
RESEARCH ARTICLE

Structure and Stability of Telocentric
Chromosomes in Wheat
Dal-Hoe Koo1, Sunish K. Sehgal2, Bernd Friebe1*, Bikram S. Gill1

1 Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center,
Kansas State University, Manhattan, KS, 66506–5502, United States of America, 2 Department of Plant
Science, South Dakota State University, Brookings, SD, 57007, United States of America

* friebe@ksu.edu

Abstract
In most eukaryotes, centromeres assemble at a single location per chromosome. Naturally

occurring telocentric chromosomes (telosomes) with a terminal centromere are rare but do

exist. Telosomes arise throughmisdivision of centromeres in normal chromosomes, and their

cytological stability depends on the structure of their kinetochores. The instability of telosomes

may be attributed to the relative centromere size and the degree of completeness of their kinet-

ochore. Here we test this hypothesis by analyzing the cytogenetic structure of wheat telo-

somes.We used a population of 80 telosomes arising from the misdivision of the 21

chromosomes of wheat that have shown stable inheritance over many generations.We ana-

lyzed centromere size by probing with the centromere-specific histone H3 variant, CENH3.

Comparing the signal intensity for CENH3 between the intact chromosome and derived telo-

somes showed that the telosomes had approximately half the signal intensity compared to that

of normal chromosomes. Immunofluorescence of CENH3 in a wheat stock with 28 telosomes

revealed that none of the telosomes received a complete CENH3 domain. Some of the telo-

somes lacked centromere specific retrotransposons of wheat in the CENH3 domain, indicating

that the stability of telosomes depends on the presence of CENH3 chromatin and not on the

presence of CRW repeats. In addition to providing evidence for centromere shift, we also

observed chromosomal aberrations including inversions and deletions in the short arm telo-

somes of double ditelosomic 1D and 6D stocks. The role of centromere-flanking, pericentro-

meric heterochromatin in mitosis is discussed with respect to genome/chromosome integrity.

Introduction
The centromeres, an essential part of all chromosomes, are responsible for chromosome segre-
gation at mitosis and meiosis. Centromeres usually contain highly repetitive DNA, e.g. satellite
DNA, which is associated with proteins in higher eukaryotes [1,2]. Although centromeres are
not conserved at the DNA sequence level, many core centromeres analyzed to date contain
nucleosomes with a histone H3 variant, CENPA in humans [3] and CENH3 in plants [4].
Thus, these specialized nucleosomes serve as the primary marker of centromere identity. In
most eukaryotes, centromere proteins assemble at a single location in each chromosome [5]
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and are visible as a primary constriction in mitotic metaphase chromosomes. The centromere
within a chromosome can move to a new location and form a neocentromere, which is often
associated with chromosomal rearrangements in humans [6]. Such neocentromeres also have
been reported in plants [7–10].

Each chromosome can be identified based on the centromere position; metacentric, sub-
metacentric, acrocentric, or telocentric [11]. Naturally occurring telocentric chromosomes
(hereafter referred as telosomes) are rare in plants. Darlington [12] suggested that the absence
of telosomes in plants was caused by their instability. Evidence for the existence of stable telo-
somes has been provided by Marks [13], Strid [14] and Schubert and Rieger [15] in plants and
by Southern [16] and Takagi and Sasaki [17] in animals. According to White [18], experimen-
tally produced telosomes are unstable; and thus, all telosomes are unstable. Experimentally
produced telosome stocks in plants, such as wheat (Triticum aestivum L.), barley (Hordeum
vulgare L.), rye (Secale cereal L.), and rice (Oryza sativa L.), are reported [19,20]. Barley telotri-
somics are fairly stable, except for triplo 1L, which shows chimaerism [21]. The question arises,
why are some telosomes stable whereas others are not?

Centromeres divide quite regularly at mitosis and meiosis. However, when a chromosome is
univalent, centric misdivision may occur during meiosis giving rise to telosomes [12]. Such a
chromosome aberration is lethal in diploid organisms but can be tolerated in polyploids. The
polyploidy nature of hexaploid wheat, T. aestivum (2n = 6x = 42), tolerates aneuploidy with
either the addition or deletion of chromosomes. Sears and Sears [19] developed several aueu-
ploid stocks in Chinese Spring (CS) wheat including ditelosomic stocks (one chromosome pair
is substituted by a pair of either short or long arm telosomes, 2n = 40+2t; such stocks are nulli-
somic for one of the arms) and double ditelocentric stocks (one chromosome pair is substituted
by a pair of short and long arm telosomes, 2n = 40+4t; such stocks are euploid). These stocks
were used intensively for centromere mapping and allocating genes and markers to specific
chromosome arms [22,23]. Moreover, the telosomes in the ditelosomic (hereafter Dt) and dou-
ble ditelosomic (hereafter dDt) stocks are about half the size of a metacentric chromosome,
making them amenable for flow sorting [24–26].

Flow-sorted telosomes are the foundation material for chromosome-arm-based BAC librar-
ies and the wheat physical maps developed under the auspices of the International Wheat
Genome Sequencing Consortium project [27]. Recently, individual flow-sorted chromosome
arms were used to generate a draft sequence of the 17-Gb wheat genome [28]. Even with the
extensive use of telosomic stocks for genetic and genomic studies in wheat, their detailed cyto-
genetic nature is poorly understood. The cytological stability of a telosome depends on the
structure of its kinetochore. Steinitz-Sears [29] reported that the relative instability of a telo-
some may be attributed to the degree of completeness of its kinetochore. Because wheat teloso-
mic stocks were developed by centric misdivision and stably transmitted to progeny, they are
supposed to have either complete or nearly complete kinetochores.

In this study, we first developed a wheat CENH3 antibody (see experimental procedure)
and then used it to identify and characterize the functional centromeric region of the telo-
somes. Second, centromeric-specific retrotransposons of wheat (CRWs) [30,31] were used to
study the structure of intact and telosomic chromosomes. D-genome-specific, repetitive DNA
(pAs1) [32] and single-copy DNA probes [33] were used to identify chromosomes and charac-
terize chromosomal rearrangements. In addition, chromosome-arm-specific molecular mark-
ers, derived from the wheat deletion bin map (http://probes.pw.usda.gov:8080/snpworld/Map)
[34], were used to detect chromosomal aberrations. The data provide new insights into the
structure and stability of telocentric chromosomes and their centromeres; the implications of
these results to genetic and genomic studies of wheat are discussed.
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Materials and Methods

Plant material and chromosome preparation
The cytogenetic stocks used in this study are listed (Table 1). Wheat cultivars, Chinese Spring
(CS), Jagger, and TAM111, also were used in molecular and cytogenetical studies. For chromo-
some preparations, seeds were germinated in petri dishes on moist filter paper. Root tips (1–2
cm long) were treated overnight in ice water. The root tips were fixed overnight in a 3:1 etha-
nol:glacial acetic acid and then squashed in a drop of 45% acetic acid. For the immunofluores-
cence of CENH3, ice-cold-treated root tips were fixed immediately using 4%
paraformaldehyde in PHEM (60 mM Pipes, 25 mMHepes, 10 mM EGTA, 2 mMMgCl2, and
0.3 mM sorbitol, pH 6.8) for 40 min. After washing with 1x PBS (10 mM sodium phosphate,
pH 7.0, and 140 mMNaCl), the root tips were treated with 2% cellulase, 1% pectinase (Sigma,
St. Louis, MO) and 1% pectolyase in PHEM for 1 h and then squashed on poly-l-lysine coated
slides (Sigma). All preparations were stored at -70°C until use.

Table 1. Wheat cytogenetic stocks used in this study.

Cytogenetic stock Source/Plant ID

Dt1DS WGRC, TA3087

Dt1DL WGRC, TA3131

dDt1D WGRC, TA3158

Dt2DS WGRC, TA3123

Dt2DL WGRC, TA3124

dDt2D WGRC, TA3146

Dt3DS WGRC, TA3193

Dt3DL WGRC, TA3192

dDt3D WGRC, TA3147

Dt4DS WGRC, TA3125

Dt4DL WGRC, TA3126

dDt4D WGRC, TA3148

Dt5DS�Mt5DL U.C Riverside

Dt5DL WGRC, TA3127

dDt5D WGRC, TA3149

Dt6DS WGRC, TA3128

Dt6DL WGRC, TA3129

dDt6D WGRC, TA3150

Dt7DS WGRC, TA3130

Dt7DL WGRC, TA3071

dDt7D WGRC, TA3151

dDt1A WGRC, TA3132

dDt2A WGRC, TA3133

dDt3A WGRC, TA3134

dDt5A WGRC, TA3136

dDt6A WGRC, TA3137

dDt7A WGRC, TA3138

CS dDt1B-dDt2B-dDt3B-dDt4A-dDt5B-dDt6B-dDt7B WGRC, TA3356

Dt: ditelosome, one chromosome is represented by a pair of either short or long arm telosomes (2n = 40

+2t). dDt: double ditelosome, one chromosome is represented by one pair each of short (S) and long (L)

arm telosomes (2n = 40+4t).

doi:10.1371/journal.pone.0137747.t001
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Immuno-detection of CENH3 and fluorescence in situ hybridization
(FISH)
Wheat CENH3 genes were described previously [31]. A peptide antigen, ‘RTKHPAVRKTKAL
PKK’, was synthesized and used to immunize rabbits at Thermo Fisher Scientific (www.
thermofisher.com). The raised antisera were purified using an affinity sepharose column com-
prising the aforementioned peptide. The specificity of the antibody was checked by immunos-
taining of root tip and pollen mother cells of wheat (data not shown). Immuno-detection of
CENH3 and FISH procedures followed previously published protocols [35–37]. The rabbit
antibodies to CENH3 were diluted to 1:1000 in TNB buffer (0.1 M Tris-HCl, pH 7.5, 0.15 M
NaCl, and 0.5% blocking reagent). Approximately 100 μL of the diluted antibodies was added
to each slide, and the slides were incubated in a humid chamber at 37°C for 2–3 h. After three
washes in 1x PBS, 100 μL of rhodamine-conjugated goat anti-rabbit antibody (Jackson Immu-
noResearch, West Crove, PA) (1:100 in TNB buffer) was added to the slides. Incubation and
washes were the same as for the primary antibody. DNA probes of the CRWs, pAs1, pSc119,
and the other single-gene probes were labeled with digoxigenin-11-dUTP, biotin-16-dUTP,
and/or DNP-11-dUTP, depending on whether two or three probes were used in the FISH
experiment. The cDNA clones used in this study were supplied by the National BioResource
Project-Wheat, Japan. After post-hybridization washes, the probes were detected with Alexa-
fluor 488 streptavidin for biotin-labeled probes, and rhodamine-conjugated anti-digoxigenin
for dig-labeled probe. The DNP-labeled probe was detected with rabbit anti-DNP, followed by
amplification with a chicken anti-rabbit Alexafluor 647 antibody.

Multicolor immuno-FISH detection was described previously [36]. Chromosomes were
counterstained with 40,6-diamidino-2-phenylindole (DAPI) in Vectashield antifade solution
(Vector Laboratories, Burlingame, CA). The images were captured with a Zeiss Axioplan 2
microscope (Carl Zeiss Microscopy LLC, Thornwood, NY) using a cooled CCD camera Cool-
SNAP HQ2 (Photometrics, Tucson, AZ) and AxioVision 4.8 software. The final contrast of the
images was processed using Adobe Photoshop CS5 software.

Sequential detection of CENH3, CRWs, pSc119 and pAs1
For sequential detection the slides were first incubated with anti-CENH3 overnight at 4°C in a
wet chamber. After washes in 1x PBS, the slides were incubated with the appropriate secondary
antibody at 37°C for 50 min. Then slides were re-fixed with 4% paraformaldehyde at RT for 30
min. The slides were then denatured in 70% formamide in 2x SSC, 80°C for 2 min, washed in
ice-cold 1x PBS for 5 min, and then DNA probe, CRWs, was applied to the slides. Post-hybrid-
ization wash and signal detection were the same as FISH procedure. After recording the both
CENH3 and CRWs signals, the slides were washed in 4T (4x SSC/0.05% Tween 20) buffer for 1
h at 37°C and re-fixed with 4% paraformaldehyde and dehydrated in an ethanol series. The
slides were re-probed with pAs1 and pSc119 to detect additional sequences on the same
chromosome.

Genome-specific markers and PCR
The genome-specific primers used are listed in Table 2. PCR was performed with 15 μL of the
reaction mixture containing 1x PCR buffer (Bioline USA Inc., Taunton, MA), 2 mMMgCl2,
0.25 mM dNTPs, 5 pmol forward primer and reverse primer, respectively, 0.02 U/μL Taq DNA
polymerase (Bioline USA Inc., Taunton, MA), and 20 ng genomic DNA. PCR amplification
was according to Liu et al. [38]. PCR products were resolved on 2.5% agarose gels and visual-
ized by ethidium bromide staining under UV light.

Structure and Stability of Telocentric Chromosomes in Wheat
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Results
Immunofluorescence of CENH3, coupled with centromeric DNAs (CRWs), was used to iden-
tify the centromeric regions of intact chromosomes and telosomes of wheat. The localization
pattern of CENH3 and the CRWs on mitotic metaphase chromosome of CS and their derived
telosomes is shown in Fig 1. Consistent with previous reports [30,31], the two probes co-
localized in most chromosomes of CS wheat. However, in one chromosome pair of CS,

Table 2. Wheat genome specific ESTmarkers used in this study.

EST marker Forward primer Reverse primer Deletion bin

BE405518 GTCTCAGGTATTGATTGATCCC GCTGATGCTCCTTGATCTCC 1DS0.70–1.00

BE637971 TGCCTGATGTTTGATGCTCC CAAAGCGAAGTGACTGTCCA 1DS0.70–1.00

BE444846 TCTTCGCCACAGGAGTACCTA GGCTCGTAGCGGGTATACAA 1DS0.00–0.48

BE591601 GTTAGTGGCACTCCTACCTG GATGTCCAACCATAATGCCC 1DS0.00–0.48

BE637864 TCCTCATTTTGTAATCCTTCTCTC TTTTGTTCCCACCATCAGGT 1DS0.00–0.48

BF202643 GAATAGCAACAGTGCTCATGAAT GAAGAACAGCAGGGCGTTAC 1DS0.00–0.48

BF474569 CGTACCAACTCAACCCCTC TGAAGGGTGAGAGAACTCCG 1DS0.00–0.48

BF478737 CTCTTCACAGTTACAACATCAGC TGAGGCTCAATGATGACCAG 1DS0.00–0.48

BE424523 CAGTAAGGAAATATGGCCGAT TTGATGCAGAAAAAGTTGGAT 6DS0.79–0.99

BE490604 AAGCGGTTCCATCTCTCC CTGCCATTGCTTGTCGTAGA 6DS0.79–0.99

BE500768 ACCTCGACCACTCACTCCA TCAGCGGTCTCAGTTTGTTG 6DS0.79–0.99

BE517858 CCGGTGATGACCGAACTGAT CCGGATGATCTCGCTGCTCTC 6DS0.79–0.99

BE444631 CTCCAGTTTCAGGGAGCAAG GTTCTCTGGCAAGTACTTCAAATCC 6DS0.45–0.79

BE445201 AATGAATTGCTACCATTATTCTCA ACAGCCGTGAACGTTAGTAAGT 6DS0.45–0.79

BF478958 TCACCTGTACAACAACATGATTTCAA TGTGCTCATATGTTTTAACT 6DS0.45–0.79

BF483025 ATTCTGTAAGCATGACGGC AAGGAACTAAGGCCAAGCAATT 6DS0.45–0.79

BE405809 AACGATGCAAGGCTAAAATCTGTGT GAAGCTGCTGGTTTCTTTGG 6DS0.00–0.45

BE426591 CAGACAATCTTCTTGCCGCT GTTAGAAATACCGTAAAGCTTTTACCATTAC 6DS0.00–0.45

doi:10.1371/journal.pone.0137747.t002

Fig 1. Detection of CENH3 and CRWs on mitotic chromosome of Chinese Spring (CS) wheat and the derived 4D telosomic stocks; a: the insert shows
chromosome 4D probed with CENH3 (green) and CRWs (red), straightening was performed using the ‘straighten-curved-objects’ command of the Image J
software, the signals are clearly separated from each other; Relative CENH3 signal intensity of b: t4DS; c: t4DL; f. dDt4D; Chromosome 4D with d: CENH3
(white arrow) and e: CRWs (red arrow) signals.

doi:10.1371/journal.pone.0137747.g001
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identified as 4D, the two probes were clearly separate from each other (Fig 1a), suggesting that
not all CRWs are located within the functional centromere. Interestingly, in the two winter
wheat cultivars Jagger and TAM111, the two signals co-localized on chromosome 4D, indicat-
ing that the 4D centromeres in CS underwent repositioning (S1 Fig).

Next, we applied the wheat CENH3 antibodies to study the structure of t4DS (telosome for
4DS arm) and t4DL, which arose independently from centric misdivison of chromosome 4D.
The results showed that CENH3 was detected at the extreme ends of t4DS and t4DL, indicating
that they are true telosomes (Fig 1b and 1c). The immunofluorescence of CENH3 on the telo-
somes was weaker compared to that of the other chromosomes. In order to compare the signal
intensity between the intact chromosome 4D and t4DS and to minimize measurement error,
root tips from euploid CS and the t4DS stock were squashed on the same slide, and chromo-
some images probed with CENH3 were captured from the same preparation. The measure-
ment data showed that t4DS had a signal intensity of 43±4.8% (n = 4), compared with that of
an intact 4D chromosome. To compare the signal intensity between t4DS and t4DL, we used
the dDt4D stock, which contains a pair each of t4DS and t4DL (Fig 1f). The result showed that
both telosomes had a similar amount of signal intensity, approximately a 1:1 ratio (79.6±3.8%
in t4DS: 80.2±1.7% in t4DL, n = 4) (S2 Fig). Although the dDt4D stock was developed by inter-
crossing the t4DS and t4DL telosomes, which arose independently from centric misdivison,
they showed approximately half of the signal intensity compared with that of the intact 4D
chromosome.

We also studied the telosomic derivatives of the seven, D-genome chromosomes of wheat
(Figs 2 and 3). Data on the detection of CENH3, the CRWs, pAs1, and single-copy DNA
probes on Dt1DS and dDt1DS are shown (Fig 2 and S3 Fig). Signals for CENH3 (arrow in Fig
2a) and the CRWs (arrow in Fig 2b) on Dt1DS were located at the end of the chromosome,
indicating that it is a true telosome. In the t1DS of the reconstituted dDt1D stock, however,
CENH3 was localized interstitially, forming a small acrocentric chromosome (arrows in Fig
2f). To further discern the chromosomal rearrangement, we performed FISH using pAs1, 1S-1,
and 1S-3 as probes. Hybridization signals for pAs1 (arrows in Fig 2c and 2d) and 1S-3 (red
dots in Fig 2d) were detected on the terminal region of Dt1DS. However, the pAs1 FISH pat-
tern in dDt1DS showed multiple localizations (arrows in Fig 2g) to both telomeric regions and
the interstitial region of the chromosome arm. Probe 1S-3 (arrows in Fig 2i) was detected in
the middle of the arm, instead of in the telomeric region, indicating the presence of a para-
centric inversion (Fig 2l). Moreover, the FISH signal for 1S-1 (arrow in Fig 2h) was not
detected in the pericentromeric region of dDt1DS, implying that dDt1DS has lost the original
centromere and now has a de novo centromere in a new position (Fig 2l). Supporting evidence
came from PCR analysis using six genome-specific markers derived from the 1D proximal bin,
which failed to amplify in the dDt1D stock but did amplify in CS and Dt1DS (S4 Fig). Thus,
dDt1DS contains multiple chromosomal rearrangements, including a centromere shift, a para-
centric inversion, and a deletion. The labeling patterns of CENH3, the CRWs, and pAs1 on
dDt1DL were similar with those of Dt1DL (Fig 3).

The same approach was used to analyze all the D-genome telosomes, and the results are pre-
sented (Fig 3). The FISH pattern of pAs1 on chromosome 2D showed multiple localizations,
with four FISH sites in the long arm and a single hybridization site on the telomere of the short
arm. CENH3 and the CRWs co-localized on the primary constriction (Fig 3). Applying these
probes to the Dt and dDt stocks revealed largely identical hybridization patterns with those of
an intact 2D chromosome, indicating that there are no rearrangements in these telosomes.
Similar patterns were observed for all the remaining D-genome telosome stocks, except for
chromosome 6D.

Structure and Stability of Telocentric Chromosomes in Wheat
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CENH3 and the CRWs were detected at the end of chromosome arms in Dt6DS (arrows in
Fig 4a and 4b) and dDt6DS (arrows in Fig 4d and 4e). Whereas a prominent pAs1 signal was
located on the subtelomeric region of Dt6DS (arrows in Fig 4c and 4g), a faint hybridization
signal was detected on dDt6DS (Fig 4f and 4h) indicating that the chromosome arm of dDt6DS
has suffered from a terminal deletion. The 6S-2 FISH signal on Dt6DS was detected at 61.0
±3.1% (n = 3) from the telomere (Fig 4g). However, in dDt6DS, the 6S-2 FISH signal was
detected 39.9±3.2% (n = 3) from the telomere (Fig 4h), thus about 20% of the distal region was
deleted. In order to verify the deletion at the molecular level, we used genome-specific PCR
primers, which were derived from the terminal deletion bin of 6DS (S5 Fig). Four markers
derived from terminal bin had no amplification; the other six markers derived from interstitial
and proximal bins had amplification (S5 Fig), confirming that about the distal 20% of the telo-
some was deleted. We made a blastn search of ten EST sequences against the sequence assem-
bly from flow-sorted chromosome arm 6DS [28] and found no hit for markers XBE424523,
XBE490604, XBE500768, and XBE517858 derived from terminal deletion bin. We further ana-
lyzed the genome zipper maps of wheat group 6 [28] and observed that this region is deleted in
t6DS, whereas the corresponding region is present in t6AS and t6BS. This region corresponds
to rice locus Os02g0116800-Os02g0128800 [39], which is about 595 kb in rice and 702 kb in
Brachypodium Bradi3g01540.1-Bradi3g02817.1 [40]. This region is syntenic with the terminal
tip of rice chromosome 2. Nearly 100 genes are annotated in this missing region in the rice
genome, 25 of which are syntenic to wheat. Thus, sequence analysis further confirms the loss
of a segment from dDt6DS. Because the available dDt1D and dDt6D stocks are rearranged, we
re-isolated both stocks, which are now intact and similar to the Dt1DS and Dt6DS stocks. The
labeling patterns of CENH3 in the new stocks were similar to those of the DtS lines (data not

Fig 2. Probing of t1DS telosomes present in the Dt1DS stock with a: CENH3, b: CRWs, c: pAs1, d: 1S-3 (red dots) and pAs1 (green), e: 1S-1 (red
dots) and pAs1 (green); Probing of 1DS telosomes present in the dDt1DS stock with f: CENH3, g: pAs1, h: 1S-1 (not detected), and i: 1S-3 (red
dots) and CRWs (faint green signals). Simultaneous detection of CENH3, CRWs and pAs1 on dDt1DS also provided in S3 Fig. Ideograms depicting
localization of each probe on telosomes, Dt1DS and dDt1DS (j-k, and S3 Fig). Possible scenario of the origin of the chromosomal rearrangements observed
in the dDt1DS: (1) chromatin breakage, (2) loss of original centromere, (3) de novo formation of a centromere, (4) paracentric inversion, (5) pericentric
inversion (s).

doi:10.1371/journal.pone.0137747.g002
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Fig 3. Immuno-FISH based karyotype of D-genome chromosomes of wheat and their derived
telosomes using CENH3 (white), CRWs (red) and pAs1 (green) as probes.CRWs (red signals) co-
localized with CENH3 (white signals) in most of the chromosome except dDt1DS, 4D, Dt4DS, dDt4DS,
Dt5DL and dDt5DL. The centromeric regions of chromosome or chromosome arm were seen as pinkish red
colors because the CRWs (red signals) are abundant in centromeric region and much brighter than CENH3
signals except in the above mentioned telosomes. The dDt1DS stock contained multiple chromosome
rearrangement including inversion, deletion and centromere shift. Note that the CRWs were not detected in
Dt4DS and dDt4DS, instead the pAs1 signal was overlapped with the CENH3 signal in these telosomes. A
very faint pAs1 FISH site was detected in the terminal region of dDt6DS, indicating a terminal deletion. Short
arm and long arm telosomes present in the ditelosomic stocks are represented as (DtS) and (DtL),
respectively and short arm and long arm telosomes present in the double ditelosomic stocks are represented
as (dDtS) and (dDtL), respectively.

doi:10.1371/journal.pone.0137747.g003
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shown). Cytogenetic analysis is in progress to investigate the mitotic behavior on the newly
developed dDt stocks.

To further understand the CENH3 deposition on other telosomes, we used dDt lines that
were derived from all the A- and B-genome chromosomes. Our results on immunofluorescence
of CENH3 in dDt lines derived from A-genome chromosome showed that the position of
CENH3 signals on telosomes is terminal with a signal intensity weaker than that of the other
regular chromosomes (S6 Fig). Consistent with dDt4D, signal intensity for CENH3 between
the DtS and DtL arms in dDt lines showed similar intensity except in dDt4AS (arrowheads in

Fig 4. Localization of CENH3 (arrow in a), CRWs (arrow in b) and pAs1 (arrow in c) on Dt6DS; localization of CENH3 (d), CRWs (e) and pAs1 (f) on dDt6D,
arrows and arrowhead indicate the 6DS and 6DL telosomes, respectively. Two color detection of single gene probe, 6S-2 and pAs1 on Dt6DS (g) and
dDt6DS (h); the hybridization signal for single copy probe 6S-2 (red dots) is indicated by arrows and the pAs1 was labeled with green colors by arrowheads.

doi:10.1371/journal.pone.0137747.g004
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S6 Fig). The telosome, dDt4AS is known to be acrocentric and, thus, contains a complete cen-
tromere [41].

To study the B-genome telosomes, we used a line that has all the B-genome chromosome
arms except 4B as telosomes (2n = 28+28t) [42]. This line was obtained by intercrossing the
appropriate dDt stocks. Chromosomes t4BS and t4BL in this stock were later identified as t4AS
and t4AL telosomes [43]. Likewise, we observed that the CENH3 signal on all B-genome telo-
somes was smaller compared with that in the complete chromosomes (S6 Fig). In addition, the
telosomes, including Dt1BS and Dt6BS in this stock, lack CRWs in the CENH3 region (Fig 5),
indicating that the stability of telocentric chromosomes depends on the presence of CENH3
chromatin but not centromeric DNA repeats. Further analysis using the previously known
wheat centromeric repeats CCS1 [44], the 192-bp repeat [45], and Quinta [31] showed no sig-
nal on these telosomes together with Dt4DS, dDt4DS, Dt5DL, and dDt5DL (data not shown),
further indicating that centromeric DNAs are not essential for normal centromere function.

Discussion
In many plant species, centromeres consist of complex DNA, including satellite DNA and
reterotransposons [2], that are species- and chromosome-specific [46,47]. Some of the centro-
meric repeats are located within the functional centromere, but centromere-associated repeats
also are observed in subtelomeric and interstitial chromosome regions [46,48].

Our study, using immuno-FISH probed with CENH3 and CRWs, shows that CENH3 and
CRW elements co-localized on most of the A-, B- and D-genome chromosomes, including
their telosomic derivatives. These results indicate that wheat centromeres contain CRW ele-
ments that interact with wheat CENH3 [30,31]. However, our results further show that wheat
CRWs do not always co-localize with CENH3, as was the case with the complete chromosome
4D and some of the telosomes, including Dt4DS, dDt4DS, Dt5DL, dDt5DL, Dt1BS, and Dt6BS,
because these chromosome or chromosome arms lack CRWs in their CENH3.

The CRWs located on chromosome 4D in CS did not overlap with the CENH3 signals but
in other wheat cultivars, such as Jagger and TAM111, they co-localized in the same region,

Fig 5. Two color FISHmapping of CRWs (red) and GAAn (green) repeats onmitotic metaphase chromosome of CS containing 28 (24 telosomes
from B-genome telosomes and 4 telosomes from t4AS and t4AL). The signals for CRWs were not detected on two pairs of t1BS and t6BS (arrowheads)
(a). Instead GAAn repeats were presented in their centromeric region. Arrows indicate the t4AS (a). Arrows and arrowheads indicate the t1BS and t6BS,
respectively (b).

doi:10.1371/journal.pone.0137747.g005
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providing evidence for centromere repositioning in chromosome 4D of CS (S1 Fig). Compari-
son of the pAs1 FISH pattern in the pericentromeric region of chromosomes 4D between CS,
Jagger, and TAM111 revealed that their pericentromeric localizations were different from each
other, implying that the pericentromeric region of 4D in CS underwent a structural rearrange-
ment. The pAs1 FISH site overlapped with CENH3 in CS but not in Jagger or TAM111 (S1
Fig). Lo et al. [49] and Lomiento et al. [50] have reported that neocentromeres form in gene-
desert regions containing many repetitive DNAs in many species. These results also indicate
that neocentromere function is independent from the presence of original centromeric DNAs
[51]. Our immuno-FISH results on telosomes also support their stabilization without centro-
meric DNAs, because we did not observe CRW signals in Dt1BS and Dt6BS arms. In these telo-
somes, the GAA repeats co-localized with CENH3 (Fig 5). Thus, wheat centromeres consist of
complex DNAs, which may contain CRWs or satellite DNAs, such as pAs1 and GAAn.

Univalent chromosomes at metaphase-I have the tendency to misdivide at the centromere
in a transverse manner, which gives rise to telocentrics or potential isochromosomes. Steinitz-
Sears [29], suggested that the transverse misdivision split can occur in different regions of the
centromere, resulting in telosomes that differ in the completeness of their centromeric regions,
and that chromosome arms with incomplete or partial centromeres behave like acentric frag-
ments and are lost during cell division. Because the set of wheat telosomes was produced by
centric misdivision and they are stably transmitted to the offspring, they must have received a
complete or nearly complete kinetochore. Similarly, barley and rye telocentric chromosomes
are cytologically stable. Giemsa N-banding on barley telotrisomics revealed that they contain
half of a diamond-shaped kinetochore, whereas complete chromosomes contain an intact, dia-
mond-shaped kinetochore [52]. Rice telocentric chromosomes also contain half of CentO,
compared with its normal centromeres [53].

Our immunostaining analysis using the CENH3 antibody suggests that the signals in most
Dt and dDt telosomes had approximately half or even less the CENH3 signal intensity com-
pared with that of a complete chromosome. None of the derived telosomes received a complete
CENH3 region except dDt4AS, which is an acrocentric chromosome (S6 Fig). These results
indicate that telosomes, which only receive half or less than half of the complete CENH3
region, are cytologically stable and transmitted to the offspring. Because most of the wheat telo-
somes received a partial CENH3 region, it is possible that the transverse misdivision split is not
random and may preferentially occur in the middle of the CENH3 chromatin. However, we
cannot rule out that breakage also occurs in the entire functional centromere region and that
telocentric chromosomes with insufficient CENH3 are mitotically unstable and lost. This is
also supported by analyzing the centromere structure of wheat-rye Robertsonian translocations
derived from repeated centric breakage-fusion events, which revealed that breakage can occur
in different regions of the centromere resulting in wheat-rye hybrid centromeres with different
sizes of wheat and rye centromeric repeats [54].

We observed chromosomal aberrations in dDt1DS and dDt6DS. Double labeling of CENH3
and CRWs on the Dt1DS telosomes showed co-localization at the terminal region. In dDt1DS,
however, a very faint CRW hybridization signal was observed at the telomere, and CENH3 was
localized proximal to it. Single-copy, 1S-1 FISH was not detected in the proximal region of
dDt1DS, indicating the presence of a proximal deletion and supporting a previous finding that
ESTs mapped in the wheat 1DS deletion bin were absent in dDt1DS [55]. The deletion placed
the centromere in a new position. Thus, dDt1DS contains a de novo formed centromere (Fig
2l).

The formation of a de novo centromere in dDt1DS supports earlier reports in Drosophila
[56] and chicken (Gallus gallus) [57], where neocentromeres formed in regions close to the
original centromeres. For instance, when the Z centromere was deleted, neocentromeres most
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frequently formed near the original Z centromere [57]. CENP-A/CENH3 enrichment in the
flanking regions is low but still more enriched compared with that in the rest of the genome
[58]. In our study, the formation of de novo centromeres or centromere shift was observed in
chromosome 4D and in the 1DS telosomes present in the dDt1DS stock. The preference of the
formation of the de novo centromere near the original centromere is likely caused by the pres-
ence of CENH3 in the flanking pericentromeric regions. Chromosome rearrangements after
chromatid breaks are a common cause of neocentromere formation in humans [6]. Likewise,
neocentromeres reported in plants, maize chromosomes in an oat background and barley chro-
mosomes, also were associated with loss of endogenous centromeres by chromatid breakages
[7,8]. We also found a paracentric inversion in telosome dDt1DS using single-copy FISH map-
ping. Interestingly, the pAs1 signal was observed near the de novo centromere region and in an
interstitial region of dDt1DS but was absent in Dt1DS, indicating the possibility of another
chromosome rearrangement (Fig 2l).

We also identified a deletion in dDt6DS, which comprised about 20% of the terminal dele-
tion bin of chromosome 6D. This deletion was not reported in a recent whole-genome,
sequencing analysis [28]. However, our results show that several EST sequences from the ter-
minal deletion bin were missing from the 6DS assembly but present in 6AS and 6BS shotgun
sequence assemblies [28]. Thus, when employing these lines for genetic studies, it is important
to be aware of the potential presence of chromosomal aberrations in the telocentric chromo-
some lines to avoid misinterpretation of experimental results. Further relocation of centro-
meres in chromosomes 4D in CS (the cultivar being used to sequence the wheat genome)
compared to other wheat cultivars, Jagger and TAM111, suggests that de novo sequencing of
more wheat genotypes might provide further insight in the structural organization in the wheat
genome.

The wheat dDt stocks were developed by intercrossing the appropriate Dt stocks followed
by selection. Therefore, chromosomal rearrangements, including centromere shifts, deletions,
and inversions observed in dDt1DS and dDt6DS, might have formed after hybridization of the
Dt lines. Rhoades [59] found that telocentric chromosomes in maize undergo structural
changes during somatic cell divisions leading to loss or diminution in size. Steinitz-Sears [29]
also found that a telocentric chromosome is often unstable and may be lost during plant devel-
opment in wheat. During mitosis, the structural integrity of the centromeric and flanking peri-
centric heterochromatic regions is essential for proper assembly of the kinetochore and
genome stability [60]. In fission yeast, pericentromeric heterochromatin is an absolute require-
ment for the establishment of the centromere [61]. In addition to fission yeast, pericentromeric
heterochromatin seems to be required for the accurate segregation of chromosome during
mitosis in many eukaryotes, including mammals [62]. The implication is that mono-arm ori-
ented pericentromeric heterochromatin in telosomes might be relatively insufficient for main-
taining chromosome stability compared to chromosomes with bi-arms oriented
pericentromeric heterochromatin. This conclusion is supported by recent findings of Wanner
et al. [63] that in monocentrics microtubules attach via CENH3 to both pericentromeres to sta-
bilize the chromosomes during anaphase against the pulling forces.

Supporting Information
S1 Fig. Sequential detection of CENH3, CRWs, pSc119 and pAs1 on the chromosomes of
4D in CS (A), Jagger (B) and TAM111 (C). The hybridization signals for CENH3 and CRWs
were clearly separated from each other in 4D of CS but these were co-localized on the chromo-
somes of 4D in Jagger and TAM11, indicating the centromere repositioning in 4D of CS. In 4D
of CS, pAs1 localization pattern tend to be positioned toward log arm and which is completely

Structure and Stability of Telocentric Chromosomes in Wheat

PLOS ONE | DOI:10.1371/journal.pone.0137747 September 18, 2015 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0137747.s001


overlapped with CENH3. In Jagger and TAM111, however it was positioned toward to the
short arm. The pSc119 was used for additional FISH marker to identify the chromosomes 4D
in CS, Jagger and TAM111. D, Ideogram depicting distribution of each probe on the chromo-
somes of 4D in three wheat cultivars.
(TIF)

S2 Fig. Graph showing the measurements of the immunofluorescence signal intensity of
CENH3. Numbers at y axis represent the gray value (relative signal intensity of antibody to
background, background was normalized as zero). 1: background signal, 2: CENH3 signal
intensity in dDt4DS, 3: CENH3 signal intensity in dDt4DL. Measurements were done by
Image J software. The gray value of CENH3 was 79.6±3.8 (n = 4) and 80.2±1.7 (n = 4) in
dDt4DS and dDt4DL, respectively.
(TIF)

S3 Fig. Multicolor immuno-FISH detection of CENH3 (a), CRWs (b) and pAs1 (d) on telo-
some, dDt1D.Merged images, CENH3 and CRWs (c), and CENH3, CRWs and pAs1 (e) with
DAPI stained metaphase chromosome (f). The inserts show telosome, dDt1DS probed with
CENH3 (red), CRWs (green) and pAs1 (white). CENH3 was detected by rhodamine-
conjugated anti-rabbit antibodies (red), and the signals were fixed with 4% paraformaldehyde.
The same metaphase cell was probed with CRWs (green) and pAs1 (far red, the signals were
pseudocolored in white).
(TIF)

S4 Fig. PCR patterns of CS, Dt1DS, Dt1DL and dDt1D by using genome specific primers:
two primers, BE405518 and BE637971, derived from the terminal deletion bin, BE405518
was not amplified (2); six primers, BE444846, BE591601, BE637864, BF202643, BF474569
and BF478737, derived from proximal bin had no amplification (3–8) indicating proximal
deletion in dDt1DS.
(TIF)

S5 Fig. PCR patterns of CS, Dt6DS, Dt6DL and dDt6D by using genome specific primers:
four primers, BE424523, BE490604, BE500768 and BE517858 derived from the terminal
deletion bin; four primers, BE444631, BE445201, BF478958 and BF483025 derived from
interstitial bin; two primers, BE405809 and BE426591 derived from proximal bin. Four
primers derived from terminal deletion bin had no amplification (1–4) while six primers
derived from interstitial (5–8) and proximal deletion bin (9–10) had amplification in dDt6DS
indicating terminal deletion in dDt6DS.
(TIF)

S6 Fig. Partial metaphase cells probed with CENH3 in dDt lines derived from A-genome
chromosomes: a, dDt1A; b, dDt2A; c, dDt3A; d, dDt5A; e, dDt6A; f, dDt7A. Telosomes are
indicated by arrows. Immunofluorescence of CENH3 on CS containing 28 telosomes (g). The
CENH3 fluorescent signals on 24 telosomes (derived from B-genome chromosomes are indi-
cated by arrows) + one pair of t4AL were smaller than those of other intact chromosomes
except 4AS (arrowhead) which is an acrocentric chromosome.
(TIF)
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