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The linear interaction energy (LIE) approach is an end–point method to compute binding

affinities. As such it combines explicit conformational sampling (of the protein-bound

and unbound-ligand states) with efficiency in calculating values for the protein-ligand

binding free energy 1Gbind. This perspective summarizes our recent efforts to use

molecular simulation and empirically calibrated LIE models for accurate and efficient

calculation of 1Gbind for diverse sets of compounds binding to flexible proteins (e.g.,

Cytochrome P450s and other proteins of direct pharmaceutical or biochemical interest).

Such proteins pose challenges on 1Gbind computation, which we tackle using a

previously introduced statistically weighted LIE scheme. Because calibrated LIE models

require empirical fitting of scaling parameters, they need to be accompanied with an

applicability domain (AD) definition to provide a measure of confidence for predictions for

arbitrary query compounds within a reference frame defined by a collective chemical and

interaction space. To enable AD assessment of LIE predictions (or other protein-structure

and -dynamic based 1Gbind calculations) we recently introduced strategies for AD

assignment of LIE models, based on simulation and training data only. These strategies

are reviewed here as well, together with available tools to facilitate and/or automate LIE

computation (including software for combined statistically-weighted LIE calculations and

AD assessment).

Keywords: binding affinity computation, free energy calculation, molecular simulation, linear interaction energy,

protein flexibility, binding promiscuity, applicability domain, reliability estimation

1. END-POINT METHODS AND LINEAR INTERACTION ENERGY

Mutual molecular recognition is the starting point for a wide variety of biological processes (Gohlke
and Klebe, 2002). Binding affinity governs ligand binding to target proteins, and being able to
quantitatively understand and predict affinity in terms of binding free energy (1Gbind) can greatly
support lead finding and/or optimization in the drug discovery process (Pohorille et al., 2010).
Hence, improved efficiency and accuracy of computer–aided protein–ligand affinity methods play
a pivotal role in accelerating and increasing success rates of drug discovery and design. 1Gbind

computation is still challenging, considering that virtual screening based on docking and scoring
typically lacks sufficient accuracy, whereas use of rigorous alchemical methods can be too compute
intensive for high–throughput scenarios, especially in case of flexible proteins that may bind
ligands in multiple different orientations. As an alternative, end–point methods aim to provide a
balance between accuracy and efficiency in 1Gbind computation, and position themselves between
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fast docking/scoring approaches and rigorous alchemical
strategies for 1Gbind calculation. They combine explicit
conformational sampling (typically in molecular dynamics (MD)
simulation) with a relatively fast scoring approach. By definition,
end–point methods only require initial and final states to be
simulated, i.e., the ligand free in solution and bound to the target
protein, respectively, and/or interactions being either turned off
and on (Wang et al., 2019).

Linear interaction energy (LIE) is an end–point method that
was introduced in 1994 by Åqvist and coworkers (Åqvist et al.,
1994). It is derived from the Linear Response Approximation
(LRA) (Lee et al., 1992) to compute the electrostatic contributions
to the binding affinity. As such, LIE is directly derived from
the Zwanzig expression for free–energy perturbation (Leach,
2001). The non-polar contribution to 1Gbind is in LIE also
represented by calculating differences in average non-bonded
(i.e., van der Waals) interaction energies between the ligand and
its environment in either the protein-bound or unbound state
(Åqvist et al., 1994). To compute 1Gbind from the simulations
of the ligand either bound to the protein or free in solvent,
the obtained average van der Waals (vdw) and electrostatic (ele)
interaction energies of the ligand with its environment are scaled
by LIE parameters α and β :

1Gbind = α
(〈

Vvdw
lig−surr

〉

bound
−

〈

Vvdw
lig−surr

〉

unbound

)

+β
(〈

Vele
lig−surr

〉

bound
−

〈

Vele
lig−surr

〉

unbound

)

(1)

Originally LRA was followed and β was set to 0.5 (Åqvist
et al., 1994). In subsequent studies (Åqvist and Hansson, 1996;
Hansson et al., 1998) Åqvist and co-workers assigned values to
β based on electrostatic properties and chemical composition of
the compounds of interest. From free energy perturbation studies
on the electrostatic contribution to solvation free energies 1Gsolv

(Åqvist and Hansson, 1996) and binding affinity prediction
for 18 protein-ligand complexes (Hansson et al., 1998) it was
concluded that for charged compounds β = 0.5 can be used,
while lower values for different types of neutral ligands were
found to best describe the electrostatic contribution to 1Gbind

and 1Gsolv (β = 0.43, 0.37, and 0.33 for neutral molecules
with 0, 1, or (more than) 2 hydroxyl groups, respectively). The
deviation from linear response for neutral compounds and the
decrease in assigned β values with the number of hydroxyl
groups were explained to originate from variations in solvent
reordering around and interactions with the ligands (Åqvist and
Hansson, 1996). Accordingly pre-assigned values for β have been
used since then in various LIE binding affinity studies; see e.g.,
Shamsudin Khan et al., 2014 for a recent example in which
these values were successfully used, in efforts to automate LIE
binding free energy prediction within a drug-design context.
Assignment of β based on the chemical nature of the compound
of interest has also been extended toward other (hydrogen-
bonding) functional groups in a large-scale (solvation) free
energy perturbation study by Almlöf et al. (2007). They used a
set of hundreds of small organic molecules to derive a model
in which β values are assigned based on the number and types
of functional groups of the compounds of interest, where each

functional group adds a pre-defined perturbation to the base
value for β (of 0.43).

We and others (see e.g., Carlson and Jorgensen, 1995; Wall
et al., 1999) have chosen to incorporate β as an effective
parameter in LIE binding free energy models and (together
with α) train it based on experimentally available affinity data.
In such cases, separate local models (with different values for
α and β) may well be needed to accurately describe binding
affinities for complete sets of binders for a given protein of
interest, as shown e.g., in van Dijk et al., 2017 for 132 inhibitors
of Cytochrome P450 19A1 (CYP19A1). Note that the meaning
of empirically calibrated values of the parameters in trained
LIE models is not always obvious and/or discussed. One of the
exceptions is work of Kollman and co-workers (Wang et al.,
1999) who found a correlation between α and the hydrophobicity
of the binding site of the system of interest (with a larger
number of hydrophobic groups buried after binding resulting
in higher affinity and α values). After α and β are pre-assigned
and/or calibrated based on experimental data, Equation (1) can
be used to predict binding affinities of ligands with unknown
experimental data. An optional offset parameter (often denoted
as γ ) can be added to Equation (1) as a fitting parameter. Fitted
values of γ are typically system dependent and have been related
to the hydrophobicity of the binding site (Almlöf et al., 2004).
Optimal values for an offset parameter in calibrated models may
also depend on the compounds of interest, as we illustrated
by deriving local LIE models to predict binding affinities for a
(diverse) set of 132 CYP19A1 binders, for which inclusion of an
offset parameter would have led to different calibrated γ values in
the three obtained local models (van Dijk et al., 2017). The use of
additional LIE terms and associated scaling parameters has also
been proposed such as the introduction of a γ parameter for the
scaling and explicit inclusion of a surface-area term (Carlson and
Jorgensen, 1995).

From the above, LIE assumes that intramolecular energies,
entropic terms, desolvation effects, or other factors contributing
to 1Gbind can be handled and canceled out by fitting and scaling
of the model parameters, as it is assumed to correlate linearly
with the intermolecular interactions (Åqvist andMarelius, 2001).
This scaling and fitting allows for the calculation of “absolute”
(direct) values for 1Gbind. For that purpose it can be critical
to include and derive an offset γ parameter for the system
under consideration (Almlöf et al., 2004). Having direct 1Gbind

values available makes it straightforward to use a Boltzmann–
like statistical weighting scheme to include multiple binding
poses of ligands combined into a single prediction of 1Gbind

(Stjernschantz and Oostenbrink, 2010). This is relevant for
flexible proteins such as Cytochrome P450s that may bind their
ligands in different orientations or that may adopt multiple
(partial) conformations upon complexation (Stjernschantz et al.,
2008). LIE can also handle diverse ligands in the dataset that
may involve too large perturbations to be simulated (which
may become impractical for alchemical free energy calculations),
while simultaneously accounting for the unbound state of the
ligand that is not considered by most empirical scoring functions
(Brooijmans and Kuntz, 2003). Section 2 summarizes our recent
progress in calibrating (statistically–weighted) LIE models for
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diverse sets of binders of Cytochrome P450s or other flexible and
promiscuous proteins.

When fitting parameters in Equation (1) based on
experimental data, it should be realized that use of the resulting
LIE model(s) asks for the definition of its (their) domain of
applicability in order to be able to assess the reliability of
predictions for arbitrary query compounds (Carrió et al., 2014).
This is especially relevant when using LIE models in industrial
or other applied settings, considering e.g., that some years ago
the Organisation for Economic Cooperation and Development
(OECD) formalized applicability domain (AD) assessment as
principle to evaluate model validity (Jaworska et al., 2005).
To enable reliability estimation of LIE predictions based on
simulation and training data only, we recently introduced
strategies to assign the AD of LIE or other protein-structure and
-dynamic based models (as reviewed in section 3). Section 4
lists several software tools that have come available to facilitate
(semi-)automated LIE modeling. These include our software
for automated (statistically–weighted) LIE computation and
associated AD assessment, and the availability of these and other
tools may well be an important next step for applied use of LIE.

2. STATISTICAL WEIGHTING OF MULTIPLE
PROTEIN-LIGAND BINDING
CONFORMATIONS

Some years ago, Stjernschantz and Oostenbrink (2010)
introduced an extended version of the LIE method in
which results from multiple MD simulations starting from
different protein conformations and/or binding orientations are
combined into a single 1Gbind calculation. With this method,
protein–conformational sampling and the description of
ligand–binding promiscuity can be improved when computing
1Gbind for e.g., Cytochrome P450s or other flexible proteins
that may bind their ligand in different binding orientations. The
contribution of an individual simulation i that starts from a given
protein conformation and ligand–docking pose is scaled via a
Boltzmann–like statistical weighting scheme as follows (Hritz
and Oostenbrink, 2009):

Wi =
e−1Gbind,i/kBT

∑

i
e−1Gbind,i/kBT

(2)

with 1Gbind,i the binding free energy calculated from simulation
i according to Equation (1). The individual weights are then
used to calculate 1Gbind for a compound from N different
simulations via:

1Gbind =α

N
∑
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(3)

Because the weights Wi are directly dependent on the values of
α and β , model calibration based on experimental data has now

to be performed using an iterative fitting scheme (Stjernschantz
and Oostenbrink, 2010). Hence, this extended version of LIE is
also referred to as iterative LIE.

This approach was first tested for thiourea binding to
Cytochrome P450 2C9 and provided a model with high
accuracy when including simulations starting from multiple
ligand–binding poses, whereas experimental accuracy could
not be obtained when using a single MD simulation per
compound (Stjernschantz andOostenbrink, 2010). Subsequently,
model improvement was also shown for thiourea binding to
Cytochrome P450 2D6 by using not only different ligand poses
but also multiple protein starting structures for MD (Perić–
Hassler et al., 2013). The method was further extended by using
multiple replicates per docking poses to further increase accuracy
(Perić–Hassler et al., 2013). Later, our group has successfully
used this Boltzmann–weighting LIE scheme for binding affinity
prediction to e.g., CYP1A2 (Capoferri et al., 2015), CYP19A1
(van Dijk et al., 2017), JAK2 kinase (Capoferri et al., 2017),
and FXR (Rifai et al., 2018), and it has been implemented
in an automatic way in the eTOX ALLIES (Capoferri et al.,
2017) and MDStudio platforms (van Dijk, 2017) (section 4).
As part of these efforts, Vosmeer et al. proposed a Fourier–
transform filtering strategy to detect stable parts of MD time
series of the interaction energy terms (Vosmeer et al., 2016).
Only segments with fluctuations smaller than a pre–defined
cut–off were subsequently used to average ligand–surrounding
interaction energies over. Using previously calculated 1Gbind

data of Cytochrome P450 2D6 (Vosmeer et al., 2014), this
filtering strategy was able to make LIE calculation slightly more
accurate while potentially greatly improving compute efficiency
(Vosmeer et al., 2016). The reason that such filtering does
not only improve efficiency but can also enhance accuracy is
that the weighting scheme of Equations (2) and (3) is only
valid when using results from individual simulations that cover
well-separated parts of the potential energy surface of the
system of interest (Hritz and Oostenbrink, 2009). Note that
Nunes–Alves and Arantes (Nunes–Alves and Arantes, 2014)
used a similar Boltzmann–weighting approach to incorporate
multiple binding modes into their binding affinity prediction
using an implicit solvent model and they tested it on four
different receptors.

Besides calculating 1Gbind with the inclusion of several
binding poses in LIE, it was also shown that the probability
of a binding pose to occur can be predicted by inspecting
the weighting values obtained from Equation (2) (Rifai et al.,
2019). We verified this recently for a system of SIRT1–
ligands and found for the considered compounds a correlation
between the simulations of the protein–bound state with highest
weight Wi and information from a co–crystallization study,
in terms of the observed protein–ligand interactions and/or
the starting poses used in simulation (as compared to the co-
crystallized binding poses) (Rifai et al., 2019). Thus, when being
able to generate and select appropriate binding poses from
docking and/or experimental information on protein–ligand
interactions for (a vast majority of the) training compounds,
iterative LIE training may well be subsequently performed in an
unsupervised manner.
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3. APPLICABILITY DOMAIN ANALYSIS FOR
LIE

Provided that we use the LIE framework as a purely empirical
method, i.e., not considering categories of the β parameter based
on the chemical nature of the ligand (Hansson et al., 1998;
Almlöf et al., 2007), the need for training and the use of fitted
parameters (α and β) may raise the question of how reliable the
predicted value will be for an arbitrary query compound. Hence
there is a need to provide a measure to estimate the reliability
of a prediction for a new compound with unknown binding
affinity, and to evaluate if the query compound of interest is
sufficiently represented by the employed set of model training
compounds. This can be expressed in terms of the applicability
domain (AD) of a given LIE model. The AD is a set of knowledge
or information on the training set of the model and can give a
measure for the confidence in a given prediction, in a similar
vein as commonly applied in ligand–based empirical approaches
(Carrió et al., 2014). A few years ago our group introduced
an approach to allow AD assignment of LIE models, based on
simulation and training data only (Capoferri et al., 2015, 2017;
van Dijk et al., 2017). To our knowledge, this is the first method
to analyze the AD of protein–structure (and –dynamic) based
models such as LIE.

Inspired by a previous applicability domain analysis (ADAN)
approach of Pastor and co–workers to define the domain of
applicability of ligand–based QSAR models (Carrió et al., 2014),
we have proposed an AD analysis strategy in a LIE study
on Cytochrome P450 1A2 binding (Capoferri et al., 2015).
In this study a relatively large set of (57) structurally–diverse
training and test compounds were employed to explore the
possibility to define the AD of calibrated LIE models in terms
of five metrics. To estimate the reliability of a given prediction,
these metrics or confidence indices are used to evaluate the
similarity of an arbitrary query ligand (for which 1Gbind is
to be predicted) with the model’s training set. This is not
only evaluated in terms of structural similarity (according to
Tanimoto scores) and computed 1Gbind (as compared to the
spread in experimental data used for calibration), but also in
terms of the characteristics of the protein–ligand interactions. For
the latter purpose, Mahalanobis–distance and (two) principal–
component analyses are performed to enable a quantitative
comparison between the averaged and the most relevant per–
residue van der Waals and electrostatic interactions during
simulation of either the protein–bound query or training
compounds (Vosmeer et al., 2014; Capoferri et al., 2015). With
these metrics in hand and after splitting the set of ligands
with known binding affinity into a training and test set (of
35 and 22 compounds, respectively), a distinction could be
successfully made between accurate and inaccurate 1Gbind

predictions for the test set compounds by looking at how many
of the confidence metrics were violated per prediction (Capoferri
et al., 2015).

An important conclusion from Capoferri’s AD analysis
was that the nature of the protein–ligand interactions (in
terms of averaged non-bonded energies and the involved
interacting protein residues) were more relevant descriptors

for the AD of the LIE model than the molecular structure
of the ligands alone. In the LIE study of van Dijk et al.
mentioned in section 1 (van Dijk et al., 2017), this finding
was confirmed for local models that were inferred for a set
of 132 structurally–diverse CYP19A1 binders. By profiling
and comparing per–residue interactions as observed for the
protein–ligand simulations used for training, van Dijk showed
differences in protein–ligand interactions among the three local
models inferred, while structurally related compounds were
not necessarily part of the same local model, indicating that
protein–ligand interactions are a better measure to quantify if
a given compound falls within the AD of a LIE model when
compared to the molecular structure or other properties of the
ligand alone.

The performances of LIE and the above mentioned AD
analysis approach were evaluated in a real–life scenario of
a community blind affinity prediction challenge organized by
Drug Design Data Resource (D3R) during phase 2 of Grand
Challenge 2 (GC2) (Gaieb et al., 2018). In D3R GC2, the
challenge was to predict binding affinities of (102) agonists
with different scaffolds for nuclear receptor FXR. For a subset
of benzimidazole compounds (n = 9), a predictive accuracy
(with a deviation from experiment of less than 5 kJ mol−1)
was obtained. Importantly, we showed that our AD analysis
can yield representative metrics (in terms of an index for the
level of confidence) to quantify the reliability of the binding
affinity predictions based on simulation data only. It should
also be noted that LIE might fail to predict the binding affinity
of compounds with different structural properties and protein–
ligand interaction profiles and/or domain of applicability from
the ligands used for model training, or when the number of
compounds constituting the training set cannot cover the range
of experimental data of the test set. However, this can be
estimated by the confidence level retrieved from AD analysis,
to indicate possible limitations of the obtained LIE model.
To enrich the interpretation of the applicability domain, we
incorporated protein–ligand interaction profiling to evaluate the
interaction of FXR with its ligands per obtained confidence
level. We found that the confidence levels of the AD analysis
were in line with the frequencies of ligand interactions with
hotspot residues in the protein and with the model deviation and
correlation metrics obtained from the predictions (Rifai et al.,
2018).

4. (SEMI-)AUTOMATED LIE MODELING
AND ANALYSIS TOOLS

Several software modules or packages (Table 1) are available
that can be used to facilitate LIE modeling, such as the built–
in package gmx lie within GROMACS (van der Spoel et al.,
2005; Abraham et al., 2015) which can be used to directly
obtain free energies of binding from interaction energy term
analyses. Q (Marelius et al., 1998; Bauer et al., 2018) can
semi–automatically perform LIE and FEP calculations, and is
assisted with a Graphical User Interface (GUI) (Isaksen et al.,
2015). The Free Energy Workflow (FEW) tool (Homeyer and
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TABLE 1 | Selection of available tools to perform, facilitate and/or automate LIE calculations.

Software Operating system Free/Commercial Requirement Type

gmx lie Windows, Linux, MacOS Free GROMACS Program in simulation software

Q Windows, Linux, MacOS Free – Simulation software

FEW Windows, Linux, MacOS Free* Amber, AmberTools Perl script

CaFE Windows, Linux, MacOS Free VMD Tcl scripts

eTOX ALLIES Windows, Linux, MacOS Free – (all required softwares are in the virtual machine) Python scripts in virtual-machine

environment

MDStudio Windows, Linux, MacOS Free* Open Babel, PLANTS, AmberTools and GROMACS Python scripts in docker and microservice

environment

FESetup Windows, Linux, MacOS Free* GROMACS, Amber, Sire, NAMD Shell script

Desmond Windows, Linux, MacOS Commercial Schrödinger suite Software

*These tools (may) require Amber or PLANTS, which are commercial softwares.

Gohlke, 2013, 2015) also enables LIE (as well as other free
energy) calculations by facilitating setup and execution within
the Amber suite (Case et al., 2005; Salomon–Ferrer et al.,
2013). CaFE (Liu and Hou, 2016) specializes in calculating
1Gbind by using end–point methods including LIE. FESetup
(Loeffler et al., 2015) can facilitate alchemical free energy
simulations and provides the ability to perform end-point
calculations as well. Desmond (Bowers et al., 2006; Gao
et al., 2012) from Schrödinger can also be used to extract
ligand–surrounding interaction energies from MD simulations.
Our eTOX ALLIES pipeline (Capoferri et al., 2017) enables
automated molecular docking, MD simulation, iterative LIE
and associated AD analysis, which can be based on inclusion
of multiple binding modes and/or protein conformations as
input for the MD simulations (Capoferri et al., 2017). Recently,
we have made such LIE workflow also available within our
modular and flexible MDStudio workflow management system
(van Dijk, 2017).

5. CONCLUSIONS

The current perspective summarizes how we have explored
the use of (statistically-weighted) LIE to predict binding
affinity for challenging flexible (off-)target proteins such as
Cytochrome P450s and nuclear receptor FXR. In addition
we reviewed possibilities to evaluate the confidence in LIE
predictions with an AD assessment approach for LIE or other
protein-structure and -dynamic based free energy methods.

Especially when the AD of a LIE model can be defined, LIE can
treat sets of ligands that may involve too large perturbations
to be simulated and become impractical for alchemical free
energy perturbation or thermodynamic integration, while
simultaneously accounting for the unbound state of the ligand
that is not considered by most combined docking/scoring
approaches. Thus, calibrated LIE models can be viewed as
a combination of (4D–)QSAR and sampling approaches
to estimate protein–binding affinities. Combined with the
possibility to employ tools that facilitate and automate LIE
calculations and (AD) analysis, the potential of addressing
protein flexibility and promiscuity in statistically-weighted
models and the availability of metrics for applicability
domain analysis show direct promises for use of LIE in
applied settings.
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