Table 5). Instances of the non-causal variant
of RippleNet utilizing bidirectional LSTMs are found to
outperform the causal unidirectional variant during training
and validation. On the validation data and with optimized
detection threshold settings, unidirectional RippleNets
achieved similar TP counts, but with consistently higher
error counts than bidirectional variants. For comparison, one
well-performing unidirectional RippleNet resulted in 518
TPs, 71 FPs and 38 FNs and F1 = 0.905.

The fact that the bidirectional variant outperforms the
unidirectional variant during training and validation, even
if numbers of trainable parameters are larger for the latter
case, showcase that also the future context of the input
LFP contains information about SPW-R events. Thus, real-
time applications of RippleNet, for instance in closed-loop
experiments where stimuli is triggered by detected SPW-
R events, may be hampered by use of the unidirectional
version. In this setting, only use past and present context
in order to make a prediction. Thus for offline detection
of SPW-R events the better choice is the bidirectional
version. As the RippleNet algorithm runs on temporally
downsampled LFP signals, a good realtime factor is
achievable on short segments, in particular if the computer
has GPU accelerating capabilities.

A hidden test dataset was obtained from a single ani-
mal with one single session excluded from the train-
ing/validation data. This best reflected real-world applica-
tion to newly obtained LFP recordings in mouse. Features
of actual SPW-R events may differ somewhat from those

in the training/validation data obtained in different animals
and species (Table 1). Test performance (in terms of loss J ,
MSE, Precision, Recall, F1) can be expected to be reduced
compared to results obtained on the train and validation set.
Indeed, the resulting counts of 78 TPs, 104 FPs and 8 FNs
obtained with the bidirectional RippleNet which performed
best on the validation data resulted in poor Precision (0.479)
but acceptable Recall (0.907) and harmonic mean between
the two (F1) of 0.627. We found that application of the Rip-
pleNet algorithm results in far more predictions of events
with low energy than the conventional detection procedure
used to label the test set initially. Superfluous events have
similar features to labeled events however.

Given the nature of RNN parameters trained using back-
propagation (Hochreiter and Schmidhuber 1997), the Rip-
pleNet algorithm may also be sensitive to latent features in
the LFP different than high-frequency (around 150 Hz or so)
oscillations typically associated with SPW-R events. That
raises the question of whether or not conventional SPW-R
detection algorithms relying on band-pass filtered LFPs dis-
card useful information contained in other parts of the raw
signal. One major caveat to the fact RippleNet algorithm finds
most labeled events in the test and validation sets, but also
many other positives, imply that the user must still make
manual, quite likely subjective, judgements of whether or not
detected events are true SPW-R events. As discussed next,
results judged by a domain expert can be used to improve
the method, along with modifications to the RNN itself.

Additional datasets containing labeled SPW-R events,
available from online resources such as CRCNS.org
(Teeters et al. 2008), can be added as soon as they become
available. At present, several CRCNS deposits with CA1

Neuroinform (2021) 19:493–514 509

https://CRCNS.org

LFPs have been made, but not every dataset comes with
labeled SPW-R events. The uploaded datas are mostly
obtained in rats using different kinds of electrodes such
as laminar probes and tetrodes. Data is also obtained in
different brain states such as sleep, anesthetized and awake
states. While CA1 SPW-R events may represent underlying
brain mechanisms that are highly preserved across species,
it is a priori unclear if the SPW-R features our algorithm
identify in the presently used mouse and rat datasets overlap
with those in other data. The SPW-R events may for
example have a different distributions of power across
frequencies, or typical durations. Thus for the present paper
we opted to use only two sources of data, which should each
be internally consistent in terms of data quality and methods
(species, acquisition hardware, noise levels, data processing
steps, label consistency etc.).

With any data and corresponding labels the features
any deep learning method may learn is limited if labels
are inaccurate. For instance, the rat dataset contained
information on SPW-R durations (which we ignored) while
the mouse data only contained their occurrence times. More
accurate predictions on the existing dataset during training
and validation can be achieved by more thorough labeling,
perhaps by multiple experts independently.

Synthesizing recordings could also act as a potential
supplement to real data. Generative Adverserial Nets (GAN)
(Goodfellow et al. 2014) have for instance proven to
produce very lifelike data in other domains such as image
generation (e.g., Karras et al. 2019). There is an untapped
potential to generate virtually unlimited amounts of ‘fake’
LFPs with similar statistics (power spectrum, temporal
correlations, etc.) as the real data. A simple SPW-R model
based on the superposition of modulated oscillatory events
on pink (1/f) noise was already proposed by Sethi et al.
2014 (Sethi and Kemere 2014), but pure pink noise can not
account for the temporal correlations of real data.

In terms of improving the algorithm itself, RNNs with
LSTM layers or Gated Rectified Unit (GRU) layers (Chung
et al. 2014) have for some time been considered state-of-
the-art in sequence learning (Bai et al. 2018). More recently,
alternative architectures such as Temporal Convolutional
Networks (TCN), for example WaveNet (van den Oord
et al. 2016), also demonstrate capabilities of learning long-
term temporal relationships in data. TCN networks were
by Bai et al. (2018) shown to outperform LSTM networks
on various sequence learning tasks, and should also be
evaluated for the SPW-R detection task described through-
out this manuscript. The framework developed here around
the high-level tensorflow.keras module allows for
straightforward comparison between different architectures.
This comparison should also include conventional CNNs
(LeCun et al. 2015) and variants such as deep residual net-
works (He et al. 2015) and inception networks (Szegedy

et al. 2015; Ismail Fawaz et al. 2019). With the LSTM-based
architectures we opted for, one could potentially achieve
even better performance by varying hyper parameters for
the optimizer (e.g., learning rate), dropout layers (dropout
rate), disabling batch-normalizing layers, optimize kernel
sizes for the convolutional layers, add additional hidden
layers and so forth. While we here did not systematically
compare predictions using fundamentally different architec-
tures, we briefly tested multi-layered CNNs, causal TCNs,
and replacing LSTM layers with GRU layers, but saw either
worse or similar performance on the training and valida-
tion data. Similarly, we also tested increasing the layer sizes
(and numbers of trainable parameters) and noted longer
evaluation times and only slight improvements in accuracy.

As soon as RippleNet has been used to find SPW-R
event times in batches of new data, validated SPW-R events
can supplement the initial training dataset. Then, the pre-
trained RippleNet instance presented here can be trained for
more iterations, learn new features and consolidate learned
features present in the initial and new samples. With time
and several such iterations, an even better performance can
be achieved. Another possibility is classification of different
kinds of SPW-R events and non-SPW-R (noise) events. We
did not yet persuade such classification, as it would require
a modification to the final dense output layer to use the so-
called Softmax activation function instead of the presently
used sigmoid activation function. The output dimensionality
and values would then reflect the number of classes and
respective probabilities.

In terms of practical usage, pre-trained RippleNet
model instances can easily be loaded (with the
tf.keras.load model function in Python), and can be
incorporated into Python-based data processing workflows
with ease. For this purpose, models may also be converted
to the higher-level tf.estimator API. The majority
of development and analysis of RippleNet was incorpo-
rated using Jupyter notebooks14 running on the Google
Colaboratory portal15 with data file access and synchro-
nization via Google Drive.16 RippleNet can be provided
as a Cloud service, or as a service running locally on the
user’s computer. The latter may facilitate on not having to
upload potentially large files but will benefit from a local
GPU in order to accelerate compute times. Distribution of
RippleNet to end users can be done using containers in
Docker,17 Kubernetes18 or similar. A cloud service however
would facilitate on the powerful GPU backends provided

14jupyter.org
15colab.research.google.com
16drive.google.com
17docker.com
18kubernetes.io

Neuroinform (2021) 19:493–514510

https://jupyter.org
https://colab.research.google.com
https://drive.google.com
https://www.docker.com
https://kubernetes.io

via services like Google Cloud19 which also has efficient
data handling. One option could also be a port of RippleNet
to tensorflow.js as the model is already only using
keras constructs. The conversion step appears trivial20

and could allow execution of RippleNet in html contexts.
The current RippleNet version is set up as a step-by-

step workflows in Jupyter notebooks for training, validation
and application to continuous data, respectively. While
a standalone, interactive RippleNet application with a
GUI is certainly possible to develop using cross-platform
application tools such as PyQT,21 it is presently only
considered. A jupyter notebook which allows for user-
interactive rejection of detected events (noise events) and
storage of accepted events has been implemented, however.

Outlook

This work constitutes an effort to introduce novel machine
learning and deep learning algorithms for the detection of
SPW-R events in electrophysiological data. The RippleNet
algorithm presented here learns through supervised learning
an internal representation of features of SPW-R events. It
facilitates a highly non-linear transformation of input LFP
signals into output signals that represent the time-varying
probabilities of SPW-R events. The approach represents a
fundamental change from the typical procedure employed
in standard detection workflows relying on hand crafted
feature extraction. With access to more training data with
labeled events, the method can improve by running more
training iterations on new data. RippleNet can reduce
the amount of time the experimentalist spend on manual
extraction of SPW-R events using heuristic criteria, and
allow for a better understanding of features of these events,
underlying mechanisms and their role in brain function.
We believe that this powerful framework may be adapted
to other detection tasks, for instance onset of epileptic
seizures, with many potential applications in experimental
and clinical settings.

Information Sharing Statement All source codes and data to repro-
duce the findings and illustrations of this paper are freely and openly
available at github.com/CINPLA/RippleNet and Zenodo.org (Hagen
2020) under the MIT License.

Acknowledgments We would like to thank the Buzsáki lab
(buzsakilab.com) and David Tingley in particular for pub-
licly sharing their valuable electrophysiological datasets at
https://buzsakilab.com/wp/datasets/. Finally we would like to thank
Google for facilitating free access to computing resources and storage
through the Google Colaboratory portal and Google Drive.

19cloud.google.com
20tensorflow.org/js/tutorials/conversion/import keras
21riverbankcomputing.com/static/Docs/PyQt5

Author Contributions EH, KHP, RE and AJS conceived and conceptu-
alized the project. EH wrote the paper. EH, ARC, RE, KHP, GTE and
AJS cowrote the paper. ARC and RE recorded mouse LFP datas, and
labeled SPW-R events. AJS wrote the manual SPW-R detection code.
EH wrote and executed all codes for extracting training/validation/test
datasets, neural networks, neural-network training, analysis and plots
for this paper.

Funding This work was funded by the Research Council of Norway
(NFR) through the grant/award numbers 250128 (COBRA), 300504
(IKTPLUSS), 274328, 249988 and NS9021K (NIRD), the Marie
Skłodowska-Curie IF 753608, and the Letten Foundation.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X. (2015). Tensorflow: large-scale machine
learning on heterogeneous systems. https://www.tensorflow.org/,
Software available from tensorflow.org.

Axmacher, N., Elger, C.E., Fell, J. (2008). Ripples in the medial tem-
poral lobe are relevant for human memory consolidation. Brain: A
Journal of Neurology, 131(7), 1806–1817. https://doi.org/10.1093/
brain/awn103.

Bai, S., Zico Kolter, J., Koltun, V. (2018). An empirical evaluation
of generic convolutional and recurrent networks for sequence
modeling. arXiv:1803.01271.

Buzsáki, G. (2004). Neuronal oscillations in cortical networks.
Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.
1099745.

Buzsáki, G. (2015). Hippocampal sharp wave-ripple: a cognitive
biomarker for episodic memory and planning. Hippocampus,
25(10), 1073–1188. https://doi.org/10.1002/hipo.22488.

Buzsáki, G., Buhl, D., Harris, K., Csicsvari, J., Czéh, B., Morozov, A.
(2003). Hippocampal network patterns of activity in the mouse.
Neuroscience, 116(1), 201–211. https://doi.org/10.1016/s0306-
4522(02)00669-3.

Buzsaki, G., Horvath, Z., Urioste, R., Hetke, J., Wise, K. (1992).
High-frequency network oscillation in the hippocampus. Science,
256(5059), 1025–1027. https://doi.org/10.1126/science.1589772.

Buzsáki, G., Logothetis, N., Singer, W. (2013). Scaling brain size,
keeping timing: evolutionary preservation of brain rhythms. Neu-
ron, 80(3), 751–764. https://doi.org/10.1016/j.neuron.2013.10.002.

Neuroinform (2021) 19:493–514 511

https://github.com/CINPLA/RippleNet
https://doi.org/10.5281/zenodo.3819820
buzsakilab.com
https://buzsakilab.com/wp/datasets/
cloud.google.com
https://www.tensorflow.org/js/tutorials/conversion/import_keras
https://www.riverbankcomputing.com/static/Docs/PyQt5
http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://www.tensorflow.org/
https://doi.org/10.1093/brain/awn103
https://doi.org/10.1093/brain/awn103
http://arxiv.org/abs/1803.01271
https://doi.org/10.1126/science.1099745
https://doi.org/10.1126/science.1099745
https://doi.org/10.1002/hipo.22488
https://doi.org/10.1016/s0306-4522(02)00669-3
https://doi.org/10.1016/s0306-4522(02)00669-3
https://doi.org/10.1126/science.1589772
https://doi.org/10.1016/j.neuron.2013.10.002

Caputi, A., Fuchs, E.C., Allen, K., Magueresse, C.L., Monyer, H.
(2012). Selective reduction of AMPA currents onto hippocampal
interneurons impairs network oscillatory activity. PLoS ONE,
7(6), e37318. https://doi.org/10.1371/journal.pone.0037318.

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.
Chung, J., Gulcehre, C., Cho, K., Bengio, Y. (2014). Empirical

evaluation of gated recurrent neural networks on sequence
modeling. arXiv:1412.3555.

Collette, A., Caswell, T.A., Tocknell, J., Kluyver, T., Dale, D., Scopatz,
A., Jelenak, A., Valls, V., Pedersen, U.K., Raspaud, M., Jakirkham,
Parsons, A., Jialin, Chan, L., Paramonov, A., Hole, L., Feng, Y.,
Johnson, S.R., Brucher, M., Teichmann, M., Vaillant, G.A., Buyl,
P.D., Hinsen, K., Huebl, A., Vincent, T., Dietz, M., Rathgeber, F.,
Billington, C., Kieffer, J., Wright, G. (2019). H5py/h5py: 2.10.0.
https://doi.org/10.5281/ZENODO.3401726.

Conder, J. (2020). Gaussfilt(t,z,sigma). https://www.mathworks.com/
matlabcentral/fileexchange/43182-gaussfilt-t-z-sigma, Retrieved
March 30, 2020.

Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., Buzsáki, G. (1999a).
Fast network oscillations in the hippocampal CA1 region of the
behaving rat. The Journal of Neuroscience, 19(16), RC20–RC20.
https://doi.org/10.1523/jneurosci.19-16-j0001.1999.

Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., Buzsáki, G. (1999b).
Oscillatory coupling of hippocampal pyramidal cells and interneu-
rons in the behaving rat. The Journal of Neuroscience, 19(1),
274–287. https://doi.org/10.1523/jneurosci.19-01-00274.1999.

Csicsvari, J., Hirase, H., Mamiya, A., Buzsáki, G. (2000). Ensem-
ble patterns of hippocampal CA3-CA1 neurons during sharp
wave–associated population events. Neuron, 28(2), 585–594.
https://doi.org/10.1016/s0896-6273(00)00135-5.

da Silva, F.L. (2013). EEG And MEG: relevance to neuroscience.
Neuron, 80(5), 1112–1128. https://doi.org/10.1016/j.neuron.2013.
10.017.

Davidson, T.J., Kloosterman, F., Wilson, M.A. (2009). Hippocam-
pal replay of extended experience. Neuron, 63(4), 497–507.
https://doi.org/10.1016/j.neuron.2009.07.027.

Eggermont, J.J. (2010). Pair-correlation in the time and fre-
quency domain, (pp. 77–102). Boston: Springer US.
https://doi.org/10.1007/978-1-4419-5675-0 5.

Einevoll, G.T., Kayser, C., Logothetis, N.K., Panzeri, S. (2013).
Modelling and analysis of local field potentials for studying the
function of cortical circuits. Nature Reviews Neuroscience, 14(11),
770–785. https://doi.org/10.1038/nrn3599.

Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller,
P.A. (2019). Deep learning for time series classification: a
review. Data Mining and Knowledge Discovery, 33(4), 917–963.
https://doi.org/10.1007/s10618-019-00619-1.

Fritsch, C., Ibanez, A., Parrilla, M. (1999). A digital enve-
lope detection filter for real-time operation. IEEE Transac-
tions on Instrumentation and Measurement, 48(6), 1287–1293.
https://doi.org/10.1109/19.816150.

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014). Generative
adversarial networks. arXiv:1406.2661.

Graves, A., Mohamed, A.R., Hinton, G. (2013). Speech recognition
with deep recurrent neural networks. arXiv:1303.5778.

Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt Publishing
Ltd.

Hagen, E. (2020). Espenhgn/ripplenet: ripplenet-v0.1.
Hagen, E., Dahmen, D., Stavrinou, M.L., Lindén, H., Tetzlaff,

T., van Albada, S.J., Grün, S., Diesmann, M., Einevoll, G.T.
(2016). Hybrid scheme for modeling local field potentials from
point-neuron networks. Cerebral Cortex, 26(12), 4461–4496.
https://doi.org/10.1093/cercor/bhw237.

He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep residual learning for
image recognition. arXiv:1512.03385.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/
neco.1997.9.8.1735.

Hunter, J.D. (2007). Matplotlib: a 2d graphics environment. Comput-
ing in Science Engineering, 9(3), 90–95.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167.

Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt,
D.F., Weber, J., Webb, G.I., Idoumghar, L., Muller, P.A.,
Petitjean, F. (2019). InceptionTime: finding AlexNet for time
series classification. arXiv:1909.04939.

Jadhav, S.P., Kemere, C., German, P.W., Frank, L.M. (2012). Awake
hippocampal sharp-wave ripples support spatial memory. Science,
336(6087), 1454–1458. https://doi.org/10.1126/science.1217230.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.
(2019). Analyzing and improving the image quality of styleGAN.
arXiv:1912.04958.

Kingma, D.P., & Ba, J. (2014). Adam: a method for stochastic
optimization. arXiv:1412.6980.

LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature,
521(7553), 436–444. https://doi.org/10.1038/nature14539.

LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E.,
Hubbard, W.E., Jackel, L.D. (1990). Handwritten digit recognition
with a back-propagation network. In Touretzky, D.S. (Ed.) Advan-
ces in neural information processing systems 2 (pp. 396–404).
San Mateo: Morgan-Kaufmann. http://papers.nips.cc/paper/293-
handwritten-digit-recognition-with-a-back-propagation-network.
pdf.

MATLAB (2018). Version 9.5.0.1067069 (r2018b) update 4.
Matsuoka, K. (1992). Noise injection into inputs in back-propagation

learning. IEEE Transactions on Systems, Man, and Cybernetics,
22(3), 436–440. https://doi.org/10.1109/21.155944.

McKinney, W. (2010). Data structures for statistical computing in
python. In van der Walt, S., & Millman, J. (Eds.) Proceedings
of the 9th Python in Science Conference. SciPy (pp. 56–61),
https://doi.org/10.25080/majora-92bf1922-00a.

Medvedev, A.V., Agoureeva, G.I., Murro, A.M. (2019). A long short-
term memory neural network for the detection of epileptiform
spikes and high frequency oscillations. Scientific Reports, 9(1),
1–10. https://doi.org/10.1038/s41598-019-55861-w.

Michalek, J., & Vanek, J. (2018). A survey of recent DNN architectures
on the TIMIT phone recognition task. arXiv:1806.07974.

Nair, V., & Hinton, G.E. (2010). Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th interna-
tional conference on machine learning (ICML-10) (pp. 807–814).

Norman, Y., Yeagle, E.M., Khuvis, S., Harel, M., Mehta, A.D.,
Malach, R. (2019). Hippocampal sharp-wave ripples linked to
visual episodic recollection in humans. Science, 365(6454),
eaax1030. https://doi.org/10.1126/science.aax1030.

O’Keefe, J., & Nade, L. (1978). The hippocampus as a cognitive map.
Oxford: Oxford University Press.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., Lerer, A. (2017). Automatic
differentiation in PyTorch. In NIPS-W.

Petersen, P.C., Hernandez, M., Buzsáki, G. (2018). Public electrophys-
iological datasets collected in the Buzsáki lab. https://doi.org/10.
5281/ZENODO.3629881.

Plesser, H.E. (2018). Reproducibility vs. replicability: a brief history
of a confused terminology. Frontiers in Neuroinformatics 11(76).
https://doi.org/10.3389/fninf.2017.00076.

Ramirez-Villegas, J.F., Logothetis, N.K., Besserve, M. (2015).
Diversity of sharp-wave–ripple LFP signatures reveals dif-
ferentiated brain-wide dynamical events. Proceedings of
the National Academy of Sciences, 112(46), E6379–E6387.
https://doi.org/10.1073/pnas.1518257112.

Neuroinform (2021) 19:493–514512

https://doi.org/10.1371/journal.pone.0037318
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.3555
https://doi.org/10.5281/ZENODO.3401726
https://www.mathworks.com/matlabcentral/fileexchange/43182-gaussfilt-t- z-sigma
https://www.mathworks.com/matlabcentral/fileexchange/43182-gaussfilt-t- z-sigma
https://doi.org/10.1523/jneurosci.19-16-j0001.1999
https://doi.org/10.1523/jneurosci.19-01-00274.1999
https://doi.org/10.1016/s0896-6273(00)00135-5
https://doi.org/10.1016/j.neuron.2013.10.017
https://doi.org/10.1016/j.neuron.2013.10.017
https://doi.org/10.1016/j.neuron.2009.07.027
https://doi.org/10.1007/978-1-4419-5675-0_5
https://doi.org/10.1038/nrn3599
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1109/19.816150
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1303.5778
https://doi.org/10.1093/cercor/bhw237
http://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1909.04939
https://doi.org/10.1126/science.1217230
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nature14539
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
https://doi.org/10.1109/21.155944
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1038/s41598-019-55861-w
http://arxiv.org/abs/1806.07974
https://doi.org/10.1126/science.aax1030
https://doi.org/10.5281/ZENODO.3629881
https://doi.org/10.5281/ZENODO.3629881
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1073/pnas.1518257112

Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks
for image classification: a comprehensive review. Neural Compu-
tation, 29(9), 2352–2449. https://doi.org/10.1162/neco a 00990.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for
information storage and organization in the brain. Psychological
Review, 65(6), 386–408. https://doi.org/10.1037/h0042519.

Schomburg, E.W., Anastassiou, C.A., Buzsáki, G., Koch, C. (2012).
The spiking component of oscillatory extracellular potentials in
the rat hippocampus. The Journal of Neuroscience, 32(34), 11798–
11811. https://doi.org/10.1523/jneurosci.0656-12.2012.

Sethi, A., & Kemere, C. (2014). Real time algorithms for sharp wave
ripple detection. In 2014 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC
2014), (Vol. 2014 pp. 2637–2640). https://doi.org/10.1109/embc.
2014.6944164.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdi-
nov, R. (2014). Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research,
15(1), 1929–1958.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015). Going
deeper with convolutions. In 2015 IEEE Conference on com-
puter vision and pattern recognition (CVPR). IEEE (pp. 1–9),
https://doi.org/10.1109/cvpr.2015.7298594.

Teeters, J.L., Harris, K.D., Millman, K.J., Olshausen, B.A., Sommer,
F.T. (2008). Data sharing for computational neuroscience. Neuroin-
formatics, 6(1), 47–55. https://doi.org/10.1007/s12021-008-9009-y.

Tingley, D., & Buzsáki, G. (2018). Transformation of a spatial map
across the hippocampal-lateral septal circuit. Neuron, 98(6), 1229–
1242.e5. https://doi.org/10.1016/j.neuron.2018.04.028.

Tingley, D., & Buzsáki, G. (2020). Routing of hippocampal ripples
to subcortical structures via the lateral septum. Neuron, 105(1),
138–149.e5. https://doi.org/10.1016/j.neuron.2019.10.012.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O.,
Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K. (2016).
Wavenet: a generative model for raw audio. arXiv:1609.03499.

van der Walt, S., Colbert, S.C., Varoquaux, G. (2011). The numpy
array: a structure for efficient numerical computation. Computing
in Science Engineering, 13(2), 22–30.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser,
W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J.,
Jarrod Millman, K., Mayorov, N., Nelson, A.R.J., Jones, E.,
Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore,
E.W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald,
A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P. (2020).
Contributors, SciPy 1. 0: Scipy 1.0: fundamental algorithms for
scientific computing in python. Nature Methods, 17, 261–272.
https://doi.org/10.1038/s41592-019-0686-2.

Wang, X.J. (2010). Neurophysiological and computational principles
of cortical rhythms in cognition. Physiological Reviews, 90(3),
1195–1268. https://doi.org/10.1152/physrev.00035.2008.

Waskom, M., Botvinnik, O., Ostblom, J., Gelbart, M., Lukauskas,
S., Hobson, P., Gemperline, D.C., Augspurger, T., Halchenko,
Y., Cole, J.B., Warmenhoven, J., Ruiter, J.D., Pye, C., Hoyer,
S., Vanderplas, J., Villalba, S., Kunter, G., Quintero, E.,
Bachant, P., Martin, M., Meyer, K., Swain, C., Miles, A.,
Brunner, T., O’Kane, D., Yarkoni, T., Williams, M.L., Evans, C.,
Fitzgerald, C. (2020). mwaskom/seaborn: v0.10.1 (April 2020).
https://doi.org/10.5281/ZENODO.3767070.

Zuo, R., Wei, J., Li, X., Li, C., Zhao, C., Ren, Z., Liang, Y., Geng,
X., Jiang, C., Yang, X., Zhang, X. (2019). Automated detection of
high-frequency oscillations in epilepsy based on a convolutional
neural network. Frontiers in Computational Neuroscience, 13, 6.
https://doi.org/10.3389/fncom.2019.00006.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Neuroinform (2021) 19:493–514 513

https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1037/h0042519
https://doi.org/10.1523/jneurosci.0656-12.2012
https://doi.org/10.1109/embc.2014.6944164
https://doi.org/10.1109/embc.2014.6944164
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1007/s12021-008-9009-y
https://doi.org/10.1016/j.neuron.2018.04.028
https://doi.org/10.1016/j.neuron.2019.10.012
http://arxiv.org/abs/1609.03499
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.5281/ZENODO.3767070
https://doi.org/10.3389/fncom.2019.00006

Affiliations

Espen Hagen1,2 · Anna R. Chambers3 · Gaute T. Einevoll1,2 · Klas H. Pettersen4 · Rune Enger5 ·
Alexander J. Stasik2

Anna R. Chambers
anna.chambers@medisin.uio.no

Gaute T. Einevoll
gaute.einevoll@nmbu.no

Klas H. Pettersen
klas.pettersen@nora.ai

Rune Enger
rune.enger@medisin.uio.no

1 Faculty of Science and Technology, Norwegian University
of Life Sciences, Ås, Norway

2 Department of Physics, Faculty of Mathematics and Natural
Sciences, University of Oslo, Oslo, Norway

3 Division of Physiology, Department of Molecular Medicine,
Institute of Basic Medical Sciences, Faculty of Medicine,
University of Oslo, Oslo, Norway

4 NORA - Norwegian Artificial Intelligence Research
Consortium, Faculty of Mathematics and Natural Sciences,
University of Oslo, Oslo, Norway

5 Division of Anatomy, Department of Molecular Medicine,
Institute of Basic Medical Sciences, Faculty of Medicine,
University of Oslo, Oslo, Norway

Neuroinform (2021) 19:493–514514

http://orcid.org/0000-0002-1321-5970
http://orcid.org/0000-0003-2737-0637
http://orcid.org/0000-0002-5425-5012
http://orcid.org/0000-0003-3078-3301
http://orcid.org/0000-0001-9418-7117
http://orcid.org/0000-0003-1646-2472
mailto: anna.chambers@medisin.uio.no
mailto: gaute.einevoll@nmbu.no
mailto: klas.pettersen@nora.ai
mailto: rune.enger@medisin.uio.no

	RippleNet: a Recurrent Neural Network for Sharp Wave Ripple (SPW-R) Detection
	Abstract
	Introduction
	Methods
	Experimental Data
	Mouse Data
	SPW-R Detection Procedure

	Rat Data

	Data Preprocessing
	Wavelet Spectrograms
	Training, Validation and Test Data
	Input Data
	One-Hot Encoding of SPW-R Events
	Datasets

	RippleNet Implementations
	Data Analysis
	Thresholding of RippleNet Predictions
	Quantification of True and False Detections
	Precision, Recall and F1 Metrics
	Temporal Correlation Analysis
	Quantification of Signal Energy

	Technical Summary

	Results
	Experimental Datasets for Training and Validation
	Training and Validation of RippleNet Variants
	Validation Set Performance
	Effect of Detection Threshold and Width Parameters
	False (FP & FN) Predictions

	Ripple Detection in Time-Continuous LFP Data
	Features of Predicted SPW-R Events are Similar to Labeled Events

	Discussion
	Outlook
	References
	Affiliations

