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Abstract

Polycomb and trithorax group proteins regulate cellular pluripotency and differentiation by maintaining hereditable states
of transcription. Many Polycomb and trithorax group proteins have been implicated in the covalent modification or
remodeling of chromatin, but how they interact with each other and the general transcription machinery to regulate
transcription is not well understood. The trithorax group protein Kismet-L (KIS-L) is a member of the CHD subfamily of
chromatin-remodeling factors that plays a global role in transcription by RNA polymerase II (Pol II). Mutations in CHD7, the
human counterpart of kis, are associated with CHARGE syndrome, a developmental disorder affecting multiple tissues and
organs. To clarify how KIS-L activates gene expression and counteracts Polycomb group silencing, we characterized defects
resulting from the loss of KIS-L function in Drosophila. These studies revealed that KIS-L acts downstream of P-TEFb
recruitment to stimulate elongation by Pol II. The presence of two chromodomains in KIS-L suggested that its recruitment or
function might be regulated by the methylation of histone H3 lysine 4 by the trithorax group proteins ASH1 and TRX.
Although we observed significant overlap between the distributions of KIS-L, ASH1, and TRX on polytene chromosomes,
KIS-L did not bind methylated histone tails in vitro, and loss of TRX or ASH1 function did not alter the association of KIS-L
with chromatin. By contrast, loss of kis function led to a dramatic reduction in the levels of TRX and ASH1 associated with
chromatin and was accompanied by increased histone H3 lysine 27 methylation—a modification required for Polycomb
group repression. A similar increase in H3 lysine 27 methylation was observed in ash1 and trx mutant larvae. Our findings
suggest that KIS-L promotes early elongation and counteracts Polycomb group repression by recruiting the ASH1 and TRX
histone methyltransferases to chromatin.
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Introduction

Eukaryotic transcription involves a highly ordered series of

events including the binding of transcription factors to cis-

regulatory elements; the assembly of the pre-initiation complex

and recruitment of Pol II to promoters; initiation; promoter

clearance; elongation and termination [1]. These events must be

coordinated with changes in chromatin structure that allow

transcription factors and Pol II to access the DNA template and

the recruitment of factors that process nascent RNAs [2,3]. The

recruitment of Pol II to promoters is rate limiting for the

transcription of many genes. In some cases, however, Pol II pauses

or ‘‘stalls’’ a short distance downstream of promoters. Promoter-

proximal stalling, first observed at Drosophila heat-shock genes,

allows genes to be rapidly activated in response to cellular or

environmental signals [4]. Recent studies in both Drosophila and

humans have shown that paused polymerases are present

downstream of the promoters of many silent genes, suggesting

that the regulation of early elongation is a relatively widespread

phenomenon [5,6,7,8,9]. In addition to poising genes for rapid

induction, pausing can be used to repress transcription and

generate cell type-specific patterns of gene expression [9]. These

findings have stimulated great interest in the factors that regulate

elongation by Pol II.

Numerous factors that regulate elongation or other aspects of

transcription by Pol II have been identified in genetic studies of

Drosophila homeotic (Hox) genes. Hox genes encode homeodomain

transcription factors that specify cell fates in Drosophila and other

metazoans [10]. The transcription of Hox genes must be regulated

precisely, since their inappropriate expression can lead to

homeotic transformations and other developmental abnormalities.

The initial patterns of Hox transcription are established in response

to positional information in the early embryo. During subsequent

development, these patterns are maintained by two ubiquitously

expressed groups of regulatory proteins: the trithorax group of

activators and the Polycomb group of repressors [11,12,13]. By

maintaining heritable states of Hox transcription, trithorax and

Polycomb group proteins play key roles in the control of cell fate.

Although the detailed mechanism of action of most Polycomb

and trithorax group proteins is not well understood, many of these

proteins regulate transcription by altering chromatin structure.

Roughly a dozen Polycomb group genes have been identified in

Drosophila; the majority of these genes encode subunits of two

protein complexes: PRC1 and PRC2 [14]. The Enhancer of zeste
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[E(z)] subunit of PRC2 methylates lysine 27 of histone H3

(H3K27) [15]; this covalent modification of chromatin is critical

for Polycomb group repression and may recruit or stabilize the

binding of PRC1 or other repressors to chromatin [16,17]. The

trithorax proteins Trithorax (TRX) and Absent, small or homeotic

1 (ASH1) also catalyze modifications of nucleosomal histones,

including the methylation of lysine 4 of histone H3 (H3K4)

[18,19,20,21,22]. H3K4 methylation is observed near the

promoters of many active genes [23] and may directly or

indirectly counteract Polycomb group repression [24,25]. Other

trithorax group proteins - including Brahma (BRM), Moira

(MOR), Osa (OSA), and Kismet (KIS) - are involved in ATP-

dependent chromatin remodeling [26]. Thus, both the modifica-

tion and remodeling of chromatin are critical for the maintenance

of heritable states of Hox transcription.

A subset of trithorax group members, including kis, may

regulate elongation by Pol II. Like many other trithorax group

genes, kis was identified in a screen for extragenic suppressors of

Polycomb (Pc) mutations, suggesting that it directly or indirectly

counteracts Polycomb group repression [27]. In support of this

view, the loss of kis function causes homeotic transformations due

to the failure to maintain transcription of Hox genes [28]. kis

encodes a large protein (KIS-L) which is highly related to human

CHD7 and other members of the chromodomain-helicase-DNA

binding (CHD) subfamily of ATP-dependent chromatin-remodel-

ing factors [28,29]. KIS-L is associated with the vast majority of

transcriptionally active regions of salivary gland polytene chro-

mosomes, suggesting that it plays a relatively global role in

transcription by Pol II [30]. KIS-L is not required for early stages

of the transcription cycle, including the recruitment of Pol II to

promoters and promoter clearance [30]. By contrast, the loss of kis

function leads to a dramatic reduction in the levels of elongating

Pol II and the elongation factors SPT6 and CHD1 associated with

polytene chromosomes [30]. These findings suggest that KIS-L

activates transcription by promoting an early stage of transcription

elongation.

In addition to highly conserved ATPase domains, KIS-L and

other CHD proteins contain chromodomains: a short domain

implicated in the binding of methylated histone tails [31]. The

presence of two chromodomains in KIS-L suggests that its ability

to remodel chromatin and stimulate transcription may be

regulated by the site-specific methylation of nucleosomal histones.

Perhaps the best candidate for a chromatin modification that

regulates KIS-L function is H3K4 di- or tri-methylation.

Numerous H3K4 methyltransferases have been identified, includ-

ing yeast SET1, its relatives in Drosophila and mammals, and the

trithorax group proteins ASH1 and TRX [13,23]. H3K4

methylation is found near the promoters of many active genes

and is thought to stimulate transcription by promoting the

association of multiple regulatory proteins with chromatin [23].

For example, CHD1 - a CHD protein related to KIS-L - directly

binds methylated H3K4 (H3K4me) via its chromodomains

[32,33,34]. Based on these findings, we suspected that the

methylation of H3K4 by ASH1 and TRX might activate

transcription by targeting KIS-L to promoters.

In this study, we sought to clarify the role of KIS-L in

transcriptional regulation in vivo. By analyzing defects resulting

from the loss of kis function, we found that KIS-L acts downstream

of positive transcription elongation factor b (P-TEFb) recruitment

to stimulate elongation by Pol II. KIS-L did not bind methylated

histone tails in vitro or extensively co-localize with H3K4me on

polytene chromosomes, as would be expected if this modification is

necessary or sufficient for the recruitment of KIS-L to chromatin.

Surprisingly, the loss of kis function led to a dramatic reduction in

the levels of TRX and ASH1 associated with chromatin,

accompanied by a significant increase in the level of H3K27

methylation. These findings suggest that KIS-L promotes

transcription elongation and counteracts Polycomb group repres-

sion by recruiting the ASH1 and TRX histone methyltransferases

to chromatin.

Results

KIS-L Acts Downstream of P-TEFb to Facilitate Elongation
by Pol II

Previous studies in our laboratory suggested that KIS-L

promotes a step in transcription downstream of the recruitment

of Pol II to promoters [30]. The phosphorylation of the

heptapeptide repeat Y1S2P3T4S5P6S7 of the C-terminal domain

(CTD) of Pol II is highly regulated during the transcription cycle

[4]. When recruited to promoters, the CTD is hypophosphory-

lated (Pol IIa). Phosphorylation of serine 5 of the CTD by the

Cdk7 subunit of TFIIH is associated with promoter clearance and

Pol IIoser5 is enriched in promoter-proximal regions [4]. The

subsequent phosphorylation of serine 2 of the CTD by the Cdk9

subunit of P-TEFb relieves pausing and stimulates the transition to

active elongation [35]. Thus, Pol IIoser2 is associated with the body

of actively transcribed genes. Using antibodies sensitive to the

phosphorylation state of the CTD, we previously demonstrated

that the loss of kis function leads to a dramatic reduction in the

level of Pol IIoser2 - but not Pol IIa or Pol IIoser5 - associated with

salivary gland polytene chromosomes [30]. This observation

suggested that KIS-L is required for a relatively early step in

elongation by Pol II.

A key step in early elongation is the recruitment of P-TEFb to

promoters [35]. P-TEFb (a heterodimer of CycT and Cdk9) has

multiple functions: it phosphorylates serine 2 of the CTD;

promotes the maturation of elongation complexes; counteracts

promoter-proximal pausing induced by the DRB sensitivity-

inducing factor (DSIF) and negative elongation factor (NELF);

and stimulates the processivity of elongating Pol II [36]. The loss

of P-TEFb function causes defects similar to those observed in kis

mutants, including a reduction in the level of Pol IIoser2, but not

Pol IIa or Pol IIoser5, associated with chromatin [37,38]. We

Author Summary

The transcription of eukaryotic genes involves a highly
ordered series of events, including the recruitment of RNA
polymerase to promoters, the production of the RNA
transcript, and termination. These events are coordinated
with changes in chromatin structure that allow regulatory
proteins and RNA polymerase to access the DNA template.
The recruitment of RNA polymerase II to promoters is rate-
limiting for the expression of most eukaryotic genes.
However, RNA polymerase often pauses or stalls a short
distance downstream of promoters, providing an addi-
tional step at which transcription can be regulated. In this
study, we present evidence suggesting that a chromatin-
remodeling factor, KIS-L, activates transcription by coun-
teracting promoter-proximal pausing in Drosophila. KIS-L
also counteracts histone H3 lysine 27 methylation—a
covalent modification of chromatin involved in hereditable
gene silencing. Our findings provide a plausible explana-
tion for the developmental abnormalities associated with
CHARGE syndrome, a serious disorder resulting from
mutations in the human counterpart of KIS-L.
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therefore suspected that KIS-L might be required for the

recruitment of P-TEFb to promoters.

To determine whether KIS-L is required for P-TEFb

recruitment, we stained polytene chromosomes of wild-type and

kisk13416 larvae with an antibody against the CycT subunit of P-

TEFb [39]. As expected, the chromosomal distribution of P-TEFb

and Pol IIoser2 overlap extensively in wild-type larvae (Figure 1A

and C). Although the level of Pol IIoser2 associated with polytene

chromosomes is dramatically reduced in kisk13416 larvae (Figure 1A

and B), the loss of kis function has no obvious effect on either the

level or distribution of CycT (Figure 1C and D). Thus, KIS-L

affects a step in transcription downstream of the recruitment of P-

TEFb to promoters.

How does KIS-L influence transcription? The reduced levels of

Pol IIoser2 on the salivary gland chromosomes of kis mutants could

be due to either the decreased phosphorylation of serine 2 of the

CTD or the stalling or loss of Pol II downstream of promoters. To

distinguish between these possibilities, we stained polytene

chromosomes of wild-type and kisk13416 larvae with an antibody

(CTD4H8) that recognizes hypo- and hyper-phosphorylated forms

of Pol II [40]. The level of total Pol II associated with the salivary

gland polytene chromosomes of kisk13416 larvae was significantly

reduced relative to wild-type (Figure 1E and F); by contrast, the

level of chromatin-remodeling factor BRM was not altered

(Figure 1G and H). These findings suggest that KIS-L prevents

the stalling or loss of Pol II a relatively short distance downstream

of promoters.

KIS-L Co-localizes with the ASH1 and TRX Histone
Methyltransferases on Polytene Chromosomes

We next investigated the functional relationship between KIS-L

and the trithorax group proteins ASH1 and TRX. It has been

reported that both ASH1 and TRX methylate H3K4 [18,19,20];

this covalent modification of chromatin is enriched near the

promoters of many genes and is thought to recruit factors required

for early events in the transcription cycle [23]. Like other CHD

proteins, KIS-L has two adjacent chromodomains (CD1 and CD2)

suggesting that it might directly interact with methylated histone

tails. We therefore suspected that ASH1 and TRX might activate

transcription by recruiting KIS-L to promoters.

As a first step toward testing this hypothesis, we compared the

distributions of KIS-L, ASH1 and TRX on polytene chromo-

somes. As reported previously [41], ASH1 binds to approximately

one hundred sites on salivary gland polytene chromosomes

(Figure 2A). Strong TRX staining is observed at about 20 sites

on polytene chromosomes [42,43], but weaker signals are evident

at many other sites (Figure 2H) [44]. The chromosomal

distributions of KIS-L and ASH1 are strikingly similar, with

overlapping signals observed at more than 95% of the binding sites

of both proteins (Figure 2A–G). The chromosomal distributions of

KIS-L and TRX are also similar, but not identical, with

overlapping signals present at approximately 85% of the bindings

sites of both proteins (Figure 2H–N). The co-localization of KIS-L,

ASH1 and TRX at the majority of active genes is consistent with a

close functional relationship between the three proteins.

Figure 1. KIS-L facilitates an early stage in transcriptional elongation. Polytene chromosomes isolated from wild-type (A, C, E, and G) and
kisk13416 (B, D, F, and H) larvae were stained with antibodies against Pol IIoser2 (A, B) and the CycT subunit of P-TEFb (C, D) or the CTD of RPB1 (that
recognizes hypo- and hyper-phosphorylated forms of Pol II) (E, F) and BRM (G, H). The levels of total Pol II and Pol IIoser2 are reduced in kis mutants
while the levels of BRM and CycT are not altered.
doi:10.1371/journal.pgen.1000217.g001

Kismet Regulates H3K27 Methylation
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Figure 2. KIS-L co-localizes with the trithorax group proteins ASH1 and TRX on polytene chromosomes. A–C) The distributions of ASH1
(A, red) and KIS-L (B, green) on wild-type polytene chromosomes are shown together with the merged image (C). D–G: Magnification of the
chromosome arm bounded by the white rectangle in C is shown. Arrows in G mark examples of KIS-L bands that do not overlap with ASH1. H–J) The
distributions of TRX (H, red), KIS-L (I, green) and the merged image (J) are shown. K–N: represent the magnification of the chromosome arm bound by
the white rectangle in J. The arrows in N represent bands of KIS-L that do not overlap with TRX.
doi:10.1371/journal.pgen.1000217.g002
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The Chromodomains of KIS-L Do Not Bind Methylated
Histone Peptides in Vitro

CD2 of KIS-L is highly related to chromodomains that directly

bind methylated histone tails (Figure 3A), including CD2 of yeast

CHD1, which binds both di- and tri-methylated H3K4 [33]. This

similarity suggested that KIS-L might directly bind methylated

H3K4. To investigate this possibility, we examined the ability of

recombinant KIS-L proteins to bind immobilized synthetic

peptides corresponding to N-terminal histone tails. A recombinant

protein corresponding to KIS-L CD2 (residues 1937 to 1997) did

not bind unmodified histone H3 tails or a variety of methylated

H3 tails (including H3K4me2, H3K4me3, and H3K9me2), even

at relatively low (150 mM) salt concentrations (Figure 3B). By

contrast, we were able to detect the binding of the Drosophila HP1

chromodomain to H3K9me2 using this assay (Figure 3B), as

previously observed by others [45,46]. Recent studies of the

human CHD1 protein have shown that both CD1 and CD2 are

required for binding of methylated H3K4 in vitro [32,34]. While

we were able to reproduce this result (Figure 3B), a comparable

recombinant protein spanning CD1 and CD2 of KIS-L – as well

as full-length KIS-L proteins from embryo extracts – bound both

unmodified and methylated H3 and H4 tails (data not shown),

presumably due to non-specific ionic interactions with the

positively charged tails. We were therefore unable to determine

if regions outside of CD2 enable KIS-L to bind methylated histone

tails. Thus, although KIS-L CD2 failed to interact with methylated

histone tails in vitro, it remains possible that the full-length KIS-L

protein recognizes one or more histone modifications in vivo.

H3K4 Methylation Is Not the Primary Determinant for the
Recruitment of KIS-L to Chromatin

As an alternative approach for studying potential interactions

between KIS-L and methylated histone tails, we compared the

distributions of KIS-L and both di- and tri-methylated H3K4 on

salivary gland polytene chromosomes. As expected for modifica-

tions associated with transcriptionally active regions, there is a

high degree of overlap between KIS-L and both H3K4me2 and

H3K4me3 (Figure 3C–D and Figure S1). However, there are

many sites where KIS-L and these methyl marks do not overlap as

well as considerable differences in the relative levels of KIS-L and

H3K4 methylation at many sites (Figure 3C–D and Figure S1).

These observations suggest that H3K4 methylation is not sufficient

to recruit KIS-L to chromatin.

We next examined the relative distributions of H3K4

methylation and KIS-L at higher resolution using chromatin

immunoprecipitation (ChIP) assays. We chose the forkhead (fkh)

gene for these studies for several reasons. First, fkh is a relatively

simple gene that is expressed in the salivary gland at high levels. A

single enhancer located 9 kb upstream of the transcription start

site activates fkh expression in this tissue [47]. Furthermore, TRX

has been implicated in fkh expression [43] and we have

demonstrated that KIS-L is associated with fkh by immuno-FISH

(data not shown).

We examined the binding of KIS-L to the fkh gene by ChIP

using chromatin isolated from the salivary glands of wild-type third

instar larvae. Consistent with a role in early elongation, KIS-L is

associated with the transcriptional start site of the fkh gene

(Figure 3E). The enrichment of KIS-L with the transcriptional

start site is about 3-fold over a control region upstream of fkh

(Figure 3E, primer P vs. primer C1). This binding is reduced to

background levels in chromatin isolated from kis mutant larvae,

suggesting that the association of KIS-L with fkh is specific

(Figure 3E). This finding is consistent with a recent study showing

that KIS-L is associated with the Ultrabithorax (Ubx) promoter [25].

H3K4me3 is present at the transcription start site as well as the

body of the fkh gene and does not precisely mirror the distribution

of KIS-L (Figure 3F). These observations provide additional

evidence that H3K4 methylation is not sufficient to recruit KIS-L

to chromatin.

As an alternative approach for investigating the role of H3K4

methylation in KIS-L recruitment, we examined the effect of little

imaginal discs (lid) mutations on the association of KIS-L with

chromatin. lid encodes a H3K4me3 demethylase [48,49,50,51];

larvae homozygous for the hypomorphic lid10424 allele survive until

the third larval instar and display elevated levels of H3K4me3 on

their polytene chromosomes [50]. Increased trimethylation of H3K4

resulting from the loss of lid function has no obvious effect on the

level of KIS-L associated with polytene chromosomes (Figure 4),

suggesting that this covalent modification of chromatin does not

mediate interactions between KIS-L and chromatin in vivo.

Neither ASH1 nor TRX Is Required for the Association of
KIS-L with Chromatin

The above results led us to question our hypothesis that ASH1

and TRX recruit KIS-L to chromatin by methylating H3K4 in the

vicinity of promoters. To clarify this issue, we examined whether

the loss of ASH1 or TRX function alters the association of KIS-L

with salivary gland polytene chromosomes. Individuals trans-

heterozygous for the hypomorphic ash122 and ash117 alleles survive

until the third larval instar and display significantly reduced levels

of ASH1 on polytene chromosomes (Figure 5A and C) [41]. No

obvious changes in the level or distribution of KIS-L were

observed in these mutants relative to wild-type (Figure 5B and D),

indicating that ASH1 is not required for the association of KIS-L

with chromatin. Similar results were obtained using a conditional

trx allele, trx1. At 29uC, trx1 homozygotes survive until the third

larval instar and display significantly reduced levels of TRX on

polytene chromosomes (Figure 5E and G) [43]. We failed to detect

obvious changes in the level or distribution of KIS-L on salivary

gland chromosomes in trx1 mutants (Figure 5F and H). Thus,

neither the ASH1 nor TRX histone methyltransferases are

required for the association of KIS-L with chromatin in vivo.

KIS-L Is Required for the Association of ASH1 and TRX
with Chromatin

In some cases, chromatin-remodeling factors stimulate tran-

scription by recruiting histone-modifying enzymes to promoters

[52,53]. We therefore examined if KIS-L is required for the

association of ASH1 and TRX with chromatin. The loss of kis

function resulted in a significant reduction in the levels of both

ASH1 and TRX associated with polytene chromosomes

(Figure 6A–G). This is unlikely to result from the decreased

expression of ASH1 or TRX, as western blotting indicated that

both proteins, though slightly reduced, were still present in kis

mutants (Figure S2). A few residual bands of relatively strong

ASH1 and TRX staining were observed in the mutants (Figure 6C

and G), suggesting that the recruitment of the two trithorax group

proteins to a small number of chromosomal sites may be

independent of KIS-L. These results demonstrate that KIS-L is

required for the recruitment of ASH1 and TRX to the majority of

their target genes in vivo.

Although the substrate specificity of ASH1 is controversial, at

least one previous study reported it to be responsible for the bulk of

H3K4 methylation in the larval salivary gland [20]. This

observation, together with our finding that KIS-L recruits ASH1

and TRX to actively transcribed genes, led us to investigate

Kismet Regulates H3K27 Methylation
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Figure 3. H3K4 methylation is not sufficient for the recruitment of KIS-L to chromatin. A) CD2 of KIS-L is aligned with CD2 of other CHD
proteins and the chromodomains of Drosophila HP1 and PC. Identical and conserved amino acids are highlighted in black and grey, respectively.
Aromatic amino acids that are important for binding of methylated histone tails by the CD2 of yeast CHD1 are marked by stars. B) The in vitro binding
of HIS-tagged CD2 of KIS-L, CD1 and 2 of human CHD1 and the Drosophila HP1 chromodomain to histone H3K4me2, H3K4me3, H3K9me2 and
histone H3 peptides were examined. Input (I), unbound protein (S) and the bound proteins (P) were detected by western blotting using anti-HIS tag
antibody. Note that the chromodomains of HP1 and human CHD1, but not KIS-L, specifically bound methylated H3K9 and H3K4 peptides,
respectively. C–D) The distributions of H3K4me2 (C, red) and H3K4me3 (D, red) were compared to that of KIS-L (C and D, green) on a representative
region of wild-type polytene chromosomes. The arrowheads represent H3K4me2 and H3K4me3 bands that do not overlap with KIS-L, respectively,
while the arrows represent bands of KIS-L that do not overlap with H3K4me2 and H3K4me3 bands, respectively. E–F) The distributions of KIS-L and
H3K4me3 over the fkh gene were determined by ChIP using chromatin isolated from the salivary glands of wild-type (red bars) or kisk13416 (green
bars) larvae. A map of the fkh gene is shown below the X axis; black bars represent the primers used to amplify the following regions: C1: region
upstream of fkh, E: fkh enhancer, P: fkh transcription start site, B: fkh body, C2: region downstream of fkh. For KIS-L, the percentages of DNA
immunoprecipitated for regions E, P, B and C2 were normalized to the percentage of DNA immunoprecipitated for region C1 (E). The ratio of DNA
immunoprecipitated with antibodies against H3K4me3 and histone H3 are shown for each region (F). Note that KIS-L is enriched over the
transcription start site of fkh while H3K4me3 is enriched over both the transcription start site and the body of fkh gene. The bars represent the
average of independent biological experiments (n = 4 for H3K4me3 and n = 5 for KIS-L) with the corresponding standard deviations.
doi:10.1371/journal.pgen.1000217.g003
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whether KIS-L is a global regulator of H3K4 methylation.

Surprisingly, we did not observe a significant decline in either

H3K4 di- or trimethylation on the polytene chromosomes of

kisk13416 mutant larvae, (Figure 7). Consistent with these data, the

loss of KIS-L function had no effect on the level of H3K4

methylation over the promoter and body of the fkh gene, as

assayed by ChIP (Figure 3F). We also examined the level of

H3K4me2 and H3K4me3 on the salivary gland polytene

chromosomes of ash1 and trx mutant larvae. As observed in kis

mutants, there was no significant decrease in H3K4 di- or

trimethylation in either ash122/ash117 or trx1 larvae relative to wild

type (Figure S3 and S4). These data strongly suggest that ASH1,

TRX and KIS-L are not required for the bulk of H3K4

methylation in Drosophila.

KIS-L Does Not Stably Interact with Other Trithorax
Group Proteins in Vivo

Using gel filtration chromatography, we previously showed that

the 574 kDa KIS-L protein is a subunit of large (,1 MDa)

complex, suggesting that it might also physically interact with

other trithorax group proteins to regulate transcription by Pol II

[30]. Gel filtration chromatography is sensitive to protein

conformation, however, and erroneously high estimates of the

native molecular masses of CHD1 and several other chromatin-

remodeling factors have been obtained using this technique

[30,54,55]. We therefore re-examined whether KIS-L functions as

a subunit of a large protein complex by sedimenting Drosophila

embryo extracts through sucrose density gradients (Figure S5). In

contrast to the results we obtained using gel filtration chromatog-

raphy, we found that the native and predicted molecular masses of

the KIS-L protein are virtually identical; the 574 kDa KIS-L

protein co-sedimented with ISWI complexes, which have a native

molecular mass of ,0.5 MDa (Figure S5). These data suggest that

KIS-L acts as a monomer to regulate transcription by Pol II.

We also employed a genetic approach to investigate whether

KIS-L acts as a monomer. Mutations in a conserved lysine residue

in the ATP-binding site of chromatin-remodeling factors eliminate

their catalytic activity without interfering with their ability to

interact with other proteins. For chromatin-remodeling factors

that function as subunits of protein complexes (e.g. BRM and

ISWI), such catalytically inactive proteins exert strong, dominant-

negative effects when expressed at high levels in vivo [56]. Unlike

catalytically inactive forms of BRM and ISWI (ISWIK159R and

BRMK804R), the expression of high levels of an equivalent form of

KIS-L (KIS-LK2060R) had no effect on the viability or development

of a wide variety of tissues (data not shown). These findings

provide additional, albeit indirect, evidence that KIS-L does not

stably interact with other trithorax group proteins as a subunit of a

chromatin-remodeling complex.

Loss of kis Function Does Not Alter the Level or
Distribution of Polycomb Group Proteins on Polytene
Chromosomes

Genetic studies have suggested that KIS-L and other trithorax

group proteins counteract Polycomb group repression [26,27].

Two complexes of Polycomb group proteins have been identified:

PRC1 and PRC2 [14]. The E(Z) subunit of PRC2 methylates

lysine 27 of histone H3; this modification is thought to promote the

association of PRC1 with chromatin, thereby leading to

hereditable gene silencing [16,17]. Does KIS-L prevent the

binding of either PRC1 or PRC2 to chromatin? As reported

previously, the level of the PC subunit of PRC1 associated with

salivary gland polytene chromosomes is similar in wild-type and

kisk13416 mutant larvae (Figure 8A and B) [30]. Similar results were

obtained when we compared the level of E(Z) on salivary gland

chromosomes of wild-type and kisk13416 mutant larvae (Figure 8C

and D). The loss of KIS-L function did not alter the number or

distribution of PC binding sites (Figure 8G and H), and extensive

co-localization of PC and E(Z) was observed in both wild-type and

kis mutant larvae (Figure 8E and F). Thus KIS-L does not appear

to influence the association of either PRC1 or PRC2 with

chromatin.

KIS-L Counteracts H3 Lysine 27 Trimethylation in Vivo
We previously noted that the majority (.80%) of PC binding

sites in salivary gland polytene chromosomes are adjacent to sites

of KIS-L binding [30]. The majority of sites of H3K27

methylation are also flanked on one or both sides by KIS-L

(Figure S6). These observations, together with the lack of obvious

changes in the level or distribution of PRC1 and PRC2 in kis

mutants, suggested that KIS-L might counteract Polycomb group

repression by antagonizing H3K27 methylation. To investigate

this possibility, we stained salivary gland polytene chromosomes of

wild-type and kisk13416 mutant larvae with an antibody that

specifically recognizes this histone modification. Loss of kis

function results in a large (,7 fold) increase in the level of

H3K27me3 on polytene chromosomes (Figure 9A and B) without

altering the level or distribution of PC (Figure 9C and D). A

similar increase in H3K27 trimethylation was observed over the

entire fkh gene of kisk13416 mutant larvae by ChIP (Figure 9G).

E(Z) is responsible for the majority of H3K27 methylation in

Drosophila [15], suggesting that the increased trimethylation of

H3K27 in kis mutants is dependent on the action of Polycomb

group proteins. Consistent with this view, the chromosomal

Figure 4. The association of KIS-L with chromatin is not altered
in lid mutants. A–D) The levels of H3K4me3 (A, B, red) and KIS-L (C, D,
green) on polytene chromosomes isolated from wild-type (A, C) and
lid10424 (B, D) larvae were examined by indirect immunofluorescence
microscopy. Loss of lid function led to a dramatic increase in H3K4me3
without affecting the level of KIS-L associated with chromatin.
doi:10.1371/journal.pgen.1000217.g004
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distributions of PC and H3K27me3 are virtually identical (.90%

overlap) in both wild type and kisk13416 mutant larvae (Figure 9E

and F). Although the level of H3K27 methylation is elevated in

kisk13416 mutants, the chromosomal distribution of both Polycomb

group proteins and H3K27me3 appears to be relatively normal,

suggesting that this increase is not due to the appearance of

Polycomb group proteins or H3K27me at ectopic sites (Figure 9E

and F). These findings suggest that that KIS-L antagonizes

Polycomb group repression by counteracting H3K27 methylation

catalyzed by the E(Z) subunit of PRC2.

A recent study showed that loss of ash1 function in the haltere

discs of third instar larvae results in the spread of H3K27me3 into

the coding region of the actively transcribed Ubx gene [25]. Thus,

KIS-L may indirectly counteract H3K27 methylation by promot-

ing the association of ASH1 with chromatin. To investigate this

possibility, we compared the level and distribution of H3K27me3

on the salivary gland polytene chromosomes of wild-type and ash1

mutant larvae. As observed in kis mutants, the level of H3K27me3

is dramatically elevated on the salivary gland polytene chromo-

somes of ash122/ash117 larvae relative to wild-type (Figure 10A and

B). A similar effect was observed in trx1 homozygotes reared at 29u
(Figure 10C and D). These findings suggest that KIS-L counteracts

Polycomb group repression by promoting the association of ASH1

and TRX with chromatin.

Discussion

KIS-L Acts Downstream of P-TEFb to Promote Early
Elongation by Pol II

The recent discovery that paused polymerases are present

downstream of the promoters of many eukaryotic genes has

stimulated great interest in the factors that regulate elongation by

Pol II. Our findings suggest that KIS-L plays a critical role in this

process. The initial stages of transcription, including the

recruitment of Pol II to promoters and promoter clearance, are

not affected by the loss of kis function. By contrast, the loss of kis

function leads to a dramatic reduction in the level of elongating

Pol II associated with chromatin. These findings suggest that KIS-

Figure 5. The association of KIS-L with chromatin is not altered in ash1 and trx mutants. A–D) The association of ASH1 (A, C, red) and KIS-L
(B, D, green) on salivary gland polytene chromosomes of wild-type (A, B) and ash122/ash117 (C, D) larvae were detected by indirect
immunofluorescence microscopy. E–H) The association of TRX (E, G, red) and KIS-L (F, H, green) on polytene chromosomes isolated from wild-type (E,
F) and trx1 (G, H) larvae were detected by indirect immunofluorescence microscopy. Neither ASH1 nor TRX is required for the binding of KIS-L to
polytene chromosomes.
doi:10.1371/journal.pgen.1000217.g005
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Figure 6. KIS-L is required for the association of ASH1 and TRX with chromatin. The distribution of ASH1 (A, C, red) and TRX (E, G, red) on
salivary gland polytene chromosomes isolated from wild-type and kisk13416 larvae were detected by indirect immunofluorescence microscopy. The
chromosomes were also stained with an antibody against Pol IIa (B, D, F, H, green) as an internal control. The loss of KIS-L function dramatically
reduces the levels of ASH1 and TRX, but not Pol IIa, associated with polytene chromosomes.
doi:10.1371/journal.pgen.1000217.g006

Figure 7. KIS-L is not a global regulator of H3K4 methylation. The distribution of H3K4me2 (A, C, red), KIS-L (B, D, F and H, green), and
H3K4me3 (E, G, red) on salivary gland polytene chromosomes isolated from wild-type (A, B, E and F) and kisk13416 (C, D, G and H) larvae were detected
by indirect immunofluorescence microscopy. The loss of KIS-L function does not cause obvious changes in the overall level or distribution of either
H3K4me2 or H3K4me3.
doi:10.1371/journal.pgen.1000217.g007
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L prevents the stalling or loss of Pol II a relatively short distance

downstream of promoters.

How does KIS-L facilitate elongation? A key step in early

elongation is the recruitment of P-TEFb to promoters. P-TEFb

phosphorylates DSIF, NELF and the CTD of Pol II to counteract

promoter-proximal pausing and stimulate elongation [36]. Treat-

ment with flavopiridol, an inhibitor of P-TEFb kinase activity,

causes transcription defects similar to those observed in kis mutant

larvae [37,38]. We therefore suspected that KIS-L might promote

elongation by recruiting P-TEFb to promoters. The loss of kis

function had no effect on the level of the CycT subunit of P-TEFb

associated with chromatin, however, suggesting that KIS-L acts

downstream of P-TEFb recruitment to stimulate elongation.

Nucleosomes present a physical barrier to Pol II that must be

overcome to permit elongation; the failure to remove this barrier

in kis mutants could cause the stalling or loss of Pol II downstream

of promoters. Although the biochemical activities of KIS-L have not

been characterized, all CHD proteins studied to date have ATP-

dependent chromatin-remodeling activity in vitro [57]. It therefore

seems likely that KIS-L facilitates elongation by altering the

structure or spacing of nucleosomes in the vicinity of promoters.

Precedent for this model is provided by work demonstrating that

mammalian SWI/SNF stimulates elongation by remodeling

nucleosomes downstream of the Hsp70 promoter [58].

Functional Interactions between KIS-L and Other
Trithorax Group Proteins during the Transcription Cycle

A major goal of research on trithorax group proteins is to

determine how they interact with each other and the general

transcription machinery to activate gene expression and counteract

Polycomb group repression. The majority of trithorax group

proteins can be subdivided into three major classes based on their

biochemical properties [26]. The first class consists of proteins

involved in ATP-dependent chromatin remodeling, including KIS-

L and the SWI/SNF subunits BRM, MOR, OSA and SNR1. The

second class consists of histone-modifying enzymes, including ASH1

and TRX. The third class consists of mediator subunits, including

Kohtalo and Skuld. Although BRM and KIS-L were both identified

in genetic screens for extragenic suppressors of Polycomb mutations

[27] and overlap extensively on polytene chromosomes [30], the

two proteins appear to facilitate distinct steps in the transcription

cycle. The BRM complex (like other SWI/SNF complexes)

promotes the association of transcriptional activators with chroma-

tin and is required for the recruitment of Pol II to promoters

[59,60], while KIS-L facilitates an early step in elongation by Pol II.

Consistent with these observations, the loss of KIS-L function has no

effect on the association of BRM with chromatin in vivo [30].

The presence of two chromodomains in KIS-L suggested that it

might directly interact with nucleosomes in the vicinity of promoters

that are methylated on H3K4 by ASH1 or TRX. However, several

lines of evidence suggest that H3K4 methylation does not mediate

interactions between KIS-L and chromatin. The chromodomains of

KIS-L do not interact with H3K4 methylated peptides in vitro and

we did not see a strong correlation between the distribution and

level of KIS-L and methylated H3K4 on salivary gland polytene

chromosomes of either wild-type or lid mutant larvae. Furthermore,

neither ASH1 nor TRX are necessary for the association of KIS-L

with chromatin in vivo. Although H3K4 methylation does not

appear to play an important role in the recruitment of KIS-L to

chromatin, it remains possible that this modification mediates

transient interactions between KIS-L and its nucleosome substrate.

One of the more surprising outcomes of our work was the

discovery that KIS-L is required for the association of ASH1 and

TRX with many of their binding sites on polytene chromosomes.

Figure 8. Loss of kis function does not alter the distribution or
level of Polycomb group proteins. A–F) The distribution of PC (A, B,
green) and E(Z) (C, D, red) and the merged images of PC and E(Z) (E, F)
on polytene chromosomes isolated from wild-type (A, C, E) and kisk13416

(B, D, F) larvae are shown. G–H) Comparison of the distribution of PC on
the distal tip of the X chromosome of wild-type and kisk13416 larvae (G),
together with the corresponding DAPI staining (H). Note that the loss of
kis function does not lead to obvious changes in the level or
distribution of PC or E(Z).
doi:10.1371/journal.pgen.1000217.g008
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How does KIS-L promote the association of ASH1 and TRX with

transcriptionally active genes? KIS-L might directly recruit the two

proteins or indirectly promote their binding by influencing

chromatin structure. Alternatively, KIS-L might promote the

association of ASH1 and TRX with actively transcribed genes by

promoting the transition from early to active elongation. A key

step in this transition is the phosphorylation of serine 2 of the CTD

repeat, which serves as a scaffold for the assembly of factors

required for elongation and RNA processing [2]. The reduced

levels of Pol IIoser2 in kis mutants might therefore account for the

decreased levels of ASH1 and TRX associated with chromatin.

Although we observed a dramatic decrease in the level of ASH1

and TRX associated with chromatin in kis mutants, we did not

detect any obvious changes in the levels of BRM, Pol IIa, Pol

IIoser5 or P-TEFb. These observations strongly suggest that TRX

and ASH1, like KIS-L, promote a stage of transcription

downstream of initiation and promoter clearance. Our findings

reinforce recent studies implicating ASH1 and TRX in transcrip-

tion elongation in vivo. For example, TRX facilitates transcrip-

tional elongation of heat shock genes [19] and the TRX-

containing TAC1 complex is recruited downstream of the Ubx

and bxd non-coding RNA promoters [44]. The levels of the 39 end

of Ubx mRNA and bxd non-coding RNA are reduced as compared

to the 59 end of these RNAs in trx mutants and the levels of SPT16,

a member of the FACT elongation complex are also reduced in trx

mutants [44]. These observations indicate that TRX might

promote the processivity of the elongating polymerase by

recruiting the FACT complex. MLL, the mouse homolog of

TRX, is associated with the coding region of its target genes and

the distribution of the elongating polymerase is altered in Mll

mutants [61]. Although a role for ASH1 in elongation has not

been firmly established, its binding downstream of the Ubx

promoter in Drosophila and the human poly(A) binding protein,

cytoplasmic 1 gene in HeLa cells is consistent with a role in

promoting transcription elongation [25,62].

Does KIS-L promote elongation by recruiting ASH1 or TRX to

promoters? Arguing against this possibility, we were unable to

detect any significant alterations in the levels of Pol II on polytene

chromosomes of ash1 and trx single mutants (Figure 10 and data

not shown). The failure to observe transcription defects in ash1 and

trx single mutants could be due to functional redundancy between

the two trithorax group genes. Alternatively, KIS-L may promote

elongation via ASH1 and TRX-independent mechanisms. Further

work will be required to clarify the relative roles of KIS-L, ASH1

and TRX in transcription by Pol II.

KIS-L Is a Negative Regulator of H3K27 Methylation
Several lines of evidence suggest that ASH1 and TRX activate

transcription by counteracting Polycomb group repression. For

example, in the absence of Polycomb group function, neither

ASH1 nor TRX are required for Ubx transcription [24].

Furthermore, the loss of ash1 function in haltere discs leads to

the spread of H3K27me3 into the body of the Ubx gene, which is

normally transcribed in this tissue [25]. Thus, ASH1 and TRX

Figure 9. Mutations in kis lead to increased H3K27 methylation.
A–D) The level and distribution of H3K27me3 (A, B, red) and PC (C, D,
green) on salivary gland polytene chromosomes of wild-type (A, C) and
kisk13416 (B, D) larvae was examined by double-label indirect immuno-
fluorescence microscopy. Split images of the distributions of H3K27me3
(red) and PC (green) on wild-type (E) and kisk13416 (F) polytene
chromosomes are shown. Loss of kis function results in an increase in
the levels of H3K27me3 without altering the distribution of this
modification on polytene chromosomes. For panels E and F, the levels
of H3K27me3 were independently processed using Adobe Photoshop
software to facilitate the comparison of the methyl mark and PC. G) The
distribution of H3K27me3 over the fkh gene was determined by ChIP
using chromatin isolated from the salivary glands of wild-type (red bars)
or kisk13416 (green bars) larvae. A map of the fkh gene is shown below
the X axis; black bars represent the primers used to amplify the

following regions: C1: region upstream of fkh, E: fkh enhancer, P: fkh
transcription start site, B: fkh body, C2: region downstream of fkh. The
ratio of DNA immunoprecipitated with antibodies against H3K27me3
and histone H3 are shown for each region. The bars represent the
average of three independent biological experiments with the
corresponding standard deviations. The loss of KIS-L function leads to
a significant increase in H3K27me3 over the entire fkh region.
doi:10.1371/journal.pgen.1000217.g009
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function may counteract Polycomb group silencing by interfering

with H3K27 methylation.

Our discovery that KIS-L promotes the association of ASH1

and TRX with chromatin led us to investigate whether KIS-L

might also counteract Polycomb group silencing. Polycomb group

proteins are associated with relatively specific regions of chromatin

(Polycomb-response elements, or PREs) as revealed by genome-

wide ChIP assays [63,64]. By contrast, H3K27me3 is found over

broad chromatin domains adjacent to PREs, encompassing both

the regulatory and coding regions of transcriptionally silent genes

[63]. The loss of kis function led to a significant increase in the

levels of H3K27me3 on salivary gland polytene chromosomes,

suggesting that KIS-L may prevent the spreading of H3K27

methylation in the vicinity of PREs. Our observations provide a

molecular explanation for the functional antagonism between kis

and Polycomb group genes.

How does KIS-L antagonize H3K27 methylation? The steady-

state level of H3K27 methylation is determined by multiple

factors, including the level and activity of the E(z) methyltransfer-

ase; the accessibility of its nucleosome substrate; the frequency of

nucleosome eviction; the frequency of histone H3 exchange, and

the level and activity of histone H3K27 demethylases. The loss of

KIS-L does not alter the distribution or level of PRC1 or PRC2 on

polytene chromosomes, suggesting that it acts downstream of the

E(Z) methyltransferase to counteract H3K27 methylation. Several

H3K27 demethylases have been identified, including JMJD3 and

Figure 10. Loss of TRX and ASH1 function also leads to increased H3K27 methylation. The levels of H3K27me3 (A–D, red) on polytene
chromosomes isolated from wild-type (A, C), ash122/ash117 (B) and trx1 (D) larvae were detected by double-label indirect immunofluorescence
microscopy. H3K27me3 levels are higher on polytene chromosomes isolated from ash122/ash117 and trx1 mutants as compared to wild-type
chromosomes. As an internal control, the chromosomes were simultaneously stained with antibodies against the RPB1 subunit of RNA Pol II (inset in
lower right corner of A–D, green).
doi:10.1371/journal.pgen.1000217.g010

Kismet Regulates H3K27 Methylation

PLoS Genetics | www.plosgenetics.org 12 October 2008 | Volume 4 | Issue 10 | e1000217



UTX [65]. Drosophila UTX co-localizes with elongating Pol II,

suggesting that H3K27 demethylation may be directly coupled to

transcription elongation [66]. In humans, both JMJD3 and UTX

are associated with complexes containing MLL proteins, the

human orthologues of Drosophila TRX [67,68]. Thus, KIS-L may

indirectly antagonize H3K27 methylation by promoting elonga-

tion or the association of TRX with chromatin.

It is also possible that KIS-L counteracts H3K27 methylation by

promoting the replacement of histone H3 by the histone variant

H3.3. H3.3 displays covalent modifications associated with

actively transcribed genes, including elevated H3K4 methylation

and low levels of H3K27 methylation [69]. Elevated histone H3

replacement has also been observed at the binding sites of

Polycomb and trithorax group proteins in the vicinity of Drosophila

Hox genes [70]. The disruption of histone H3 replacement in cis-

regulatory regions could therefore contribute to the increased

levels of H3K27 methylation observed in kis, ash1 and trx mutants.

The exchange of histone H3 and H3.3 is also elevated in regions

transcribed by Pol II [71]. By blocking transcription elongation

and the resulting exchange of histone H3, the loss of KIS-L

function could lead to elevated levels of H3K27 methylation in the

body of genes. This would provide a straightforward explanation

for why many transcriptionally active genes are refractory to

Polycomb group silencing during early development.

Implications for Human Disease
KIS-L is a member of a large family of CHD proteins that are

conserved from flies to humans. Heterozygosity for loss of function

mutations in CHD7, a human counterpart of KIS-L, leads to

CHARGE syndrome, a serious developmental disorder affecting

approximately one in 8,500 births [72]. Our findings suggest that

CHARGE syndrome results from defects in transcriptional elonga-

tion, possibly due to the diminished recruitment of MLL complexes

and elevated H3K27 methylation. Our findings also suggest a

possible role for CHD7 in cancer through the recruitment of MLL

fusion proteins, which have been implicated in several forms of

leukemia [73]. Finally, numerous recent studies have revealed that

the methylation of H3K27 by Polycomb proteins is critical for the

maintenance of stem cell pluripotency in mammals [74]. By

counteracting H3K27 methylation, CHD7 may promote the

differentiation of pluripotent stem cells into specialized cell types.

Further work will be necessary to test these hypotheses and clarify the

role of KIS-L and its human counterparts in transcription,

differentiation and disease.

Materials and Methods

Drosophila Stocks
Flies were raised on cornmeal/molasses/yeast/agar medium

containing Tegosept and propionic acid. Strains are described in

FlyBase (http://www.flybase.org) unless otherwise indicated.

kisk13416 is a recessive loss of function allele; homozygotes survive

until late larval or early pupal stages, but express undetectable

levels of KIS-L in salivary gland nuclei [30]. Oregon R was used as

the wild-type strain for all experiments.

Immunostaining of Polytene Chromosomes
Indirect immunofluorescence microscopy was used to examine

the distribution of proteins on salivary gland polytene chromosomes

[30,56]. Primary antibodies used included goat antibodies against

PC and KIS-L (Santa Cruz Biotech); rat antibodies against KIS-L

[30]; rabbit antibodies against ASH1 [41], BRM [75], CycT [39],

E(Z) [76], ISWI [77], KIS-L [30], TRX [43], Histone H3,

H3K4me2, H3K4me3 and H3K27me3 (Upstate Signaling); and

mouse antibodies against Pol IIa (8WG16), PoI IIoser2 (H5), RPB1

(CTD4H8) (Covance) and His epitope tag (Anaspec). Salivary gland

polytene chromosomes from third instar larvae were fixed for

5 minutes in 45% acetic acid/1.85% formaldehyde and stained

with antibodies against ASH1, TRX, RPB1, Pol IIa, Pol IIoser5 and

KIS-L. To stain polytene chromosomes with antibodies against

KIS-L, CycT, PoI IIoser2, E(Z), PC, H3K4me2, H3K4me3 and

H3K27me3, glands were dissected in 0.7% NaCl and fixed in

6 mM MgCl2, 1% citric acid and 1% Triton X-100 for 2 minutes.

Secondary antibodies were obtained from Jackson ImmunoRe-

search Laboratories (West Grove, PA). Samples were mounted in

Vectashield containing DAPI (Vector Laboratories). Images were

captured using a Zeiss Axioskop 2 plus microscope equipped with

an Axioplan HRm camera and Axiovision 4 software (Carl Zeiss,

Germany). Merged and split images were generated using Adobe

Photoshop CS3 software as previously described [56].

The levels of proteins associated with wild-type and mutant

polytene chromosomes were compared by processing, capturing

and analyzing the samples at the same time under identical

conditions as described in Srinivasan et al. (2005). To quantify the

increase in H3K27me3 levels in kis mutants, polytene chromo-

somes from wild-type and mutant larvae stained with antibodies

against H3K27me3 were photographed using exposure times that

yielded images of comparable intensity. The fold increase in

H3K27me3 was calculated as a ratio of the average exposure times

for the wild-type and mutant samples.

Protein Expression and Binding Assays
Standard techniques were used to analyze proteins by SDS-

PAGE and Western blotting [78]. To produce recombinant

chromodomains, DNA encoding KIS-L chromodomain 2 (amino

acids 1937–1997) was amplified using the primers 59-GGAATTC-

CATATGCAGGACTTTACTGAAGT-39 and 59-CGGGATCC-

GATTTTGTTAAAGCGCAGGTA-39. DNA encoding the HP1

chromodomain (amino acids 22–75) was amplified using the

primers 59-GGAATTCCATATGGAGGAGTACGCCGTGGA-

39 and 59-CGGGATCCCTTGCGGCTCGCCTCGTACTG-39.

The amplified sequences were cloned between the Nde I and BamH I

sites of pET-16b (Novagen). A pET-16b construct encoding

chromodomains 1 and 2 of human CHD1 (amino acids 268 to

443) was generously provided by Sepidah Khorasanizadeh [32].

Chromodomains were expressed as His-tagged proteins in

BL21pLysS (Stratagene) and purified by Ni2+ affinity chromatog-

raphy under native conditions using the manufacturer’s protocol

(Qiagen). The binding of purified chromodomains to biotinylated

peptides corresponding to N-terminal histone tails (Upstate)

immobilized on strepavidin agarose (Upstate) was assayed as

described in Pray-Grant et al. (2005).

Analysis of Protein Expression in Salivary Glands
Identical numbers of salivary glands were dissected from third

instar wild-type or kisk13416 larvae, transferred to an eppendorf

tube containing ice-cold 0.7% NaCl, and pelleted by brief

centrifugation. After removing the supernatant, the glands were

flash frozen in liquid nitrogen. Following the addition of boiling

SDS-PAGE loading buffer, proteins were extracted from the

glands by grinding with a pestle and analyzed by SDS-PAGE and

western blotting using antibodies against ASH1 and TRX.

Fractionation of Protein Extracts on Sucrose Gradients
Proteins were extracted from 0–16 hour Drosophila embryos as

described previously [30] and fractionated by centrifugation

through a 10 ml 5–30% sucrose gradient (in 50 mM Hepes,

pH 7.6, 500 mM NaCl, 0.55% Tween-20, 10% glycerol, 1 mM
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MgCl2, 1 mM EDTA) at 4uC for 20 hours at 35,000 rpm in an

SW41 rotor (Beckman Instruments). 500 ml fractions were

collected and analyzed by SDS-PAGE and western blotting using

antibodies against BRM, KIS-L and ISWI.

Chromatin Immunoprecipitation (ChIP) and Quantitative-
PCR

Chromatin was isolated from salivary glands of wild-type and

kisk13416 larvae [79] and analyzed by ChIP [80] using quantitative

PCR (see Text S1 for details).

Supporting Information

Figure S1 Distribution of KIS-L and H3K4 methylation on

polytene chromosomes. The distributions of H3K4me2 (B, red)

and H3K4me3 (E, red) are compared to that of KIS-L (A and D,

green) on wild-type salivary gland polytene chromosomes by

double-label indirect immunofluorescence microscopy. Merged

images are shown in C and F. KIS-L is present at many, but not

all, sites of H3K4 methylation.

Found at: doi:10.1371/journal.pgen.1000217.s001 (3.3 MB TIF)

Figure S2 Loss of KIS-L function does not dramatically alter the

level of TRX and ASH1 in larval salivary glands. Proteins

extracted from equal numbers of salivary glands of wild-type and

kisk13416 mutant larvae were analyzed by SDS-PAGE and western

blotting using antibodies against TRX and ASH1. The loss of

KIS-L function leads to only a modest reduction in the levels of

TRX and ASH1, even though the salivary glands of kisk13416

larvae are significantly (greater than two fold) reduced in size

relative to those of wild-type larvae.

Found at: doi:10.1371/journal.pgen.1000217.s002 (0.4 MB TIF)

Figure S3 Loss of ASH1 function does not dramatically alter

H3K4 methylation in vivo. The distribution of H3K4me2 (A, C,

red), KIS-L (B, D, F and H, green), and H3K4me3 (E, G, red) on

salivary gland polytene chromosomes isolated from wild-type (A,

B, E and F) and ash122/ash117 (C, D, G and H) larvae were

detected by indirect immunofluorescence microscopy. The loss of

ASH1 function does not cause obvious changes in the overall level

or distribution of either H3K4me2 or H3K4me3.

Found at: doi:10.1371/journal.pgen.1000217.s003 (4.2 MB TIF)

Figure S4 Loss of TRX function does not dramatically alter

H3K4 methylation in vivo. The distribution of H3K4me2 (A, C,

red), KIS-L (B, D, F and H, green), and H3K4me3 (E, G, red) on

salivary gland polytene chromosomes isolated from wild-type (A,

B, E and F) and trx1 (C, D, G and H) larvae were detected by

indirect immunofluorescence microscopy. The loss of TRX

function does not cause obvious changes in the overall level or

distribution of either H3K4me2 or H3K4me3.

Found at: doi:10.1371/journal.pgen.1000217.s004 (5.7 MB TIF)

Figure S5 KIS-L is not a subunit of a large protein complex.

The native molecular mass of KIS-L was determined by

fractionating whole embryo extracts by sedimentation through a

sucrose density gradient. Fractions were analyzed by SDS-PAGE

and western blotting using antibodies against KIS-L, BRM and

ISWI. The denatured molecular masses of KIS-L, BRM and ISWI

are shown in kDa. KIS-L has a native molecular weight of slightly

more than 0.5 MDa based on its sedimentation relative to the

1 MDa BRM and 0.5 MDa ISWI complexes.

Found at: doi:10.1371/journal.pgen.1000217.s005 (5.0 MB TIF)

Figure S6 Colocalization of KIS-L and H3K27 methylation. A)

The distributions of KIS-L (green) and H3K27me3 (red) on wild-

type salivary gland polytene chromosomes were compared by

double-label immunofluorescence microscopy (A). B–E) The

distributions of H3K27me3 (B), KIS-L (C), merged (D) and split

(E) images corresponding to chromosome arm bounded by the

white rectangle are shown. Note that KIS-L flanks many sites of

H3K27me3 staining on polytene chromosomes.

Found at: doi:10.1371/journal.pgen.1000217.s006 (2.6 MB TIF)

Text S1 Supplemental material.

Found at: doi:10.1371/journal.pgen.1000217.s007 (0.02 MB

DOC)
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