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ABSTRACT

Understanding the normal state of human tissue tran-
scriptome profiles is essential for recognizing tis-
sue disease states and identifying disease mark-
ers. Recently, the Human Protein Atlas and the
FANTOM5 consortium have each published exten-
sive transcriptome data for human samples us-
ing Illumina-sequenced RNA-Seq and Heliscope-
sequenced CAGE. Here, we report on the first large-
scale complex tissue transcriptome comparison be-
tween full-length versus 5′-capped mRNA sequenc-
ing data. Overall gene expression correlation was
high between the 22 corresponding tissues ana-
lyzed (R > 0.8). For genes ubiquitously expressed
across all tissues, the two data sets showed high
genome-wide correlation (91% agreement), with dif-
ferences observed for a small number of individ-
ual genes indicating the need to update their gene
models. Among the identified single-tissue enriched
genes, up to 75% showed consensus of 7-fold en-
richment in the same tissue in both methods, while
another 17% exhibited multiple tissue enrichment
and/or high expression variety in the other data
set, likely dependent on the cell type proportions
included in each tissue sample. Our results show
that RNA-Seq and CAGE tissue transcriptome data
sets are highly complementary for improving gene
model annotations and highlight biological complex-

ities within tissue transcriptomes. Furthermore, inte-
gration with image-based protein expression data is
highly advantageous for understanding expression
specificities for many genes.

INTRODUCTION

Gene expression diversity within the different body parts
of a living organism contributes to the distinct phenotypes,
physiology and functionalities of the different cell types and
tissues. Knowing the gene expression profiles of all the ma-
jor tissues in the human body can greatly increase our un-
derstanding of human biology, aid with disease state diag-
nosis, and help identify potential drug target candidates.
With regards to human biology, fundamental questions in
terms of gene expression include: which genes are expressed
in all tissues/cell types, and which combination of genes
uniquely gives an organ its tissue identity. Whether a gene
is truly tissue-specific or is found in a number of distinct tis-
sues can only be assessed if its expression has been profiled
in most parts of the human body.

Many genome-wide transcriptome profiling technologies
have been developed for identification and quantification of
global gene expressions, each emphasizing specific aspects
of the RNA transcripts. For example, microarrays were de-
veloped to measure relative quantity of RNA expression for
comparing treatment to control samples (1). As sequenc-
ing technologies improved drastically, RNA-Seq was devel-
oped to provide identification as well as quantification of
RNA transcripts (2). Developed by RIKEN in Japan, the
cap analysis gene expression (CAGE) technology focuses
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on defining the promoter landscape, which is important for
understanding gene regulation by transcription factors and
enhancers (3–5).

As the technologies matured, many efforts have been
made to gather gene expression profiles for various parts of
the human body, using the different technologies mentioned
above. One of the first efforts to put together a comprehen-
sive tissue transcriptome microarray profile (6) is now acces-
sible through the bioGPS portal (7), among other data in-
tegration websites. General repositories of microarray data
from tissues can be found at ArrayExpress (8). Examples of
Next-generation sequencing (NGS) RNA-Seq tissue tran-
scriptome data include the Illumina BodyMap 2.0, which
has been incorporated into GeneCards (9) and other re-
sources; RNA-Seq Atlas, which holds data for 11 healthy
tissues, is cross-linked with microarray data for both healthy
and pathological patient samples (10). The Genotype Tis-
sue Expression Project (GTEx), which focuses on identify-
ing expression quantitative trait locus (eQTL) data, aims to
collect tissue data from 900 individuals by 2015 (11). As a
public data repository, Expression Atlas (12) provides dif-
ferential expression data for both microarrays and NGS
sequencing produced by different labs under many exper-
imental conditions.

Recently, the Human Protein Atlas (HPA), a re-
source that provides immunohistochemistry-based expres-
sion, spatial localization within tissues, and subcellular lo-
calization information for the human proteome, has pro-
duced a large tissue RNA-Seq expression repository, with
32 histologically normal human tissues based on 95 indi-
viduals, with at least 2 biological replicates for each tis-
sue (13). The FANTOM5 (Functional Analysis of Mam-
malian Genomes 5) consortium has also recently published
transcriptome profiles for over 975 human samples, in-
cluding cell line, primary cells, and tissues using CAGE
with single-molecule sequencing technology (14,15). Both
of these projects employed systematic laboratory workflows
for preparing RNA from samples, producing transcrip-
tome sequencing results, as well as coherent computational
pipelines for data processing.

While both data sets contain measurements for RNA
transcription levels, the FANTOM5 CAGE technology is
distinct from RNA-Seq in terms of the part of RNA cap-
tured (Figure 1). CAGE technology captures the capped
5′ start of mRNA and sequences around 27 base pairs,
whereas RNA-Seq technology sequences the entire length
of transcripts covering all the exons. Whereas the RNA-seq
protocol used by the HPA project captures only polyadeny-
lated transcripts, the protocol of CAGE employed does not
suffer from this limitation, and will detect all 5′-capped
transcripts, regardless of polyadenylation state. One of the
biggest strengths of deep CAGE sequencing lies in its ability
to distinguish closely spaced transcript start site (TSS) us-
age preference and the corresponding promoter landscapes.
The HeliScope sequencer used to generate the FANTOM5
CAGE data does not require any polymerase chain reaction
(PCR) steps and provides PCR-bias free sequencing data.
On the other hand, RNA-Seq provides clear information
for exons that are present in the sample and can infer which
transcript isoforms are preferentially expressed.

It has been shown that clonally amplified Illumina se-
quencing and single molecule HeliScope sequencing tran-
scriptome profiling are technically comparable when a lim-
ited number of cell line RNAs were profiled by both tech-
niques in the same lab (16). However, it is not known to
what extent complex tissue gene expression data is directly
comparable, especially if tissues are obtained from different
sources and processed in different manners. In this study, we
performed global comparisons for twenty-two tissues be-
tween the FANTOM5 CAGE and HPA RNA-Seq data sets.
We compared the data from the tissue perspective, look-
ing at gene expression correlation between two correspond-
ing tissues. We evaluated global comparisons of all tissues
against all across two data sets. We also compared the data
from the perspective of gene categories to see how ubiqui-
tously expressed genes and single-tissue enriched genes (ex-
pressed considerably higher in one tissue than all other tis-
sues) compare between the two data sets. Finally we looked
at disagreements between the two data sets and provide
some explanations for these discrepancies.

This work is part of the FANTOM5 project. Data down-
load, genomic tools and co-published manuscripts have
been summarized at http://fantom.gsc.riken.jp/5/.

MATERIALS AND METHODS

Data set selection

The HPA RNA-Seq data was obtained from Array Express
Archive (www.ebi.ac.uk/arrayexpress/) with the accession
number: E-MTAB-1733 (17). CAGE peaks expression table
was obtained from http://fantom.gsc.riken.jp/5/data (15).
The ‘robust’ promoter set was used for this study. Out of 27
tissues with available RNA-Seq data from the HPA data set,
only tissues with corresponding FANTOM5 tissues were
selected for this study. Adult duodenum and stomach tis-
sues were not available in the FANTOM5 data set. The
skin, bone marrow, and adrenal gland FANTOM5 samples
were not used in this study due to low total TPM sums. 22
tissues passed the selection criteria––including 27 samples
from FANTOM5, as well as 79 samples from HPA––were
used in this study. The full list of tissues used in this study
is available in Supplementary Table S1.

Gene annotation

RNA-Seq data was annotated as previously described (17),
using GRCh37 as reference genome for mapping reads with
Tophat v2.0.3 (18) and using the gene annotation from En-
sembl build 73 (19) for expression quantification (in FP-
KMs) with Cufflinks v2.0.2 (20). CAGE clusters were as-
signed to genes with a custom script using the same genome
build and Ensembl annotation as for RNA-Seq data. Peaks
mapped to within ±500 bases of any annotated transcript
start sites were summed up for each of the associated gene.
Both protein-coding and non-coding genes were used for
the initial overall comparisons, but only genes annotated
as protein-coding (20,940 in total) were used in subsequent
analyses. Genes were considered as expressed if TPM > 1
for CAGE data and FPKM > 1 for RNA-Seq data.

http://fantom.gsc.riken.jp/5/
http://www.ebi.ac.uk/arrayexpress/
http://fantom.gsc.riken.jp/5/data
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Figure 1. Schematic diagram of CAGE and RNA-Seq read coverage for a gene with two isoforms. RNA-Seq reads are 100 bp short reads that cover the
entire transcript with decreasing coverage at the 5′ and 3′ ends of the transcripts, while CAGE reads (∼27 bp) provide sharp coverage for transcript start
sites (TSS) of the first exons for all transcripts that are expressed.

Correlation analysis

Pairwise Spearman correlation coefficients were calculated
using FPKM and TPM values of 17,765 genes, which in-
cludes all protein-coding genes that show expression in at
least one sample in both CAGE and RNA-Seq data sets,
for all 27 FANTOM5 samples against all 79 samples from
HPA. Both the all-against-all dotplot and heatmap were
generated using these correlation values. Hierarchical clus-
tering of FANTOM5 samples was produced using (1 – cor-
relation coefficient) as distance. The average linkage method
was used to measure the distance between clusters.

Categorization of ubiquitously expressed and single-tissue en-
riched genes

A gene was considered as ‘ubiquitously expressed’ or ‘ex-
pressed in all’ if its expression levels were > 1 TPM / FPKM
in all tissue samples. Genes that were expressed in 100% of
the samples in one data set and in 95% of the other data set
(27/27 of FANTOM5 samples and ≥ 75/79 of HPA sam-
ples, or 79/79 of HPA samples and ≥ 25/27 of FANTOM5
samples) were considered as ‘in agreement’ by both data
sets. A gene was considered as single tissue-enriched if the
gene expression was at least x-fold higher in one particular
tissue than all other tissues in that data set. More relaxed
criteria were also tested, where genes were counted as ‘in
agreement’ for the single tissue-enriched category if the tis-
sue with the highest expression for that gene was the same
for both data sets and if the gene expression had a >x-fold
enrichment for one data set and >y-fold higher for the other
data set (where y < x). Fold enrichment values tested for x
included 3-, 5-, 7-, and 10-fold, and for y, 3- and 5-fold. If
a gene belonged to both ubiquitously expressed and single
tissue-enriched categories, it was counted as a single tissue-
enriched gene for visualization purposes in the scatterplots
(fewer genes belong to this category). Statistical significance
of proportions of genes in specified categories were calcu-
lated using Student’s t-test.

Gene model comparison

For genes that belonged to the HPA-only or FANTOM5-
only ubiquitously expressed or single tissue-enriched cate-
gories, manual examination was performed on the most ex-
treme cases (expressed in all in one data set and expressed
in 0 or in a few samples in the other data set). For cases
where expression was low or zero in FANTOM5 samples,
a search for CAGE peaks with genomic locations greater
than 500 bp upstream and downstream from the gene’s
known start sites was performed. Identified CAGE peak(s)
were checked for tissue specificity and expression levels us-
ing Zenbu genome browser to see how well the peak(s)
compared to that of the HPA data set (21). For dubious
RNA-Seq read coverage plots, the sequence of the stretch
of mapped reads was checked against the transcriptome to
see if it mapped to other genes.

Evaluation of CAGE peak distance to annotated transcript
start sites (TSS)

To see how genes with RNA-Seq expression map to CAGE
peaks >500 bp from the annotated TSSes, firstly, for all
20,940 protein coding genes, the distance of the closest
CAGE peaks was identified by the closest TSS for each
gene. Secondly, the 184,827 robust CAGE peaks from FAN-
TOM5 data were mapped to the closest annotated TSSes
for all genes. The subset of genes with RNA-Seq expres-
sion but without CAGE expression in brain, pancreas, pla-
centa, and testis were then used to create scatterplots show-
ing RNA-Seq expression versus distance of each gene’s an-
notated TSSes to the closest corresponding CAGE peaks
for each tissue.

RESULTS

Data set overview

We compared both coding and non-coding genes from 22
corresponding tissues, with 79 samples from the HPA RNA-
Seq data set and 27 samples from the FANTOM5 CAGE
data set. The overall number of protein coding genes ex-
pressed in each tissue ranges from 12,135 genes in liver
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to 15,509 genes in testis for the HPA data set and 12,423
in heart tissue to 14,588 genes in testis in the FANTOM5
data set. Between corresponding tissues, the percentages of
agreement, in terms of which genes are expressed, range
from 84% to 88% (Supplementary Table S1). The number
of non-coding genes (ncRNAs) ranges from 2163 to 6650
genes in the HPA RNA-Seq data set and 1380 to 2607 genes
in the FANTOM5 CAGE data set, with about 22–25%
agreement for each corresponding tissue. Salivary gland,
liver and pancreas samples exhibit genes with the overall
largest expression ranges for coding genes while ovary and
uterus had the most narrow expression ranges in both data
sets (Supplementary Figure S1). Due to the low percentages
of agreement for non-coding genes, we decided to focus the
remainder of this study on comparisons of protein-coding
genes only.

Overall gene expression is comparable between FANTOM5
and HPA data sets

Gene expression of corresponding tissue samples from the
FANTOM5 and HPA data sets were used for tissue-against-
tissue comparison. Four representative tissue comparison
plots are shown in Figure 2 (comparisons for the other 18
tissues can be found in Supplementary Figure S2). To fa-
cilitate with the interpretation of the scatterplots, we cate-
gorized the genes into ‘Expressed in all’, defined as genes
expressed in all tissues, ‘Single tissue-enriched’, shown here
as at least 7-fold higher in one particular tissue compared
to all other tissues, and ‘Other’, which are genes that be-
long to neither categories. Expression levels of ubiquitously
expressed genes common to both data sets (defined as ex-
pressed in all tissues in one data set and found in 95% of the
tissues in the other data set) tend to have higher expressions
than ubiquitously expressed genes found in one data set
only. Single tissue-enriched genes are mostly found in brain
and testis by far, confirming previous observations (17).
The high global correlations for all tissue comparisons sug-
gest that overall, the same genes were detected/expressed
at similar levels in both data sets for each tissue (Figure 2,
Supplementary Figure S2). This was confirmed by exam-
ining gene expression across 22 tissues in terms of maxi-
mum expression values over mean values (Supplementary
Figure S3). Higher max/mean values suggest higher speci-
ficity of gene expression in few tissues. Of the max/mean
ratio differences, 95% of genes are within ±6 between the
two data sets. We also looked at max/median value com-
parison between FANTOM5 and HPA, and we found that
∼94% of the gene expression ratio differences are within 10-
fold. Besides salivary gland, where the expression levels of
the top expressed genes were one order of magnitude higher
in the FANTOM5 data set, the magnitudes of gene expres-
sion seemed comparable for protein-coding genes in most
tissues.

Tissue expression signatures are independent of the data set
and profiling method

Because the ubiquitously expressed genes accounted for 50–
70% of all expressed genes within each tissue, we wanted to
know if overall gene expression distinguishes one particu-
lar tissue from all other tissues. We found that for 18 out of

22 of the FANTOM5 tissues, Spearman correlation values
showed clear distinction between corresponding tissues ver-
sus other tissues (R > 0.8) (Figure 3A). For prostate, ovary,
lymph node, appendix, and one of the CAGE colon sam-
ples, the correlation values between corresponding tissues
were not so well separated from the next most closely related
tissues. Correlation coefficients for non-corresponding tis-
sues between the two data sets mostly ranged from 0.65 to
0.8. Brain and testis had overall lower correlations to other
tissues. To check if the high number of testis- and brain-
specific genes were solely responsible for the low correlation
levels, we tried computing correlation levels with all genes
expressed in both data set minus all the CAGE and RNA-
Seq testis- and brain-enriched genes. We found the correla-
tion range for one testis tissue became much more similar to
the other tissues (Supplementary Figure S4). However, for
both FANTOM5 brain samples and one of the testis sam-
ples, the correlation ranges remained lower than for other
tissues, in the range of 0.55 to 0.7.

Tissue groupings were in agreement between HPA and
FANTOM5 samples, with subtle differences between the
two data sets, as shown by asymmetric color shading of the
heatmap in Figure 3B. Major groupings include immune
system organs (spleen, lymph node, appendix), digestive
system (appendix, colon, small intestine), and organs con-
sisting of similar cell types (uterus, ovary, prostate, urinary
bladder). Overall, the subtle shading asymmetry may reflect
the subtle tissue composition differences, yet the strong cor-
relations between the corresponding tissues from the two
data sets confirm the distinction of tissue expression signa-
tures, especially for distinct organs.

Global comparison of ubiquitously expressed and single
tissue-enriched genes demonstrate data set comparability

To assess how gene expressions compared at a global level,
we took a closer look at the level of agreement between the
two data sets for two groups of genes: genes that were ubiq-
uitously expressed in most tissues and genes that were highly
tissue-specific or highly enriched in one tissue, to see how
well the two data sets coincide. We found that 91% of the
ubiquitously expressed gene category were common to HPA
RNA-Seq and FANTOM5 CAGE data (Figure 4A). A his-
togram is shown for RNA-Seq ubiquitous genes’ expres-
sion in CAGE, and vice versa, to show that indeed ∼50%
of the data set specific ubiquitous genes were expressed in
95% of the tissues in the other data set (Figure 4B). 8% of
the CAGE-only ubiquitous genes and 7% of the RNA-Seq-
only ubiquitous genes were found to be absent in the other
data set, suggesting some sort of technical detection issues,
which will be discussed further in the next section. For sin-
gle tissue-enriched genes, different fold enrichments show
that the agreements between two data sets were around 50%
for strict fold comparisons. The agreements increased to 63–
75% when more relaxed fold enrichment criteria were em-
ployed (Figure 4C). We further examined the single-tissue
enriched genes by their distributions among different tis-
sues, and found that for all enrichment cut-offs examined,
the majority of the single tissue-enriched genes were ex-
pressed in testis (38%, P < 3 × 10−10), followed by brain
(21%, P < 3 × 10−9) and liver (10%, P < 3 × 10−5) (7-
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Figure 2. Gene expression correlations between corresponding tissues in the FANTOM5 CAGE and HPA RNA-Seq data sets. Scatterplots of gene expres-
sions measured in TPMs for CAGE data set and FPKM values for RNA-Seq data set are shown for (A) brain, (B) pancreas, (C) placenta and (D) testis.
The axes are shown in log10 scales. Only protein-coding genes mapped in both data sets are used in this analysis.
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Figure 3. Comparison of overall correlation values between 22 tissue samples chosen from the FANTOM5 and HPA data sets. (A) The dotplot shows the
ranges of correlation values between each of the 27 tissue samples in FANTOM5 data set against all of the 75 HPA tissue samples (brain, colon, heart, lung,
and testis each has two samples coming from the same tissue). (B) Hierarchical clustering shows tissue relationships within the 27 FANTOM5 samples.
The heatmap shows subtle differences in the correlation relationship of HPA tissue samples to FANTOM5 tissues samples. All correlation scores were
calculated as pair-wise Spearman correlation coefficients between the tissue samples.

fold–3-fold comparison shown as an example in Figure 4D;
comparisons for other cutoffs are shown in Supplementary
Figure S5). The order of the other tissues were less consis-
tent, though immune tissues and urinary bladder were con-
sistently found to have the lowest numbers of single tissue-
enriched genes (bladder enriched genes = 0.1%, P < 1 ×
10−12; lymph node enriched = 0.2%, P < 1 × 10−10). Look-
ing at strict cutoffs (3-, 5-, 7-,10-fold enrichment) versus
relaxed cutoffs (5-fold–3-fold, 7-fold–3-fold, 7-fold–5-fold,
10-fold–5-fold), we found the proportion of CAGE-only
brain-enriched genes to be higher for strict cutoffs (9% ver-
sus 4%, P < 5 × 10−3), whereas for testis-enriched genes,
the proportion of RNA-Seq- only enriched genes were sig-
nificantly higher using strict cutoffs (5% versus 2%, P < 4
× 10−3). Overall, CAGE and RNA-Seq data sets largely
agreed in terms of ubiquitously expressed genes, whereas
single-tissue enriched genes showed higher agreements with
more relaxed fold enrichment cutoffs. The lists of genes in
each category of commonly and single data set only ubiq-

uitous genes and single-tissue expressed genes for 7-fold–3-
fold comparison can be found in Supplementary Tables S2
and S3.

Discrepancies between two data sets can largely be ex-
plained by gene model annotation issues or by observing
immunohistochemistry-based protein profiles

We identified seven factors which could explain the discrep-
ancies between the two data sets, and we attempt, as much
as we could, to find out what proportion of the discrepan-
cies can be explained by each of these factors (Table 1).

To investigate in discrepancies caused by detection limit,
where tissue samples in one data set may have had deeper
sequence depth or stricter filtering criteria than the other
data set, we looked into the 8% of disagreeing ubiquitous
gene cases. The genes found to not meet the strict crite-
ria tended to have lower expressions overall, with 60% of
CAGE-only ubiquitous genes and 67% of RNA-Seq only
ubiquitous genes having 1 or more samples with expression
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Figure 4. Distribution of ubiquitously expressed and single tissue-enriched genes among FANTOM5 CAGE and HPA RNA-Seq data sets. (A) Distribution
of ubiquitously expressed genes in either FANTOM5 or HPA data set. A gene is considered as ubiquitously expressed for both data sets if it is expressed
in all samples in one data set and in 95% of the tissues in the other data set. (B) Top histogram shows distribution of FANTOM5 ubiquitously expressed
genes in HPA RNA-Seq tissue samples. Bottom histogram shows distribution of HPA ubiquitous gene expression in FANTOM5 CAGE tissue samples. The
histograms confirm that most of the genes are expressed in 95% of the tissues in the other data set. (C) Distribution of single tissue-enriched genes among
22 tissues identified in either FANTOM5 or HPA data set for 3-, 5-, 7-, 10-fold, 5-fold–3-fold, 7-fold–5-fold, 7-fold–3-fold, and 10-fold–5-fold enrichment.
(D) Tissue distribution of the single tissue-enriched genes identified in FANTOM5 and HPA tissue samples, shown for 7-fold–3-fold enrichment.

< 3 TPMs/FPKMs, which could explain why they were un-
detected in the other data set. In addition, within the 40
FANOMT5-only ubiquitous genes with no expression in
the RNA-Seq data, 80% of them were uncharacterized pro-
teins, read throughs, or have no annotations at all (Supple-
mentary Table S3).

For cases where CAGE expression was high and RNA-
Seq had little or no expression, a main reason is that polyA(-
) genes are not detected by the standard RNA-Seq sample
preparation protocol. Given that histone genes are the only
group of well-known polyA(-) genes, we took FANTOM5-
only ubiquitous genes and compared the gene list with
polyA(-) and bimorphic genes (defined as genes occurring

in both poly(A)+ and poly(A)- forms) from Yang et al.’s
study of non-polyadenylated RNA (22). We found that that
∼22% of the genes in this group overlap with the polyA(-)
and bimorphic gene lists for HeLa and H9 cells (including
34 histone genes). From this we deduce that at least 20%
of the genes expressed only (or with much higher expres-
sion) in the FANTOM5 data set may be lowly or selectively
poly-adenylated and are thus not fully captured in the HPA
RNA-Seq data set.

For cases where RNA-Seq showed expression and CAGE
data showed no expression, known reasons include 1)
CAGE peaks mapping >500 bp from annotated TSS, and
2) CAGE peaks mapping to multiple locations on the hu-
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Table 1. List of potential reasons for discrepancies between FANTOM5 CAGE and HPA RNA-Seq data sets

Type of Discrepancy Reason Approximate proportion of cases affected

Data set 1 expression low; Data set 2
expression 0

Detection limit (different sequencing
depths between data sets)

60% of CAGE-only and 67% of
RNAseq-only ubiquitously expressed
genes

Data set 1 expression low; Data set 2
expression 0

Read-throughs, anti-sense RNAs,
unconfirmed genes (annotations updated
in new version of Ensembl annotation)

Up to 90% of the FANTOM-only
ubiquitous genes with 0 expression in
RNA-Seq

CAGE expression high; RNA-Seq
expression low or 0

PolyA(-) mRNAs not measured by
RNA-Seq

∼22% of CAGE only ubiquitous genes

RNA-Seq expression positive; CAGE
expression 0

CAGE peaks outside of 500 bp range ∼1% of RNA-Seq expressed genes have
CAGE peaks 500–1500 bp from
annotated TSS

RNA-Seq expression positive; CAGE
expression 0

Multi-mapping CAGE peaks not
included in data set

up to 9% of human proteome (∼1800
genes) not supported by robust CAGE
peaks

Data set 1 expression high; Data set 2
expression low

Difference in specific cell type
proportions between corresponding
tissues

Hard to estimate; no premium antibody
staining for all annotated genes

CAGE expression in a single tissue;
RNA-Seq expression in multiple tissues

CAGE peak maps to one gene; RNA-Seq
reads map to multiple genes

< 1% of discrepancy genes, as most
highly homologous genes were not
mapped in CAGE data (Example in
Supplementary Figure S8c)

man genomes were removed from the FANTOM5 data set
to reduce false reports of expressions (15). To estimate how
many TSSes were potentially located outside of ±500 bp
window of annotated TSSes, we identified the distance to
the closest CAGE peaks for each annotated protein cod-
ing genes (Supplementary Figure S6) and found 1,270 genes
with CAGE peaks located >500 bp from annotated TSSes.
We then looked at the distance of the closest CAGE peak
for all genes with RNA-Seq expression in at least one of the
tissue samples. We found that 184 genes (∼1% of RNA-Seq
expressed genes) were between 500 and 1500 bp, and an-
other 165 genes had closest CAGE peaks mapped between
1500 and 10 000 bp of annotated TSSes. By examining the
higher RNA-Seq expressed genes in brain, pancreas, pla-
centa, and testis, we found that CAGE peaks up to 1500 bp
away from annotated TSS may still correspond to RNA-Seq
expression (Supplementary Figure S7). The FANTOM5 pa-
per noted that the robust CAGE peaks map to 91% of the
annotated genes, leaving 9% as not mapped due to either
the multi-mapping issue or the TSS >500 bp issue (15).

Reasons for genes having high expression in one data set
and low expression in the other data set are more com-
plex. We looked at the 17% of genes that were in ‘disagree-
ment’ in the 7-fold–3-fold single-tissue enriched category.
Since tissue cell type proportion difference could not easily
be determined using sequencing data alone, we used HPA’s
antibody-based immunohistochemistry (IHC) protein pro-
filing images as a validation source. Using only genes over-
lapping with ‘premium’ antibody profiling, we identified
the following examples. Figure 5A shows MUC5B, a gene
identified to be CAGE-only gall bladder-enriched gene. In
RNA-Seq, the expression of MUC5B in gall bladder was
not much higher than in colon and small intestine. IHC
images show that MUC5B is actually expressed in selected
mucous producing cells and glandular cells in gall bladder,
colon, and highly specifically within a small proportion of
cells in the salivary gland. IHC also shows specific expres-
sion in appendix that was not picked up by either data set.
Depending on the proportion of different cell types within

each tissue sample, the expression values of this gene can
vary a lot, which could explain the discrepancy between
CAGE and RNA-Seq results. Figure 5B shows SLC2A2,
an RNA-Seq-only liver-enriched gene. However, in CAGE
data it is also highly expressed in small intestine, with some
expression in colon, gall bladder, and kidney. The IHC im-
ages confirm expression in liver, small intestine, and kidney,
but not for colon. One of the colon samples in CAGE had
been identified to have overall gene expression more similar
to RNA-Seq small intestines than to RNA-Seq colon, sug-
gesting possible contamination (Figure 3B). This could ex-
plain why the IHC colon staining showed disagreement with
CAGE results. In the third example (Figure 5C), ACTA1,
a skeletal muscle alpha actin gene, which showed some en-
richment in adipose tissues in the CAGE data set but not for
the RNA-Seq data set. The IHC images show that all tissues
that contain some muscle cells showed positive staining,
implying that the FANTOM5 adipose sample contained a
higher proportion of muscle cells than HPA adipose sam-
ples. These examples illustrate that ‘disagreement’ between
the gene expression data may simply have been natural vari-
ations that occur within tissues or that expression is local-
ized to a small proportion of specific cells that may not be
included in all samples of that tissue type, and may have
been resolved if there were more tissue replicates for both
FANTOM5 and HPA data sets.

DISCUSSION

We have shown that despite large differences in tissue prepa-
ration, RNA processing procedures, sequencing technolo-
gies, and computational mapping/quantification methods,
the two tissue transcriptome data sets are largely compara-
ble at the gene level. This has several implications. First, it
shows that transcriptome profiling of healthy tissues is quite
comparable even with different processing methods, if high
quality experimental and computational pipelines were em-
ployed. It also suggests that these two data sets could be
used to complement each other as reference transcriptome
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Figure 5. Examples of how HPA immunohistochemistry (IHC) staining
can complement gene expression data by providing additional spatial dis-
tribution information at the single-cell level. (A) MUC5B, a CAGE-only
gall bladder-enriched gene in the IHC images showed very distinct cell
type-specific expression in gall bladder, which could explain the difference
in expression value between CAGE and RNA-Seq. It show high expression
in specific cell types in the colon, salivary gland, and even in the appendix,
where both CAGE and RNA-Seq expressions were low. (B) SLC2A2, an
RNA-Seq only liver-enriched gene in the IHC images display highly spe-
cific expression in kidney, liver and small intestine, which is in agreement
with CAGE data. Colon IHC image shows no expression, suggesting that
one of the FANTOM5 colon samples may be contaminated. (C) Variable
composition of certain cell types: ACTA1 shows tissue-restricted expres-
sion in adipose, esophagus, heart, salivary gland, and thyroid in CAGE.
RNA-Seq data does not show high expression in adipose tissue, salivary
gland or thyroid. Examination of IHC images shows very specific staining
patterns for muscle cells in each tissue sample, which explains the variable
expressions of this gene between the two data sets. Tissue abbreviations are
as following: Ad = adipose, Ap = appendix, Bl = bladder, Br = brain, Co
= colon, Es = esophagus, Ga = gallbladder, He = heart, Ki = kidney, Li
= liver, Lu = lung, Ly = lymph node, Ov = ovary, Pa = pancreas, Pl =
placenta, Pr = prostate, Sa = salivary gland, Sm = small intestine, Sp =
spleen, Te = testis, Th = thyroid, Ut = uterus.

profiles. In addition to providing full exon/transcript infor-
mation, the HPA RNA-Seq data set has the advantages of
having high quality replicates for all tissues, supplemented
by clinical information on each sample (such as gender, age,
estimate of percentage of major cell types), as well as protein
IHC data. On the other hand, the FANTOM5 CAGE data
set provides breadth for more specialized tissues such as spe-

cific eye muscles and many more brain regions, as well as
primary cell data. In terms of genome coverage, FANTOM5
chose strict mapping criteria where any of the CAGE reads
that mapped to multiple locations in the genome were dis-
carded. The RNA-Seq data set followed Cufflinks’ map-
ping strategy by splitting the reads between all the locations
mapped, which reduced quantitation accuracy for some of
the genes, but allowed more reads to be mapped. This means
that RNA-Seq can provide better presence/absence infor-
mation for genes not mapped by CAGE, but CAGE can
potentially help identify false positive gene expression in
RNA-Seq, as shown by the examples in Supplementary Fig-
ure S8. The FANTOM5 data set provides better quantifica-
tion data for histones and other genes for which mRNAs are
poly(A)- or bimorphic. Ideally, the integration or at least di-
rect linkage of the two data sets would provide synergistic
results of refining gene models, validating quantitation lev-
els, and/or showing broader ranges of expression variation
for each gene. With eventual improvements in gene annota-
tion and advancements in read mapping/transcript quan-
tification algorithms, there is potential to further increase
the comparability between the FANTOM5 and HPA data
sets just by reprocessing the two raw data sets with improved
computational pipelines.

We chose to compare the two data sets at the gene
level rather than at the transcript level for the reason
that RNA-Seq transcript identification and quantitation
is still not very accurate with currently available RNA-
sequencing protocols and algorithms (23,24). While corre-
lations among CAGE tissue transcriptomes were compa-
rable between the TSS level and the gene level, the corre-
lations between the RNA-Seq tissue replicates at the tran-
script level were much lower than at the gene level. Given
that a significant number of novel transcripts and TSSes
have been identified by these two data sets, and given that
transcript quantification depends on transcript model an-
notation, we feel that such comparison will be much more
informative once the transcript annotations have been up-
dated accordingly.

We focused most of our analyses on the protein-coding
genes, since the level of agreement of non-coding RNA ex-
pression between the two data sets was quite low. This is
likely due to the fact that 1) exact start sites of ncRNA
are likely less well annotated compared to protein coding
genes, and 2) the RNA-Seq protocol used for the data set
does not efficiently capture polyA(-) RNA, and is not opti-
mized to distinguish anti-sense from sense RNA. For exam-
ple, MALAT1 has been shown to be the highest expressed
gene in most of the CAGE samples (15). However, in RNA-
Seq samples it only showed moderate levels of expression
due to the majority of the transcripts being polyA(-) (25). It
is possible that many of the non-coding genes have different
splicing and poly-adenylation patterns compared to coding
genes. The availability of both CAGE and RNA-Seq tran-
scriptome data will aid in future research on non-coding
RNAs in identifying their structures and tissue-specificities.
In terms of coding genes, the next step would be to combine
mRNA data to see how they compare with protein quanti-
tation data. Recently, a published study of the draft human
proteome found that the protein-to-mRNA ratio is highly
correlated with protein abundance levels (26). It has been
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suggested that mRNA levels determine the approximate
magnitude of protein abundance, and post-transcriptional
control fine tunes the final protein levels in cells (27). Fur-
ther questions remain if genes that have consistently high or
low protein-to mRNA ratio groups have strong functional
associations. The ultimate goal will be accurate prediction
of protein abundance directly from RNA quantification.

We used ubiquitously expressed genes and tissue-specific
genes as test cases for probing the comparability and dis-
crepancies of the two data sets because the former category
tests for consistency of gene expression detection across dif-
ferent samples, and the latter tests for gene expression de-
tection specificity in single tissues samples. Many previous
studies have looked into criteria for identifying housekeep-
ing genes among human tissues using microarray, NGS se-
quencing and proteomics data, and explored their func-
tions, subcellular localizations, as well as other properties
that may suggest housekeeping roles (28–31). The combi-
nation of FANTOM5 CAGE, HPA RNA-Seq, and HPA
IHC protein profiles in tissues is ideal for refining the house-
keeping gene list. Future studies could look into identify-
ing genes that are expressed in every cell type, versus genes
that are expressed in common general cell types found in
most tissues. As for tissue-specific gene expression compari-
son, the analyses revealed that establishing tissue-specificity
was not straightforward. Some genes seemed to be cell type
markers (such as ACTA1 for muscle cells), while other genes
seemed to be expressed in several different cell types and
in a quite specific manner that could only be elucidated by
examining the IHC tissue images (such as MUC5B). The
twenty-two tissues used in this study were not quite com-
prehensive enough to cover the entire human body. For ex-
ample, if we included the bone marrow, skeletal muscles,
skin, and perhaps oocytes and sperm, some of the single
tissue-enriched genes from the current study might also be
expressed in these tissues. In addition, more specific organs
such as the eye or the inner ear would likely express certain
interesting organ-specific genes not identified in this paper.
We hypothesize that many of the ‘testis-specific’ genes, espe-
cially the ones related to meiosis and gametogenesis, would
also be expressed in oocytes and in fetal ovary undergoing
oogenesis (32). Some efforts have been put into identifying
tissue-specific genes either with global studies or looking at
individual tissues (32–37). Further efforts could focus on
developing more sophisticated measures to establish better
criteria for identifying cell type proportions, robust tissue
signatures, or tissue state markers. Such study would make
use of all the 149 tissues available from the FANTOM5 data,
as well as other RNA-Seq human tissue data sources such
as GTEx (11) and Expression Atlas (12).

We identified factors explaining discrepancies between
the two data sets, which include gene annotation errors,
read mapping issues, cell type proportions, detection limit,
and polyA(-) genes under-detected by RNA-Seq polyA(+)
enrichment protocol (38). The fact that most FANTOM5
samples did not have replicates probably also contributed
to the variations and discrepancies in the comparisons. The
IHC results demonstrate that many genes identified as en-
riched in certain tissues were found to be concentrated in
specific cell types among other tissues, with diverse cell type
composition variations. Furthermore, some of the genes

that differ significantly between the two data sets are ac-
tually markers for contaminating cell types. For example,
higher values of ACTA1, and MYH7 (myosin) in FAN-
TOM5 adipose tissue indicate muscle cell contamination,
whereas higher values of HBA1 and HBA2 indicate blood
cell contamination in HPA adipose tissue. Other marker
genes could potentially be used to estimate the percentage of
certain cell types in any transcriptome profiling of tissues. In
terms of detection inconsistency of lowly expressed genes,
using the permissive FANTOM5 promoter data set to iden-
tify gene expression may improve comparability (15). In ad-
dition, factors such as RNA length, GC bias, normalization
methods, sequence biases specific to each technology, along
with the biases and limitations within the computational
pipelines used to process the sequencing data also attribute
to the discrepancies. The current HPA contains some anti-
bodies with non-specific off target binding (17), but by re-
stricting analyses to antibodies with higher reliability scores
and with improvements made to the protein atlas, the IHC
could provide useful validation for transcriptome data for
most of these discrepancy cases. Conversely, the consensus
results of CAGE and RNA-Seq data could be used to aid
with validating antibody specificity and improve the IHC
data generation process.

We have shown that the integration of CAGE, RNA-
Seq and HPA IHC data can help refine gene models
and improve the interpretation of gene expression values.
In the future, integration of other types of high quality
high-throughput gene expression data would further re-
fine the transcription/translational profiles of the human
body. The GTEx project (11), with tissue transcriptomes
from many normal individuals, would provide data on fre-
quencies as well as normal expression ranges for all hu-
man tissue-expressed genes, along with common mutations
carried within individuals. In addition, the two recently
published mass-spectrometry-based human proteomes can
of course also serve as valuable references (26,39). Inte-
grating other, more tissue-specific transcriptome data sets,
such as BrainSpan (http://www.brainspan.org), could help
us improve the identification and definition of tissue-specific
genes. Proteomics data measured by alternative technolo-
gies are especially useful for validation of HPA’s antibody-
based protein profiling for cases when mRNA levels of a
gene do not correlate well with protein expression levels, as
well as providing expression evidence for proteins and pep-
tides from non-coding RNAs (27,40,41). By extending the
comparison to other organisms, such as the Non-human
Primate Reference Transcriptome Resources (42), we can
further understand conservation of gene expression within
different tissues from an evolutionary aspect. With the avail-
ability of more high quality transcriptomics and proteomics
data resources generated using different technologies, effec-
tive efforts of data integration has excellent potential for
aiding the discovery of underlying mechanisms for complex
diseases, novel disease diagnosis methods, as well as the de-
velopment of novel treatments.

SUPPLEMENTARY DATA
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