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1  |  INTRODUC TION

Women's fertility declines with age.1 One of the main causes of low 
development of embryos obtained from older women is the rising 
proportion of chromosome abnormalities2 provoked by premature 
separation of bivalent to univalent during meiosis.3 Furthermore, 

age- related fall in mitochondrial function of oocytes has also been 
suggested as a cause of low embryonic developmental potential.4– 7

Mitochondria produce ATP for cellular activity by oxidative 
phosphorylation. The tricarboxylic acid (TCA) cycle is characterized 
by a higher capacity to produce ATP per mole of substrate than the 
anaerobic glycolysis pathway. The ATP produced by mitochondria 
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Abstract
Background: Female fertility declines with age, due to increased chromosomal ane-
uploidy and possible reduced mitochondrial function in the embryo.
Methods: This review outlines how mitochondrial function in human embryos, as pre-
dicted from oxygen consumption rate (OCR) measurements, changes in preimplanta-
tion stage, and what factors, particularly maternal age, affect mitochondrial function 
in embryos.
Main findings: The structure of the mitochondrial inner membrane and its respiratory 
function developed with embryo development, while the copy number of mitochon-
drial	DNA	per	specimen	was	transiently	reduced	compared	with	that	of	the	oocyte.	
The undifferentiated state of the inner cell mass cells appears to be associated with 
a	low	OCR.	In	contrast,	the	copy	number	of	mitochondrial	DNA	increased	in	tropho-
blast cells and mitochondrial aerobic metabolism increased.
The OCRs at morulae stage decreased with maternal age, but there was no relation-
ship	between	maternal	age	and	the	copy	number	of	mitochondrial	DNA	at	any	stages.	
The higher oxygen spent at the morula stage; the shorter time was needed for devel-
opment to the mid- stage blastocyst.
Conclusions: The mitochondrial respiratory function of human embryos developed 
along with embryonic growth. Mitochondrial function at morula stage declined with 
their maternal age and reduced mitochondrial function decreased the rate of develop-
ment from morula to blastocyst.
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plays an important role in the maturation of both the nucleus and 
cytoplasm of oocytes.8– 13 An investigation using mitochondrial tran-
scription factor A (TFAM)- deficient mice, which is indispensable for 
mitochondrial	DNA	(mtDNA)	replication,	transcription,	and	mainte-
nance, have shown that oocytes must have a threshold number of 
mtDNA	 to	 bolster	 their	 developmental	 capacity	 to	 develop	 viable	
fetuses.14	In	mice,	the	copy	number	of	mtDNA	in	the	whole	embryo	
does not change during successive cell divisions,14,15 inducing a 
gradual	decrease	in	mtDNA	in	the	dividing	cells.	By	contrast,	in	bo-
vine,16 porcine,17,18 and human,19 it has been reported that the copy 
number	of	mtDNA	decreases	transiently	after	fertilization	and	then	
increases rapidly during blastocyst cavity formation. Thus, quanti-
tative shift in mitochondria in the preimplantation embryos differ 
between animal species. Mitochondria are a source of large amounts 
of ATP, and as oxygen consumption is related to ATP production, mi-
tochondrial oxygen consumption rate (OCR) may be a valid indicator 
of embryo quality. Several methods for assessing OCR have been 
described, including the Cartesian diver,20 spectrophotometric,21– 23 
and fluorescence24–	26 methods. However, these methods were not 
suitable for clinical application due to their low sensitivity, inability 

to measure the OCR of a single embryo, exposure to fluorescent 
dyes and the long time needed for assessment, which makes them 
highly invasive to the embryo.

Successful measurements of OCR in single embryos using scan-
ning electrochemical microscopy (SCEM) based on self- reference 
microelectrode and nano- respirometer have been shown in mice,27 
cattle,28– 30 and human.19,31– 35 A modified SCEM system calculates 
the difference between oxygen concentrations near and far from 
the sample. (Figure 1).27– 30 Furthermore, it is also clear that for ac-
curate measurement of oxygen consumption, it is important that an 
appropriate energy substrate is present.27 It has also been suggested 
that human embryos with high oxygen consumption develop into 
blastocysts faster than embryos with low oxygen consumption.22,34 
It has also been shown that blastocyst cavity formation is depen-
dent	on	Na/K-	ATPase.36 Therefore, the oxygen consumption of the 
blastocyst at 2– 3 h after warming correlates with the subsequent 
re- formation of the blastocoel cavity and is an important predictor 
of embryonic development.19

This review outlines how the mitochondrial function of human 
embryos, as predicted by measurements of OCR, is changed in 

F I G U R E  1 Oxygen	consumption	rate	(OCR)	measurement	of	mammalian	embryo.	(A)	Scanning	electrochemical	microscope.	(B)	Cone-	
shaped micro well (c), reference electrocode (f), Microelectrocode (g). (C) Each embryo was transferred into a cone- shaped micro well. (D) 
The microelectrode scanned along the z- axis from the edge of morula, and OCR was calculated with custom software. Circle: Oxygen. 
(E)	the	OCR	measured	in	buffer	without	mitotoxin	represents	the	OCR	of	the	whole	embryo.	By	adding	cyanide,	a	cytochrome	c	oxidase	
inhibitor, and measuring it, the OCR consumed outside the mitochondria can be obtained. The OCR in mitochondria (mtOCR) is calculated by 
subtracting the value obtained in the presence of cyanide from the value obtained without any mitotoxins. The figure is based on Morimoto 
et al.35
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preimplantation human embryos and what factors affect mitochon-
drial function in early human embryos.

2  |  QUANTITATIVE AND QUALITATIVE 
SHIF TS OF MITOCHONDRIA IN HUMAN 
EMBRYOS

2.1  |  Copy number of mtDNA

The	mtDNA	 copy	 number	 of	 embryos	 in	 the	 preimplantation	 pe-
riod is unchanged in mice14,15 but decreases after fertilization and 
increases during blastulation in cattle16 and pigs.17,18 Which trend 
does the human embryo show? To this end, we have examined the 
change	 in	 the	 copy	 number	 of	mtDNA	 of	 human	 embryos.19 The 
copy	 number	 of	 mtDNA	 per	 specimen	 in	 embryos	 at	 the	 2-	cell,	
9- 14- cell, and morula stages after fertilization was temporarily re-
duced compared with oocytes.19	The	copy	number	of	mtDNA	sig-
nificantly increased (p < 0.01)	in	Day	5	blastocyst	(expanded	stage)	
compared with those in oocytes, 2– 14 cell and morula. In this re-
view, the data from previous studies were integrated19,34 and re- 
analyzed,	showing	a	rapid	 increase	 in	mtDNA	copy	number	at	the	
time of blastulation (p < 0.01,	Figure 2A).	The	mtDNA	copy	number	
changes described above were consistent with bovine16 and por-
cine embryos,17,18	but	differed	from	murine	embryos,	where	mtDNA	
copy number does not change in the pre- implantation period.14,15 
Therefore, although rodent embryos are often used as models in 
the construction of human embryo culture systems, given the sig-
nificantly earlier activation of gene expression in embryo (two- cell 
stage) than in other animal species and the different patterns of mi-
tochondrial	DNA	copy	number	changes,	it	is	considered	appropriate	
to use bovine and porcine embryos, whose conditions match those 
of human embryos, as models. The expression levels of transcription 
and	replication	factors	of	mtDNA	prior	to	the	morula	stage	were	ex-
tremely low, even though these gene expressions could be detected 
during earlier period in several mammals, such as pig18 and sheep.37 
The expression of these genes was thought to be downregulated in 
human embryos, as in other mammals, until the morula stage. In ad-
dition, the extremely low mitochondrial function in human embryos 
at cleavage stages prior to morula may have caused a transient re-
duction	in	the	copy	number	of	mtDNA,	with	no	need	to	increase	it.38 
The	mtDNA	copy	number	per	cell	decreased	with	progression	of	cell	
division (Figure 2B).

Reason	for	infertility	did	not	affect	the	copy	number	of	mtDNA	
in 2- cell (endometriosis vs. male factor) and in 3– 4 cell embryos 
(endometriosis vs. male factor). On the other hand, there are also 
reports that do not always agree with this, as follows; the copy num-
bers	of	mtDNA	in	oocytes	or	embryos	have	been	demonstrated	to	
be related to reason for infertility (ovarian insufficiency,39 endome-
triosis40),	 mutations	 of	mtDNA,41 female age42 and aneuploidy of 
embryos.42,43 On the other hand, it has been indicated that over-
all	number	of	mtDNA	is	mostly	similar	between	blastocysts	strati-
fied by ploidy, maternal age, or implantation potential.44 Thus, the 

relationship between infertility causes and the copy number of 
mtDNA	 in	 human	 embryos	 should	 be	 investigated	 further	 in	 the	
future.

2.2  |  Threshold for mtDNA copy number 
in oocytes

Sufficient	mtDNA	 copy	 number	 in	mature	 oocytes	 has	 been	 pro-
posed to be a genetic reservoir designed to share out mitochondria 
and	mtDNA	 to	 cells	 in	 the	 early	 post-	implantation	 embryo	before	
mitochondrial	biosynthesis	and	mtDNA	replication	resume	in	mice.14 
Wai	et	 al.	 showed	 that	 the	mtDNA	content	 in	murine	oocyte	 less	
than	 approximately	 50 000	 copies	 is	 unlikely	 to	 normally	 develop	
through	 postimplantation	 stage,	 since	 the	 mtDNA	 copy	 number	
does not change before implantation in mice.14	However,	mtDNA	
copy number increases rapidly during blastocyst formation in bo-
vine,16 porcine17,18 and human embryos.19	In	species	where	mtDNA	
copy number increases during blastocyst formation, such as bovine, 
porcine, and human, it is not certain whether there is a copy num-
ber	of	mtDNA	 in	oocytes	 that	 restricts	postimplantation	develop-
ment.	It	is	also	possible	that	too	high-	mtDNA	copy	number	may	even	
inhibit development. On the other hand, it is not well understood 
how	 the	copy	number	of	mtDNA	 in	 the	oocyte	affects	 the	devel-
opment of embryos, as bovine parthenogenic embryos developed 
into	blastocysts	even	when	the	mtDNA	copy	number	was	artificially	
reduced,45	and	mtDNA	copy	number	did	not	affect	pre-	implantation	
development in mouse embryos.14

2.3  |  Mitochondrial function

Is	mitochondrial	 function	 in	 embryo	 correlated	with	mtDNA	 copy	
number? To address this, changes in mitochondrial function in 
human embryos prior to implantation were investigated.19	 No	
difference in mtOCR was observed from oocyte to 8- cell stage 
(Figure 2C). However, mtOCR increased more rapidly at morula 
stage than up to the 8- cell stage (p < 0.01).	Furthermore,	mtOCR	in	
the expanded blastocyst stage was even higher than in morula stage 
(p < 0.01).	OCRs	intensified	toward	the	morula	stage	in	advance	of	
an	increase	in	mtDNA	copy	number	at	blastulation.	The	contribution	
of mitochondrial respiration to energy requirements during embryo-
genesis is estimated to increase from about 10% of available glucose 
metabolized by aerobic respiration in early development to 85% in 
the blastocyst stage,46 coinciding with a period of increased OCR in 
mice24,27,47 and cattle.25 A study of early human embryos has shown 
that mtOCR and the activity of cytochrome c oxidase (CCO) in human 
pre- implantation embryos increases with development, while the 
copy	number	of	mtDNA	transiently	decreases.19 The mtOCR of the 
normally developed embryos on Day 4 was larger than that of the 
delayed	embryos,	and	 the	mtOCR/mtDNA	ratio	 increased	accord-
ingly.19 This may act as a marker for surviving embryos after Day 4, 
as the OCR increases with embryo development and the formation 
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of	 the	embryonic	 cavity	 relies	on	 intracellular	Na/K-	ATPase	activ-
ity.36 Moreover, mtOCRs rose remarkably from morula to blastocyst 
stage	earlier	than	a	surge	of	mtDNA	at	the	time	of	blastulation.19

Next,	 to	 directly	 determine	whether	mitochondria	 in	 the	 cells	
of human embryos are activated, the presence and percentage of 
active mitochondria with CCO activity were examined by direct 
staining of activated mitochondria. The ratio of highly active mito-
chondria has increased in blastocysts compared to mature oocytes, 
4- , 9- , 12- , and morula (p < 0.0001;	Figure 2D,E). The percentage of 
mitochondria with moderate activity also grew in blastocysts com-
pared with mature oocytes, 4- , 9- , 12- , and morulae (p < 0.01).	Taken	
together, mitochondria activity grew with embryo development and 
was	significantly	elevated	in	blastocysts.	The	mtOCR/mtDNA	ratio	
increased toward the morula and blastocyst stages (p < 0.01)	com-
pared with the oocyte- to- 8- cell stage.19	 The	 mtOCR	 per	 mtDNA	
has been found to increase with embryonic development up to the 
morula stage.

The development of continuous culture media designed to meet 
the changing requirements during embryo development has been 

revealed to produce blastocysts with high potential.48– 50 Efficiently 
supplying the required energy source in response to changes in mi-
tochondrial function may provide a less stressful environment for 
the embryo.

3  |  MITOCHONDRIAL FUNC TION OF 
HUMAN BL A STOCYST

3.1  |  Mitochondrial function of ICM and TE

Mitochondrial function in blastocysts increases before the formation 
of the blastocoel cavity.19 So, does mitochondrial function of ICM also 
increase with blastulation? To address this, we measured the oxygen 
consumption of TE far from the ICM (TE side) and TE adjacent to the 
ICM (ICM side).32	No	differences	were	observed	in	the	oxygen	con-
sumption between the TE and ICM sides of human blastocysts at any 
measurement times (Figure 3A). In addition, the presence and per-
centage of active mitochondria with CCO activity were examined by 

F I G U R E  2 Quantitative	and	qualitative	changes	of	mitochondria	in	human	preimplantation	embryos.	(A)	Changes	in	mitochondrial	DNA	
(mtDNA)	copy	number	per	specimen	(mean),	(B)	changes	in	mtDNA	copy	number	per	cell	and	(C)	mtOCR	(mean)	during	preimplantation	
development of human embryos. The mtOCR was calculated by subtracting the value obtained in the presence of cyanide from the value 
obtained without any mitotoxins (Figure 1). The numbers of oocytes or embryos examined are shown in parentheses. a- cDifferent superscript 
letters indicate significant differences (p < 0.01)	by	Tukey–	Kramer	test	following	ANOVA.	(D),	(E)	changes	of	cytochrome	c	oxidase	(CCO)	
activity	in	human	embryos	during	preimplantation	development.	DAB	tetrahydrochloride	is	easily	incorporated	into	mitochondria,	and	
oxidative polymerization occurs by high- voltage potential. Accordingly, mitochondria with CCO activity were stained for transmission 
electron microscopy. (D) TEM image of blastocyst stained with active mitochondria (left). High: Mitochondria with high CCO activity (black) 
showed well- developed cristae structures and deeply stained membrane. Moderate: Mitochondria with deeply stained membrane and 
without cristae structures were categorized as having moderate CCO activity (gray). Low: Mitochondria with poorly stained membranes 
and	few	cristae	structures	were	categorized	as	having	low	CCO	activity	(white).	Original	magnification × 50 000;	Bar	= 0.5 μm. (E) The 
proportions of mitochondria with high, moderate, or low CCO activity in mature oocytes at meiosis II (MII) through to blastocysts (Day 
5) are shown. Data for CCO activity were compared by Cochran– Armitage test among five groups. Three embryos were used at each 
developmental stage. The figure is based on Hashimoto et al.18
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direct staining of activated mitochondria (Figure 2D). The percentage 
of mitochondria with high CCO activity was much lower in ICM cells 
than in TE cells (p < 0.01;	Figure 3B). In addition, active mitochondria 
have been observed only in TE (Figure 3C). These results are consist-
ent with data from animal embryos. TE used significantly more oxy-
gen, generated more ATP, and had more mitochondria than ICM in 
mice.24 Metabolic efficiency of amino acids was also much higher in 
TE than in ICM. TEs are thought to produce about 80% of their ATP in 
the mitochondria.51 Furthermore, in bovine blastocysts, TE consumed 
more pyruvate and less glucose than ICM.52 In summary, the ICM of 
human blastocysts is considered to have relatively lower mitochon-
drial function than the TE. As a result, oxygen consumption in TEs 
adjacent to the ICM may be similar to that in TEs away from the ICM.

3.2  |  Relationship between blastocyst after 
cryopreservation and its mitochondrial function

Is there a correlation between blastocyst after cryopreservation 
and its mitochondrial function? To address this, we examined how 
human- vitrified blastocysts alter their mitochondrial function after 
warming. The oxygen consumption rates of all vitrified- warmed 
blastocysts immediately after warming was found to be signifi-
cantly smaller than pre- vitrified blastocysts (p < 0.05,	 Figure 3D). 
The oxygen consumption rate of surviving blastocysts after thaw-
ing increased over time. Mitochondria with CCO activity (Figure 2D) 
were	observed	 in	blastocysts	 at	24 h	 after	warming.32 Cellular ac-
tivity is considered to have arrested at cryogenic temperature and 

F I G U R E  3 Mitochondrial	function	of	human	blastocyst.	(A)	The	mean	oxygen	consumption	of	their	trophectoderm	(TE)	adjacent	
to	and	far	from	the	inner	cell	mass	(ICM).	(B)	The	proportions	of	mitochondria	with	these	CCO	activities	in	the	inner	cell	mass	(ICM)	
and trophectoderm (TE) of three blastocysts are shown. The numbers of mitochondria in oocytes or embryos examined are shown in 
parentheses. Data for CCO activity were compared by Fisher's exact test between two groups. (C) Representative images of human 
expanded blastocyst stained with JC10. JC10 monomers (low membrane potential) were detected using a confocal microscope (excitation 
488 nm,	emission	BP525/50,	CellVoyager	CV1000;	Yokogawa	electronic,	Tokyo,	Japan),	and	JC10	aggregates	(high	membrane	potential)	
were	detected	(excitation	561 nm,	emission	BP617/73).	From	left	to	right:	JC10	monomer,	dimer,	monomer,	and	dimer,	and	further	brightfield	
images overlaid. White arrows indicate ICM. Active mitochondria have been observed only in TE. (D) Change in mean oxygen consumption (x 
10–	14	fmol/s)	of	vitrified-	warmed	blastocysts	over	time.	Values	with	different	superscripts	are	significantly	different	(abcp <0.05, by Tukey– 
Kramer	test	following	ANOVA).	(E)	The	relationship	between	OCRs	of	blastocyst	and	their	blastocyst	quality	score.	There	were	extremely	
high	correlations	between	OCR	and	BQS	(r2 =	0.9375).	Eight	blastocysts	were	used.	The	figure	is	based	on	Yamanaka	et	al.32 and Hashimoto 
et al.19
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mitochondrial function has not yet been restored immediately after 
warming and gradually recovers.

3.3  |  Relationship between mitochondrial function 
in blastocyst and its morphology

Does mitochondrial function in blastocysts predict morphological 
change or morphology itself? To find an answer to this question, 
the correlation between blastocyst morphology and its mitochon-
drial function was investigated after numerical conversion of the 
Gardner	 classification	 to	 Blastocyst	 quality	 score	 (BQS).53 OCR 
and	 BQS	 showed	 extremely	 high	 correlations	 (Figure 3E).	 Next,	
the relationship between the OCR of blastocysts with identical 
morphological evaluation from women in the same age group and 
the implantation rate after single blastocyst transfer was exam-
ined, but the results showed that embryos with higher OCR were 
not necessarily more likely to implant.54 These suggest that the 
OCR of blastocyst may reflect its morphology and not predict its 
subsequent viability such as implantation. Large- scale research 

studies are required to examine whether OCR is predictive of blas-
tocyst potential, as implantation is affected by various factors, in-
cluding maternal conditions.

4  |  DOES MATERNAL AGE AFFEC T THE 
MITOCHONDRIAL FUNC TION IN THEIR 
EMBRYOS?

4.1  |  Oxygen consumption rate in mitochondria of 
human morulae decreases with increasing maternal 
age

Maternal aging is associated with a decline of the copy number of 
mtDNA	 in	 oocyte55,56 or mitochondrial function.57 Do these re-
ductions	in	mtDNA	copy	number	or	mitochondrial	function	occur	
in the embryo? To address this, we examined the relationship be-
tween	maternal	 age	 and	mtDNA	 copy	 number	 or	 mitochondrial	
function.34 The mtOCRs of morulae on Day 4 decreased with 
maternal age (p < 0.05,	 r2 = 0.4834, Figure 4A).34 However, any 

F I G U R E  4 Relationship	between	
maternal age and mitochondrial 
oxygen consumption rates (mtOCRs) or 
mitochondrial	DNA	(mtDNA)	numbers	
of embryos. (A) Relationships between 
maternal age and mtOCRs of morulae 
on Day 4 (n =	30);	and	(B)	expanded	
blastocysts on Day 5 (n = 34). (C) 
Relationships between maternal age and 
mtDNA	copy	number	of	their	morulae	
on Day 4 (n = 28); and (D) expanded 
blastocysts on Day 5 (n = 34) are shown. 
The mtOCRs of morulae on Day 4 
after ICSI decreased with maternal age 
(p < 0.05,	r2 = 0.4834) only embryos 
inseminated by ICSI were used to 
avoid	contamination	with	mtDNA	from	
spermatozoa on the zona pellucida. The 
figure is based on Morimoto et al.34
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relationships between maternal age and mtOCRs of their blas-
tocysts on Day 5 were not observed (Figure 4B). Similarly, the 
mtDNA	copy	number	of	developing	embryos	on	Days	4	and	5	post-	
ICSI is found to be uncorrelated with maternal age (Figure 4C,D). 
Accordingly, it was found that the OCR of morula decreases with 
increasing maternal age.

Interestingly, the variation in OCR of blastocysts 
(5.18 ± 0.5	 fmol/s)	 was	 very	 small	 compared	 with	 the	 variation	 in	
their	 mtDNA	 copy	 number	 (416 200 ± 202 055	 copy),	 which	 was	
almost constant with no effect of maternal age (Figure 4B,D). The 
blastocysts used for the measurements were almost identical in 
morphology, as their developmental stages were mid- stage to ex-
panded (3 and 4 in the Gardner classification58) and all ICM grades 
were	B	in	the	Gardner	classification.	These	indicated	that	the	OCR	
in the blastocysts reflected their shape.

4.2  |  Are morulae with high OCRs developmentally 
competent?

What does it mean that the OCR of morulae decreases with increas-
ing their maternal age? To elucidate this question, following OCR 
measurements of the morula without mitotoxins, time- lapse images 
were taken from the morula to the blastocyst stage. (Figure 5A).34 In 
the morula stage, the higher the OCR, the shorter time needed for 
development to mid- blastocyst. (r2 =	0.236,	p < 0.05;	Figure 5A,B).34 
Blastocoel	formation	requires	a	large	amount	of	energy,	as	fluid	must	
be actively transported into the blastocoel cavity.26 Therefore, it is 
thought that morulae with higher OCR quickly formed the blastocoel 
cavity and reached the blastocyst stage in a short time.

To examine how maternal age affects morphogenetic change 
in human embryos, the blastulation and morphologically good 

F I G U R E  5 Oxygen	consumption	rate	indicates	the	ability	to	develop	into	blastocysts	and	the	ability	to	develop	from	morula	to	blastocyst	
decreases with maternal aging. (A) The left image shows a representative morula. The right image shows a representative mid- stage 
blastocyst.	Mid-	stage	was	defined	as	when	the	blastocoel	reached	half	the	size	of	the	blastocyst.	(B)	Relationship	between	OCRs	of	morulae	
and duration required to develop from morulae to mid- stage blastocysts. Morphological changes from morulae to blastocysts following 
measurement	of	OCRs	of	morulae	cultured	without	mitotoxins	were	recorded	every	10	min.	To	avoid	the	effect	of	maternal	age,	6–	8-	cell	
stage	embryos	on	Day	3	were	used	from	women	aged	34–	36 year	at	OPU.	Eighteen	embryos	were	donated	from	10	couples.	The	more	
oxygen morulae consumed, the shorter was the duration required for embryo development between OCR measurement and mid- stage 
blastocysts (r2 =	0.236,	p < 0.05).	Retrospective	analysis	of	developmental	competence	from	morulae	to	blastocysts	in	the	clinical	dataset.	
The rates of development from morulae to blastocysts (C) and to form morphologically good blastocysts (D) were compared retrospectively 
between two maternal age groups (<37 year;	n =	280;	vs.	≥37 year,	n = 251). Retrospective analysis revealed that the rates of development 
from morulae to blastocysts and to morphologically good blastocysts on Day 5 after insemination decreased with maternal age. The rates of 
development	from	morulae	to	blastocysts	and	to	morphologically	good	blastocysts	on	Day	6	also	decreased	with	maternal	age.	The	figure	is	
based on Morimoto et al.34

(A)
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(B)
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blastocysts rates from morulae were retrospectively examined 
between women in the two age groups (<37 year:	younger	group,	
vs.	≥37 year:	older	group).34 Retrospective analysis demonstrated 
that these developmental rates on Day 5 after insemination de-
clined significantly with maternal age, 81% in the younger group 
compared	with	64%	in	older	group	(p < 0.01),	and	the	morphologi-
cally good blastocyst rate was 31% in younger group compared to 
22% in older group (p < 0.05;	Figure 5C,D). The rates of blastocyst 
and	morphologically	good	blastocyst	on	Day	6	also	decreased	sig-
nificantly with maternal age, with a blastocyst formation rate of 
92% in younger group versus 84% in older group (p < 0.01)	and	a	
morphologically good blastocyst formation rate of 38% in younger 
group versus 28% in older group (p < 0.01).	From	the	above,	 it	 is	
clear that an increase in maternal age decreases the OCR of mor-
ula, resulting in a lower energy supply and a lower development 
rate from morula to blastocyst.

4.3  |  How to improve mitochondrial function in 
morulae?

Is it possible to improve mitochondrial function in morulae that have 
declined with maternal aging or for other reasons?

Laevo (L)- carnitine serves an important function in re-
ducing the cytotoxic effects of free fatty acids by stimulating 
beta- oxidation,59,60 mitigating of cellular injury. It is present ubiq-
uitously in mammalian plasma and tissues, particularly in muscles, 
and curbs mitochondrial damage and mitochondrially triggered 
apoptosis.61 It has been reported that L- carnitine also perform a 
crucial function for oocyte growth,62,63 oocyte maturation,64 and 
embryo development65,66 and that increases ATP content in mu-
rine morulae.35 We investigated whether such beneficial effects of 
L- carnitine boost the mitochondrial function in human morulae.35 
An addition of L- carnitine boosted mtOCRs of morulae and the 
development to morphologically good blastocysts on Day 5. Thus, 
reagents that enhance mitochondrial function such as L- carnitine 
would be a prospective medium supplement that can help bring 
back the lowered development potential associated with maternal 
age.

5  |  CONCLUSION

Mitochondrial functions advanced with embryo development while 
the	mtDNA	copy	numbers	declined	transiently	after	fertilization	and	
skyrocketed at blastulation.

Mitochondrial function at morula stage of human embryos re-
duced with maternal age and a decline of mitochondrial function 
slowed embryo development and diminished developmental rate 
from morulae to blastocysts. This reduced developmental capacity 
may be overcome by the use of compounds that improve mitochon-
drial function, such as L- carnitine.
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