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1 Introduction

Life science data resources have been used extensively in academia
and industry for well over two decades and are increasingly used in
clinical settings. These resources are critical for ensuring the repro-
ducibility and integrity of the entire life sciences research enterprise
(Bourne et al., 2015). Despite their importance, many are supported
in whole or in part by short-term grants, and there is little coordin-
ation of funding across these resources (Berman, 2008; Gabella
et al., 2017; https://www.biorxiv.org/content/10.1101/110825v3).

ELIXIR (www.elixir-europe.org) brings together life sciences
resources from across Europe. More than 20 countries contribute to
ELIXIR’s infrastructure with scientific tools and databases, as well as
compute infrastructure, standards for interoperability and training.
Here, we focus on existing, well-established data resources. One of
ELIXIR’s goals is to support the most valuable, used and useful
resources, i.e., those with a very high scientific impact. To fulfil this
goal, ELIXIR has created a formal process to identify the most critical
life sciences data resources in Europe, designated ELIXIR Core Data
Resources (https://www.elixir-europe.org/platforms/data/core-data-
resources; Durinx et al., 2016). There are currently 19 Core Data
Resources (CDRs, Table 1), spanning a broad range of life sciences
data types including genes and genomes, proteins, chemistry, molecu-
lar structures and interactions, and the research literature. The process
to identify these resources (Durinx et al., 2016) uses a set of qualita-
tive and quantitative indicators of scientific and technical quality and

impact. The indicators fall into five categories: Scientific focus and
quality of science; Community served by the resource; Quality of ser-
vice; Legal and funding infrastructure, and governance; Impact and
translational stories. The resources identified in this way are of funda-
mental importance to the wider life sciences community and the long-
term preservation of biological data: they are comprehensive, are con-
sidered an authority in their fields, are of high scientific quality and
provide a high level of service delivery. It is of critical importance that
these resources are sustained for the benefit of all researchers.

Here, we characterize the Core Data Resources using a subset of
the indicators helpful for portraying aspects of the utility and value
of the resources to the research community over time. Rather than
considering data resources individually, we discuss the Core Data
Resources as a collective entity, that together form an integrated life
sciences data infrastructure. As previously described (Durinx et al.,
2016), managers of the Core Data Resources supply indicator data
as part of the selection process, with updates provided on an annual
basis. We have for the first time used data collected from the Core
Data Resources covering the years 2013–2018, to characterize this
emerging infrastructure as a whole. We present summaries of their
use and impact, their interconnectedness as an ecosystem, and de-
scribe their context within the Open Data and FAIR landscape. In
this way, we demonstrate their foundational role within the life sci-
ences, which contrasts with the short-term nature of the assured
funding horizon under which they operate.
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2 Materials and methods

Qualitative and quantitative information to support the life cycle
management of the Core Data Resources is gathered by a defined
and iterative process that has been described elsewhere (Durinx
et al., 2016, and https://zenodo.org/record/1194123#.XG_
anC10eL5). This work depends on close collaboration between the
managers of the ELIXIR Core Data Resources, ELIXIR, and tools
and infrastructure providers who facilitate access to the necessary
information.

Data were collected in two phases. For the first round of Core
Data Resource selection (https://f1000research.com/documents/7-
1711) a Case Document was prepared by the applicant resource
managers, providing information about 23 indicators (Durinx et al.,
2016) for the calendar years 2013–2015. Annual updates were sub-
sequently requested for 2016–2018 from the selected Core Data
Resources. For the second round of selection (https://f1000research.
com/documents/7-1712), the applicants provided indicator data for
the calendar years 2014–2016, later updated with 2017 and 2018
data.

In the following section, the methods used to generate each fig-
ure are described in turn. The data from which the figures were gen-
erated, and additional specific descriptions of methodology and
techniques, can be found in the accompanying Supplementary Data.

Figure 1: Data entries: This indicator corresponds to Indicator
3b ‘Data entries - Total, cumulative’ from Durinx et al. (2016).
Each CDR decides which data entity is its primary entry type and
provides counts on an annual basis. Data types include nucleic acid
and protein sequences, genomes and metagenomes, macromolecular
structures, molecular complexes, publications, complex assemblies
and articles from the scientific literature. The items that constitute
‘Data Entries’ therefore vary between the resources, but the counts
down the years are of the same entity for each CDR.

Users: This indicator corresponds to Indicator 2a ‘Overall usage:
visitors’ from Durinx et al. (2016). The CDRs are, by virtue of the
selection criteria, open to all users with no requirement to register
for an account. Because usage is unrestricted, determining the num-
ber of users poses a challenge. One way to measure the user commu-
nity is to count the average monthly web access for each year in
terms of unique IP addresses (Metwally and Paduano, 2011;
Metwally et al., 2014). This is necessarily a proxy for user numbers
and both under- and over-reporting is possible, e.g., users may ac-
cess resources from multiple devices and thus have multiple IP

addresses, and users may also be connected using systems with dy-
namic IP address assignment: both situations generate more IP
addresses than individuals. Conversely, some institutions represent-
ing hundreds or thousands of users may appear as a single IP ad-
dress, leading to underreporting. Additionally, a single IP address
that accesses different Core Data Resources will be counted separ-
ately for each resource. On balance, the number of unique IP
addresses is almost certainly an overestimate of the number of users.

Web access can be measured with web analytics or log analytics.
Web analytics (‘web page tagging’) is based on tags that are
embedded in web pages and cookies stored on a user’s device, and
are typically collected through services such as Google Analytics.
Log analytics are based on the analysis of IP address data collected
on the server hosting the resource. Although web analytics are gen-
erally easier to set up, they do not track 100% of requests because
JavaScript may not be executed on the client side, for example,
when cookies or image downloading are blocked, as is typical on
mobile devices. Log analytics, on the other hand, are more compli-
cated to set up, requiring dedicated hardware and infrastructure.
The system used depends on the technology that is preferred by the
hosting institution of the respective CDRs. For 14 CDRs, the estima-
tion of the usage was based on log analytics, and for five resources
on Google Analytics. When both measures were reported, log ana-
lytics figures were chosen for this analysis.

Staff effort in Full Time Equivalents (FTEs): This corresponds to
Indicator 1d ‘Staff effort: number of FTEs per year for the past 2–
3 years’ from Durinx et al. (2016) and includes curators, bioinfor-
maticians and technical staff representative of each calendar year as
reported by each resource manager. This reflects the staff required
to develop and maintain a data resource. The distribution of types
of staff varies between the CDRs. In Deposition Databases, such as
ArrayExpress or ENA, the focus is on technical staff and bioinfor-
maticians. In contrast, knowledgebases, for example the Human
Protein Atlas or UniProt, add layers of value through teams of highly
qualified curators who manually analyse and standardize research
data. Each resource uses its own method to settle on an FTE count
to provide in its annual update, then uses that same method for each
year. This consolidates part-time and full-time contributors to the
equivalent number of full-time positions, so it does not necessarily
reflect the actual number of people involved in the resource. It is
likely that the FTE count recorded for CDRs housed within large
bioinformatics institutes underestimates the actual staff effort

Table 1. List of ELIXIR’s Core Data Resources

Resource names Overview References

ArrayExpress Data from high-throughput functional genomics experiments Athar et al. (2019)

BRENDA Database of enzyme and enzyme–ligand information Jeske et al. (2019)

CATH Hierarchical domain classification of protein structures PDB Sillitoe et al. (2019)

ChEBI Dictionary of molecular entities focused on ‘small’ chemical compounds Hastings et al. (2016)

ChEMBL Database of bioactive drug-like small molecules Mendez et al. (2019)

EGA Personally identifiable genetic and phenotypic data Lappalainen et al. (2015)

ENA Nucleotide sequencing information Harrison (2019)

Ensembl Genome browser for vertebrate genomes Cunningham et al. (2019)

Ensembl Genomes Genome browser for non-vertebrate genomes, with sites for bacteria, protists, fungi,

plants and invertebrate Metazoa

Kersey et al. (2018)

Europe PMC Repository to life sciences articles, books, patents and clinical guidelines Levchenko et al. (2018)

Human Protein Atlas Information on human protein-coding genes Uhlén et al. (2015)

IMEx Consortium

(IntAct and MINT)

IntAct: experimentally verified molecular interactionsMINT: experimentally verified

protein–protein interactions

Orchard et al. (2012)

InterPro Functional analysis of protein sequences Mitchel et al. (2019)

Orphadata Comprehensive, high-quality datasets related to rare diseases Rath et al. (2012)

PDBe Biological macromolecular structures Mir et al. (2018)

PRIDE Mass spectrometry-based proteomics data Perez-Riverol et al. (2019)

SILVA Resource for quality checked and aligned ribosomal RNA sequence data Glöckner et al. (2017)

STRING Known and predicted protein–protein interactions. Szklarczyk et al., (2019)

UniProt Comprehensive resource for protein sequence and annotation data UniProt Consortium (2019)
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required to support such resources, due to economies of scale and in-
stitutional support provided within those large institutes. In con-
trast, a resource operating in a smaller institute may be the only
hosted service, and must depend on local staff for all computational
infrastructure management.

Figure 2: Literature mentions and citations: This corresponds to
Indicator 2c ‘Usage in research as measured through citation in the
literature’ from Durinx et al. (2016). This indicator aims to evaluate
how the CDRs contribute to specific research projects. For each
CDR, three different types of citation indicators in Europe PMC
have been counted on a yearly basis: (i) mentions of the name of the
CDR, through mining of the patterns of the resource name, (ii) cit-
ation of individual accessions from each CDR, identified through
mining of the patterns of their unique identifiers and (iii) citations of
selected Key Articles describing the individual resources in other
publications (see Supplementary Data for further details). In
Figure 2, mentions of the CDR by name and citations of individual
accessions are combined, while citations to key articles are shown as
a separate column. We note that citations of key articles were
counted individually for each CDR. These citations were not
checked for duplications so the cumulative citation count will over-
count publications that cite key articles from two or more CDRs.

These citation indicators conservatively estimate usage of CDRs
in research projects as the estimates are constrained by the number
of full text papers available in Europe PMC, de facto excluding the
non-open access literature. Mining resource-name mentions was car-
ried out for 16 of the 19 CDRs: BRENDA, SILVA and Orphadata
were not included in the initial list of CDRs and have not yet been
folded into the ‘Resource Name Mentions’ text mining pipeline.
Mining of entry identifiers was carried out for 13 of those 16 resour-
ces: three resources do not assign their own unique identifiers to in-
dividual datasets (see Supplementary Data for further details). A
caveat to this methodology is that use of certain resources has be-
come such a routine element of everyday research practice that they
are rarely cited. This is the case for literature repositories such as
Europe PMC, which are heavily used but rarely explicitly acknowl-
edged. Additionally, while initiatives to encourage data citation are
gaining traction (https://doi.org/10.25490/a97f-egyk), these are rela-
tively recent and not yet comprehensively adopted. These factors
contribute to significant, but difficult-to-quantify, undercounting of
literature citations to the CDRs.

Figure 3: Categories of the top 20 CDR-citing journals: This is
related to Indicator 2c ‘Usage in research as measured through cit-
ation in the literature’ from Durinx et al. (2016). Three citation indi-
cators of CDRs were collected: (i) mentions of the name of the
CDR, through mining of the patterns of the resource name, (ii) cit-
ation of individual records within the CDR, through mining of the
patterns of their unique identifiers and (iii) citations of selected Key
Articles describing the individual resources in other publications (see
Supplementary Data for details—these data were collected on 15th
August 2018). For each unique PMID across the three citation indi-
cators, the journal title and citation count were retrieved from
Europe PMC. The top 20 CDR-citing journals were identified and
mapped to a set of categories, based on the category model used in
the Scimago Journal & Country Rank (https://www.scimagojr.com/
journalrank.php). Finally, the number of citations to CDRs in all
three indicators in journals within each category were tallied and
plotted against the categories. Citation counts are cumulative from
the publication date for each article to 15th August 2018, when the
data were collected.

Figure 4: Core Data Resource interconnectivity: This is related
to Indicator 2d ‘Dependency of other resources’ from Durinx et al.
(2016). Lists of the data resources with which each CDR directly
exchanges data, generally using application programming interface
calls, were requested from the CDR managers. In Figure 4, the num-
ber of individual types of data exchanged by each pair of CDRs is
plotted. The relationships are expressed in a chord diagram, with
the arc width weighted according to the number of links from each
CDR to the other CDRs.

Figure 5: Heat map of Core Data Resource co-citation: This is
related to Indicator 2c ‘Usage in research as measured through

citation in the literature’ from Durinx et al. (2016). The citations of
CDRs were collected as for Figure 3. For each unique PMID across
the three citation indicators, Cited-by counts were retrieved from
Europe PMC. For each pair of resources, the number of common
unique PMIDs were counted and displayed graphically as the log of
the co-citation count for those two resources. Although co-citations
do occur across the full set of CDRs, for legibility only the 12 CDRs
that are most co-cited are displayed in Figure 5.

Figure 6: Horizon of assured funding: This is related to Indicator
1d ‘Staff effort’ from Durinx et al. (2016). CDR managers were
asked ‘As of January 2019, for how many Full Time Employees
(FTEs) do you have committed funding, on 1 January in the follow-
ing years?’ Data were requested for 2019 to 2024. The figures
reported do not imply that the baseline (January 2019) count reflects
optimal staffing; resources may have been sub-optimally funded at
the time of the survey. Nor do the figures imply that the resources
anticipate that support will necessarily decline as shown—efforts to
secure future funding are foremost in the minds of the resource man-
agers, and ongoing. The survey question was intentionally specific,
aiming to capture the assured security of staff funding for the infra-
structure, projected forwards.

3 Results

Here, we describe the Core Data Resource infrastructure in terms of
the scale of data housed, usage and staffing, followed by a consider-
ation of impact as reflected by citation data, and interdependencies
and synergies in their inter-relationships. We reflect upon the role
the CDRs play with respect to Open and FAIR data initiatives, and
close with an examination of the security, in the long term, of the
funding support on which they depend.wqur

3.1 Scale of the Core Data Resources
Figure 1 shows the cumulative number of data entries across the
Core Data Resources, including all deposited, curated and computed
records. The total number of data entries almost quadrupled, from
967 million to 3809 million, between 2014 and 2018.

The number of unique IP addresses accessing the data resources
increased by 50% during the same period. As noted in Section 2, IP
address figures are proxies for the number of individuals who use
the CDRs. However, even with very conservative modelling (see dis-
cussion in https://beagrie.com/static/resource/EBI-impact-report.pdf)
the number of scientists using the CDRs per month, given almost
three million unique IP addresses, is in the hundreds of thousands.
Additionally, we are confident that the increase in unique IP
addresses is an indicator of real growth in users: this figure increased
by more than 50% from 2014 to 2018.

How many people maintain, curate and serve these data to all
these users? The number of FTEs employed in the Core Data

Figure 1. Scale of the Core Data Resources. Cumulative number of data entries in

all Core Data Resources, plotted in conjunction with usage (as measured via the

number of unique IP addresses accessing the CDRs per month), and the number of

staff at the CDRs (as measured by Full Time Equivalents), per year
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Resources grew from 308 to 325, or just 5%, over the observed 5-
year period (Figure 1). Staff numbers are thus growing only slowly
despite substantial increases in usage of the Core Data Resources
and in their size as measured by the number of records and bytes
(their ‘storage footprint’). This reflects the scalability of the tech-
nical solutions that have been adopted, the highly skilled workforce,
and the value for money these resources offer. For each FTE
employed, requests from almost 10 000 unique IP addresses per
month are recorded.

Science evolves continually; developing data services such as
metadata schemas, ontologies and user interfaces to support those
evolving needs, while also maintaining backward compatibility to
older data, is a distinctly human effort. Retaining and finding talent-
ed and knowledgeable staff to maintain the scientific relevance of
CDRs and support their continued growth in usage requires contin-
ual investment.

3.2 Core Data Resource citations in the scientific

literature
Citation in the scientific literature is an established indicator of the
value and significance of scientific resources including databases
(Bousfield et al., 2016) and can be assessed via text mining methods
(Duck et al., 2016, Kafkas et al., 2013) as well as by traditional cit-
ation counts. We investigated the impact of Core Data Resources by
mining the full text open access publications available in Europe
PMC for mentions of Core Data Resources by their name and by
their specific data entry identifiers, with open citations of Key
Articles describing each specific resource being also included in the
analysis. Figure 2 shows the growth in the number of publications in
Europe PMC on the basis of these three citation indicators.

Given the total of 51 434 name or data identifier mention cita-
tions in 2017, a year in which around 305 000 open access articles
were published, 17% of the open access articles in Europe PMC
refer to a Core Data Resource by mentioning the resource name or
an entry identifier. This is a significant proportion. As shown in
Figure 2 (and Supplementary Table S3), the combined citation indi-
cators for the Core Data Resources grew by 33%, from 43 261 to
57 617, over the 5-year period analysed.

Having established that the Core Data Resources are widely
cited in the literature we assessed the scientific fields of the citing
journals, by mapping the journals in which citations appear to
Categories of scientific fields. As shown in Figure 3, the impact of
the Core Data Resources beyond the immediate basic research do-
main from which they originated is clearly evident. The Core Data
Resources are used more widely than within bioinformatics and

molecular biology, ranging from primary research into applied and
health sciences, food security and the environment.

3.3 Integration, dependency and ecosystem
The Core Data Resources exhibit high connectivity and interdepen-
dencies, reflecting the biological relationships between the different
data types. The use of persistent identifiers is the primary method of
cross-referencing between different resources, alongside the use of
standard shared vocabularies such as the Gene Ontology (The Gene
Ontology Consortium, 2019). For example, UniProt protein sequen-
ces are translated from ENA sequences and Ensembl, and linked to
corresponding PDBe structures. Records for compounds in ChEMBL
link to IntAct interactions in which they are involved. The InterPro
consortium builds on UniProt sequences to generate protein family
signatures, which in turn are used to annotate uncharacterized
UniProt sequence data. Most resources link to publications (Europe
PMC) for biological context, which in turn cite identifiers to link
back to the data. Figure 4 shows a representation of the interconnec-
tivity between the CDRs. As new Core Data Resources are identified,
it is expected that they will contribute to and extend this ecosystem.

While the CDRs support each other with the interconnections
illustrated in Figure 4, they also interact with multiple resources out-
side this set. For example, ChEBI is used in UniProt enzyme annota-
tions in the form of Rhea chemical reactions (https://www.rhea-db.
org/), and UniProt enzymes are annotated using the IUBMB enzyme
classification (https://iubmb.org/) as represented by the ENZYME
database (https://enzyme.expasy.org/). While SILVA links to the
ENA Core Data Resource, it also cross-references to RNACentral
(https://rnacentral.org/), and the prokaryotic standard name re-
source LPSN (http://www.bacterio.net/) among others.

Between them, the Core Data Resources link to more than 350
external resources in more than 630 outward links in total, all listed
in Supplementary Data and Table S6; a deeper analysis of this data
ecosystem in terms of scale, scope and interdependencies would be
an interesting follow-on study. The diversity of this wider set of
resources illustrates the foundational role of the Core Data
Resources in the global bioinformatics landscape. Worldwide, the
life science data resource ecosystem is an interlinked network, and
the Core Data Resources are important nodes in that they integrate
and make findable the data from hundreds of other resources, many
of which are smaller, or domain-specific. In this way, the Core Data
Resources enhance the value of the other resources to which they are
linked by multiplying re-use of their data.

Another way to represent the integrated nature of Core Data
Resources is to analyse the co-citation of different data resources in full
text publications. That is, to count the number of times two or more
resources (name or entry identifiers) are cited in the same publication.
Figure 5 depicts the co-citation distribution for the 12 Core Data
Resources that show the most co-citation. Notable co-citation hotspots
include UniProt, PDBe and ENA, attesting to their frequent use in con-
junction with each other and with other Core Data Resources.

Figure 2. Usage of ELIXIR Core Data Resources in research. Left axis: Sum of the

number of mentions of the names of the resources (16 CDRs) and the resource entry

identifiers (12 CDRs), per year, in the open access literature. Right axis: citations of

pre-identified Key Articles describing the respective resources (18 CDRs). Note that

citation data for 2018 are not depicted, as these were not available at the time the

analysis for this figure was carried out

Figure 3. Cumulative citation counts, to 15th August 2018, for the categories of sci-

entific fields in which the 20 journals that most frequently cite the Core Data

Resources are active
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3.4 Open data and FAIR data leadership
Wide usage of data resources depends critically on the legal right to
access and reuse data. This dependency is reflected in Indicator 4b
‘Open science’ in the Core Data Resource selection process (Durinx
et al., 2016). All ELIXIR Core Data Resources are open access and
enable the reuse and remixing of data, with either Terms of Use
statements (12 of the resources) or specific licences (seven of the
resources) that allow reuse. The Creative Commons licenses CC0,
CC-BY or CC-BY-SA all conform to the Open Definition (http://
opendefinition.org/licenses/), and serve for this purpose. Notably, as
part of the process of application for Core Data Resource status, six
resources amended their licences to being more permissive in order
to fulfil the Open Science Indicator criterion.

ELIXIR supports European life scientists in making their data
Findable, Accessible, Interoperable and Reusable (Blomberg and the
ELIXIR Consortium, 2017). The Core Data Resources exemplify
FAIR data across all FAIR principles (Wilkinson et al., 2016).
Durinx et al., (2016) include a Table within Box 1 that maps the
Core Data Resource Indicators to FAIR Principles. For example, the
‘open data’ characteristic of the Core Data Resources corresponds
to the FAIR Principle ‘Reuseable’. Furthermore, Core Data

Resources use persistent identifiers (Findable), standard vocabula-
ries, and ontologies (Interoperable) as the norm in their metadata
(included in the ‘Quality of service’ Indicator 3a and 3d category).
Data exchange is enabled via standard protocols such as HTTPS
(websites and APIs) and FTP (‘Quality of service’ Indicator 3f, and
FAIR principle ‘Accessible’). The Core Data Resources provide user
support and customer service via helpdesks, user feedback mecha-
nisms and outreach and training activities (‘Quality of service’
Indicator 3g), to facilitate all aspects of the FAIR principles.

Wilkinson et al. (2019) note that

The FAIR Principles are aspirational in that they do not strictly

define how to achieve a state of ‘FAIRness’, rather they describe

a continuum of features, attributes, and behaviors that move a

digital resource closer to that goal. Despite their rapid commu-

nity uptake, the question of how the FAIR Principles should be

implemented has been prone to diverse interpretation. Some re-

source providers claim to be ‘already FAIR’ or ‘to enable

FAIRness’ - statements that currently cannot be objectively

evaluated.

Although by definition the Core Data Resources are well-
established and thus pre-date the advent of the FAIR Principles,
several of the CDRs contribute to initiatives exploring the practi-
calities of FAIR Implementation. Examples include the
Bioschemas community initiative (https://bioschemas.org/), which
aims to improve the Findability of data in the life sciences by
encouraging the use of Schema.org markup in data resource web-
sites, and an ELIXIR Implementation Study ‘FAIRness of the cur-
rent ELIXIR Core resources: Application (and test) of newly
available FAIR metrics, and identification of steps to increase
interoperability’ (https://elixir-europe.org/platforms/data/fairness-
core-resources).

3.5 Funding horizon
ELIXIR Core Data Resources are the repository of record for a num-
ber of data types. Funders, journals and submitters treat the Core
Data Resources as stably funded infrastructure, but funding is in
fact not assured past a very short horizon for many resources.

To assess the magnitude of this problem, we asked managers of
each Core Data Resource to report the funding for their staff that is
currently confirmed. Figure 6 shows that based on data gathered
early in 2019, the resources have assured funding for on average
88% of the staff within a 1-year horizon to 2020, but on average
only 33% of the staff over a 3-year horizon to 2022. Just five of the
19 resources (26%) have the assurance that, 1 year from January
2019, they would have funds to support the same level of staffing as
on that date.

These results show that beyond 2020 the assured funding levels
are not sustained, implying a clear risk to the continued existence of
this essential research infrastructure. The lack of assured long-term
support for these mature and foundational resources demonstrates
the fragility of data infrastructure upon which the research ecosys-
tem depends and upon which funding agencies rely for storing re-
search data generated with public monies.

It is unlikely, of course, that staffing for the infrastructure will
actually collapse on the trajectory shown in Figure 6, as all Core
Data Resources have demonstrated their capability to secure ad-
equate funding for their operations, to date. However, funding for
much of the infrastructure is currently awarded on the basis of
short-term grants or contracts whose terms are often suited more to
research projects than to funding infrastructure. Consequently, re-
source managers spend a significant proportion of their time demon-
strating the value of their resources to funders and preparing
applications for funding renewal. It is entirely appropriate for fun-
ders to exercise mechanisms that continually assess the fit of the in-
frastructure with the scientific need, but Figure 6 suggests that the
frequency of this assessment is faster than might be warranted for an
infrastructure, which by definition must be established, of proven
utility, and stable over time.

Figure 5. Heat map of the pairwise co-citation of the 12 ELIXIR Core Data

Resources that are most frequently co-cited: ArrayExpress, CATH, ENA. Ensembl,

HPA, InterPro, PDBe, PRIDE. SILVA, STRING-db, IMEx and UniProt. The inten-

sity of shading correlates with the frequency of co-citation

Figure 4. Core Data Resource interconnectivity. The Core Data Resources are

placed on the circumference of the circle, with each resource represented by an arc

proportional to the total number of types of data directly exchanged between the

two resources. The width of each internal arc, which transects the circle and con-

nects two different resources, is proportional to the number of links between the

two resources at the ends of the arc
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4 Discussion

During the past four decades, the massive growth of data in life sci-
ences research, and the demonstration by researchers and funders
that these data are more valuable if shared and re-used, have led to
the creation of thousands of data resources to store, curate and share
these data (Imker, 2018; http://bigd.big.ac.cn/databasecommons/).
Together, these data resources represent a new type of research in-
frastructure, which, unlike traditional ‘bricks and mortar’ research
infrastructures, is both virtual and distributed. The resources that
make up this infrastructure are developed and maintained through
the expertise of highly qualified personnel. The physical components
of the infrastructure are these staff and the computational resources
within which the data are stored and through which they are distrib-
uted to users.

The successful selection by ELIXIR of a set of Core Data
Resources for Europe has shown that it is possible to develop a data-
driven process to measure the impact of data resources and to use this
process to identify a subset of those resources from within the larger
data resource ecosystem that are most crucial to the larger infrastruc-
ture. The ELIXIR Core Data Resources define a cohort within the
global life sciences infrastructure that funders and other stakeholders
may use as a basis for structuring policies that support long-term sus-
tainability, for both the Core Data Resources and the greater world-
wide life sciences data infrastructure of which they are a part.

In addition to making the case for more sustainable funding sup-
port, the named Core Data Resources are models of good practice
for managing data resources. They provide a focus for initiatives to
integrate data and workflows from other, smaller data resources.
Several of the Core Data Resources serve as the repository of record
for archiving the data type they store: they are crucially important
for the long-term preservation of hard-won experimental data gener-
ated with public funding. The selection process itself provides a basis
for selecting exemplars of good practice for other resource types,
such as ELIXIR’s Recommended Interoperability Resources (https://
www.elixir-europe.org/platforms/interoperability/rirs), as part of
building the European research infrastructure across all components
necessary for life sciences research.

The Core Data Resources identified by ELIXIR are, by defin-
ition, of fundamental importance to the life sciences research infra-
structure in Europe and the rest of the world, and, for the first time
here, this assertion is quantitatively demonstrated across the set of
Core Data Resources. We have shown that these Core Data
Resources are accessed by hundreds of thousands of users per month
(Figure 1); they are explicitly cited in 17% of open access publica-
tions in Europe PMC (Figure 2); and they are used extensively across
all fields in academic life sciences, medical sciences and in various
life sciences-related commercial activities (Figure 3). It is clear from
our analysis that the value of the Core Data Resources infrastructure
for the scientific research effort is continually increasing over time as
archived data and the use of those data grows.

While the ELIXIR Core Data Resources are necessarily mature
and stable, by virtue of the selection criteria that define them,
Periodic Review of the CDR set is needed. This ensures that the
standards applied in making the current selections are maintained,
as is the relevance of the scope of the chosen resources to the life sci-
ences, given that new technologies will be developed and new fields
of research will emerge, in some cases superseding older technolo-
gies, and refocusing research priorities. In line with plans indicated
in Durinx et al. (2016), the first formal Periodic Review is due to
take place in 2020.

4.1 Risk to this critical infrastructure
The data infrastructure exemplified by the Core Data Resources has
become essential to life sciences research worldwide, as well as in
more applied settings such as healthcare, environmental science, bio-
technology and food science, and operates in the commercial sector
such as the pharmaceutical industry and many small-to-medium-
sized companies (https://f1000research.com/documents/7-590). In
recognition of the underpinning nature of open data to both research
and the science-driven economy, virtually all research funders, both
public and charitable, now strongly recommend or require deposition
of research data into open access data resources (European Research
Council: https://erc.europa.eu/sites/default/files/document/file/ERC_
info_document-Open_Research_Data_and_Data_Management_
Plans.pdf; Science Europe: https://www.scienceeurope.org/wp-con
tent/uploads/2018/01/SE_Guidance_Document_RDMPs.pdf).
Leading scientific journals, addressing their concerns about research
reproducibility, increasingly advocate and, in some cases, require de-
position into open access data repositories of research data associated
with the articles they publish (Scientific Data: https://www.nature.
com/sdata/policies/data-policies; PLOS: https://journals.plos.org/plo
sone/s/data-availability). Consequently, the core resources in this glo-
bal enterprise require correspondingly sustainable funding (Bourne
et al., 2015; Anderson et al. 2017).

The need for increased sustainability of funding for the ELIXIR
Core Data Resources is demonstrated in Figure 6. Support to date,
as shown by funding for FTEs from 2014 to 2018, appears stable.
These figures, though, mask the fragility of this funding, which is
heavily reliant upon short-term funding for which there is no guar-
antee of continuation, as shown by the sharp decline in assured
funding for FTEs from 2020. Partly because they have been so suc-
cessful in securing their funding to date, there is an under-
appreciation of the precariousness of the funding landscape for such
data resources, as evidenced by common assumptions that funding
is likely to continue (Siepel, 2019). This contrasts with explicit ac-
knowledgement that the landscape is changing even for well-
established data resources, such as those supported by the NIH’s
National Human Genome Research Institute (Kaiser, 2016) and
neglects the fact that emerging research directions need to be incor-
porated, ensuring best service to the life science community.
Consequently, solutions are needed to ensure adequate provision of
foundational bioinformatics data resources in the long term.

4.2 Worldwide data ecosystem
The European resources from which ELIXIR Core Data Resources
are selected represent only a fraction of life sciences data resources
worldwide. The rest of the world also develops and hosts data
resources, and many of these are as important to the global life sci-
ences data ecosystem as are the ELIXIR Core Data Resources.
Indeed, several of the ELIXIR Core Data Resources are already
members of international consortia, with ENA (INSDC; http://
www.insdc.org/), PDBe (wwPDB; https://www.wwpdb.org/) and
UniProt (https://www.uniprot.org/) being three prominent exam-
ples. Many of the global resources are also at risk from short-term
and unstable funding cycles. The ELIXIR Core Data Resource selec-
tion process provides a model for identification of other crucial
resources worldwide that will allow funders to more efficiently sup-
port the worldwide life sciences data resource ecosystem. The nas-
cent Global Biodata Coalition (Anderson, 2017; Anderson et al.,
2017), supported by national and charitable funders globally, will

Figure 6. Horizon of assured funding: number of Full Time Equivalent positions at

the CDRs from 2014 to 2018 (solid columns) and number of FTEs for which fund-

ing is assured 2019 to 2024 (striped columns), by year
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use this process as a stepping stone towards a worldwide effort to
identify and secure long-term funding for crucial data resources.
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