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Abstract

Background: Skeletal muscle tissue is among the largest organ systems in mammals, essential for survival and
movement. Embryonic muscle development determines the quantity and quality of muscles after the birth of an
individual. MicroRNAs (miRNAs) are a significant class of non-coding RNAs that bind to the 3'UTR region of mRNA to
regulate gene function. Total RNA was extracted from the leg muscles of chicken embryos in different developmental
stages of Chengkou Mountain Chicken and used to generate 171,407,341 clean small RNA reads. Target prediction,
GO, and KEGG enrichment analyses determined the significantly enriched genes and pathways. Differential analysis
determined the significantly different miRNAs between chicken embryo leg muscles at different developmental
stages. Meanwhile, the weighted correlation network analysis (WGCNA) identified key modules in different develop-
mental stages, and the hub miRNAs were screened following the KME value.

Results: The clean reads contained 2047 miRNAs, including 721 existing miRNAs, 1059 known miRNAs, and 267
novel miRNAs. Many genes and pathways related to muscle development were identified, including ERBB4, MEF2C,
FZD4, the Wnt, Notch, and MAPK signaling pathways. The WGCNA established the greenyellow module and gga-miR-
130b-5p for E12, magenta module and gga-miR-1643-5p for E16, purple module and gga-miR-12218-5p for E19, cyan
module and gga-miR-132b-5p for E21.

Conclusion: These results lay a foundation for further research on the molecular regulatory mechanism of embryonic
muscle development in Chengkou mountain chicken and provide a reference for other poultry and livestock muscle

development studies.
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Background

Skeletal muscles develop from the mesoderm during the
embryonic development of vertebrates such as birds and
mammals [1]. Poultry has two kinds of fine muscle fiber;
red and white. The leg muscle mainly consists of red mus-
cle fiber. Poultry muscle is an important protein source
for humans. The main edible parts are the pectoral and
leg muscles, and all are skeletal muscles. Skeletal muscle
is an important vertebrate tissue accounting for 40% of
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body weight [2] and mainly functions in movement, pos-
tural support, breathing, and thermogenesis [3].
Moreover, skeletal muscle myogenesis is a complex
biological process affected by various regulators [4-7].
During embryogenesis, the skeletal muscle forms in the
vertebrate limb from progenitor cells originating in the
somites [8]. The process takes four stages to develop into
mature muscle fibers. In the first stage, the mesenchymal
stem cells from the mesoderm undergo terminal differen-
tiation to form mononuclear myoblasts. The second stage
involves the fusion of the mononuclear myoblasts to form
a fusiform multinucleated myotube. Then, the third stage
involves further differentiation of muscle tubes into mus-
cle fibers. The last stage involves the growth and eventual
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maturation of muscle fibers [9, 10]. Thus, microRNAs
can be employed to study the four stages of skeletal mus-
cle development.

MicroRNAs are a class of endogenous small non-cod-
ing RNAs, approximately 19-22 nucleotides long, playing
various important regulatory roles in cells, such as regu-
lating post-transcriptional gene expression in plants and
animals. Approximately 70% of mammalian miRNAs are
located in transcription units (TUs) [11], but most miR-
NAs are located in introns. Each miRNA can target mul-
tiple genes, and several miRNAs can regulate the same
gene. MiRNA maturation involves several processes
[12], including 1) Primary miRNA formation by RNA
polymerase II; 2) pre-miRNA generation by the nuclear
RNase III enzyme, Drosha and its cofactor DGCRS cleav-
aged. Next, 3) the pre-miRNA form miR/miR* duplex (an
siRNA-like duplex) via the RNase III enzyme, Dicer; and
lastly, 4) the mature single-stranded miRNA from the
duplex is incorpoeated into the RNA-induced silencing
complex (RISC). MiRNA functions by binding to AGO
protein to form RISC, which then binds to the 3 ‘'UTR
region of the functional gene [13].

This study used transcriptomics, the study of gene
expression at the RNA level, to analyze the skeletal mus-
cles of Chengkou Mountain Chicken. The transcriptom-
ics technology, also known as RNA-Seq, is an important
method for studying cell phenotype and function. The
transcriptome is the sum of transcription products of
all genes in a cell, including mRNA, rRNA, tRNA, and
non-coding RNA at a specific state or physiological con-
dition of an organism. Therefore, a major feature of the
transcriptome is its spatiotemporal specificity. The recent
development of the next-generation high-throughput
sequencing technology has tremendously updated the
transcriptome sequencing technology. New technologies
such as single-cell transcriptome sequencing and spatial
transcriptome sequencing are discovered, has extended
transcriptome research extends to the translatome and
structurome [14], greatly enriching scientific output.

China is a vast country with diverse terrain and species.
Chonggqing, located in southwest China is the hub city of
southwest China and the economic center of the upper
reaches of the Yangtze River. The Chongqing climate is
within the northern subtropical mountain area, char-
acterized by many mountains and rivers. The climate is
mild, with abundant rainfall, sufficient sunshine, and four
distinct seasons, making it very suitable for the growth
and breeding of animals and plants. The area has abun-
dant high-quality local livestock and poultry varieties.
The Chengkou mountain chicken is a local poultry vari-
ety with excellent product features, including resistance
to coarse feeding, delicious meat, strong resistance, and
high nutritional value. However, it has similar challenges
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(slow growth rate and low meat yield) as other local
breeds [15]. Therefore, studying and clarifying the bio-
logical mechanism of muscle development is necessary
for improving the production performance of Chengkou
mountain chicken and retaining its advantages.

This study analyzed Chengkou mountain chicken to
explore the superiority of local chicken species in herit-
age performance by investigating four-stage chicken leg
muscles: 12-day (E12), 16-day (E16), 19-day (E19), and
21-day (E21) embryos. Small-RNA sequencing unrave-
led differentially expressed miRNAs involved in embryo
development. The study further characterized the dif-
ferentially expressed miRNA in muscle development and
established the enrichment functions and structure of
miRNAs.

Results

Overview of small-RNA sequencing

We constructed 12 ¢cDNA libraries (E12-1, E12-2, E12-3,
El6-1, E16-2, E16-3, E19-1, E19-2, E19-3, E21-1, E21-2,
and E21-3) from embryo leg muscle to obtain complete
miRNA transcripts of the chicken embryo. A total of
171,407,341 clean reads were generated from 12 cDNA
libraries after dropping low-quality reads. Thus, reads
containing over one low-quality base or unknown nucle-
otides (N); without 3’ adaptors; containing 5 adaptors;
containing 3’ and 5" adaptors but no small RNA fragment
between them; containing polyA in small RNA frag-
ments < 18 nt were removed. The remaining high-quality
reads of each duplicate were approximately 99%, and the
proportion of clean tags was >94% (Table 1). Transcripts
per million(TPM) showed that miRNAs had different
expressions (Fig. 1A), and samples correlation heat-
maps showed high reproducibility between all samples
(Fig. 1B). The length distribution of small RNA sequences
was approximately 22 bp, consistent with conventional
animal samples (Fig. S1). Nearly 5% of the tags aligned
to non-coding RNAs (including rRNA, scRNA, snRNA,
snoRNA, and tRNA) based on the GenBank (Release
209.0, Table S1) and the Rfam (version 11.0, Table S2)
databases. The additional 95% of the tags were used for
follow-up analysis. Moreover, over 85% of the transcripts
had a high genome match (Fig. 1C). The reference area
statistics showed consistent proportions of sense and
antisense tags in the exon and intron regions (Fig. S2).
The repeat alignment results are shown in Table S3.

Identification of microRNA

The tag abundance identified as miRNA was>70%,
and the miRNAs identified in this study were divided
into three categories. (1) Existing miRNA; the miRNA
obtained by comparing existing miRNAs of Chicken in
the miRBase database. (2) Known miRNA; the miRNA
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Table 1 Sequencing data quality control
id Cleanreads High quality 3’adapter Insert null 5’adapter Smaller than PolyA Low cutoff  Clean tags
null contaminants  18nt
E12-1 15,182,867 15,032,507 11,259 27,699 7291 (0.0485%) 353,353 365 (0.0024%) 374,772 14,257,768
(100%) (99.0097%) (0.0749%) (0.1843%) (2.3506%) (2.4931%) (94.8462%)
E12-2 15,486,862 15,337,952 13,217 25,360 5054 (0.0330%) 251,801 273 (0.0018%) 246,696 14,795,551
(100%) (99.0385%) (0.0862%) (0.1653%) (1.6417%) (1.6084%) (96.4637%)
E12-3 13,546,502 13,426,336 8751 18,045 4443 (0.0331%) 203,557 231(0.0017%) 230,529 12,960,780
(100%) (99.1129%) (0.0652%) (0.1344%) (1.5161%) (1.7170%) (96.5325%)
E16-1 13,440,948 13,298,384 21,028 16,664 4725 (0.0355%) 200,716 500 (0.0038%) 215,551 12,839,200
(100%) (98.9393%) (0.1581%) (0.1253%) (1.5093%) (1.6209%) (96.5471%)
E16-2 12,182,274 12,082,685 6212 15911 5505 (0.0456%) 250,947 302 (0.0025%) 191,460 11,612,348
(100%) (99.1825%) (0.0514%) (0.1317%) (2.0769%) (1.5846%) (96.1073%)
E16-3 15,876,789 15,709,214 5765 20,027 4689 (0.0298%) 209,133 560 (0.0036%) 230,806 15,238,234
(100%) (98.9445%) (0.0367%) (0.1275%) (1.3313%) (1.4692%) (97.0019%)
E19-1 13,754,500 13,645,117 5805 19,585 3795 (0.0278%) 248,176 460 (0.0034%) 232,089 13,135,207
(100%) (99.2047%) (0.0425%) (0.1435%) (1.8188%) (1.7009%) (96.2631%)
E19-2 15,351,792 15,198,195 6913 20,152 4133(0.0272%) 247,101 469 (0.0031%) 211,815 14,707,612
(100%) (98.9995%) (0.0455%) (0.1326%) (1.6259%) (1.3937%) (96.7721%)
E19-3 12,025,634 11,935,295 4363 16,022 3712(0.0311%) 290,870 264 (0.0022%) 173,365 11,446,699
(100%) (99.2488%) (0.0366%) (0.1342%) (24371%) (1.4525%) (95.9063%)
E21-1 16,230,582 15,989,901 50,361 27,090 4495 (0.0281%) 331,264 504 (0.0032%) 341,409 15,234,778
(100%) (98.5171%) (0.3150%) (0.1694%) (2.0717%) (2.1352%) (95.2775%)
E21-2 15,518,503 15,363,022 6122 13,592 4329 (0.0282%) 168,750 182 (0.0012%) 177,280 14,992,767
(100%) (98.9981%) (0.0398%) (0.0885%) (1.0984%) (1.1539%) (97.5900%)
E21-3 12,810,088 12,699,534 3490 19,648 6717 (0.0529%) 378,662 240 (0.0019%) 208,206 12,082,571
(100%) (99.1370%) (0.0275%) (0.1547%) (2.9817%) (1.6395%) (95.1418%)

obtained by comparing miRNA of other species in the
miRBase database. (3) Novel miRNA; the new miRNA
obtained by hairpin structure prediction based on com-
paring small RNA with reference sequences. About 7%
of the miRNA was base-edited for each sample (Table
S5), and 1,059 known miRNA were identified (Table S6).
The first nucleotide bias within the existing miRNA tag
sequences was U (Fig. S3), and the first nucleotide bias
with known miRNA sequences was A and U (Fig. S4). In
summary, 2047 miRNAs were identified by classifying
266,267 tags, including 721 existing miRNAs (Table S4),
1059 known miRNAs, and 267 novel miRNAs (Table S7,
Fig. 1D). Fig. S5 shows the tag annotations for different
samples.

MicroRNA different expression analysis

The PCA analysis of all the miRNA with<1l TPM
revealed 12 samples divided into four groups by time
point (Fig. 2A). Samples E19 and E21 were very close,
probably because both are in late embryonic develop-
ment, indicating the reliability of the sequence data.
Meanwhile, the cluster analysis showed that most miR-
NAs are expressed in the early stage embryos, indicating
the importance of miRNA in early embryonic develop-
ment (Fig. 2B). The edgeR software identified 196 differ-
entially expressed miRNAs, including 27 in E12_vs_E16,

151in E12_vs_E19,171in E12_vs_E21, 13 in E16_vs_E19,
32in E16_vs_E21,and 1 in E19_vs_E21 (Fig. 2C). We per-
formed an Upset plot on miRNAs from different stages to
identify key miRNAs in muscle development. The results
showed that the larger the time span, the more differen-
tially expressed genes (Fig. 2D).

Weighted correlation network analysis (WGCNA)

of miRNAs

The “WGCNA” R package [16] identified the key mod-
ule miRNAs associated with and their regulatory roles in
the different stages of embryonic muscle development.
Essentially, 12 soft thresholds were used to ensure that
the module conforms to scale-free distribution (Fig. 3A).
Therefore, 15 modules (excluding unclassified miRNAs)
were identified in the different module colors (Fig. 3B).
The brighter the color of the intersection between the
row and column, the closer the gene connection between
the corresponding row and column. The Pearson correla-
tion was stronger (Fig. 3C). Association analysis revealed
significant correlations between E12 and greenyellow
(r=0.92), E16 and magenta (r=0.58), E19 and purple
(r=0.58), and E21 and cyan (r=0.59) (Fig. 3D). High
KME (eigengene connectivity) values indicated hub genes
with the most connections. The top3 miRNAs with the
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highest KME in each module were chosen as hub miR-
NAs of the corresponding modules (Table 2).

Functional analysis of miRNAs and co-expressed genes

The main function of miRNA is to bind mRNA regulate
the expression of target genes. Topl hub miRNA in four
modules with different muscle development time points
were selected for subsequent analysis of enriched miR-
NAs. Subsequently, target genes were predicted (total
predicted miRNA target genes were listed in Table S9).
The GO enrichment analysis of the miRNAs that tar-
get genes showed several muscle development-related
GO terms in E12, including the regulation of muscle
tissue development, muscle organ development, and
muscle tissue development (Fig. 4A). In E16, the regula-
tion of muscle cell differentiation and the regulation of
vascular associated smooth muscle cell migration were
enriched (Fig. 4B). Nonetheless, the regulation of vascu-
lar smooth muscle cell differentiation and the vascular

smooth muscle cell differentiation were enriched in E19
(Fig. 4C). The skeletal muscle satellite cell differentiation
and skeletal muscle cell differentiation were enriched in
E21 (Fig. 4D).

A Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.jp/kegg/) revealed the miRNA
enriched pathways. Consequently, the mucin-type O-gly-
can biosynthesis and Notch signaling pathways were the
most significantly enriched in E12 (Fig. 5A). The phos-
phatidylinositol signaling system, toll-like, and ErbB sign-
aling pathways were the most significantly enriched in
E16 (Fig. 5B). In E19, the adipocytokine signaling path-
way was the most significantly enriched (Fig. 5C), while
the circadian rhythm-fly and the ErbB signaling pathways
were the most significantly enriched in E21 (Fig. 5D).
Meanwhile, some star signaling pathways were signifi-
cantly enriched during different developmental periods,
such as the Wnt (E12), GnRH (E12, E19, E21), MAPK
(E16, E21), and PPAR (E21) signaling pathways.
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Co-expression network establishment

Based on previous analyses, we focused on a few path-
ways related to embryo muscle development com-
bined with a previous mRNA study [17]. The key
miRNA-mRNA-pathway regulatory networks for differ-
ent embryo development stages were built via Cytoscape
3.9.1. Thus, the Wnt signaling pathway was involved in
development at E12, and the key genes included DAAM],
WNTI16, PPP3R1, PRICKLEI, FZD4, PSEN1, PLCBI,
CAMK2G, and RSPOI (Fig. 6A). MAPK signaling was
the most significant pathway for gga-miR-1643-5p at
E16, and the important genes included MAP3K13, SOS2,
BRAF, PAKI, RAPIB, RAC3, TRAF2, MYD88, NTRK2,
NFATCI1, RPS6KAS, MAP3KS8, and MEF2C (Fig. 6B).

Similarly, the most important pathway for E19 and E21
were adipocytokine and MAPK signaling pathways,
respectively. The key genes included SOCS3, ACSL3,
IRS1, STAT3, NFKBIA, PPARGCIA, and PPMIA for the
adipocytokine signaling pathway. In contrast, ERBB4,
MAP3K13, MAPK3, RASGRF2, PAK2, MAP2K2, NFI,
MAP2KS5, KDR, MAPKAPK2, DUSP6, NTRK2, CAC-
NA2D1, PDGFRB, CACNB?2 were key in the MAPK sign-
aling pathway (Fig. 6C-D).

Validation of candidate miRNAs and miRNA-mRNA
relationship

The miRNAs with high KME values and high expres-
sion in the key modules corresponding to different
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developmental stages of Chengkou Mountain Chicken
embryos were selected for RT-qPCR. They included
gga-miR-130b-5p, gga-miR-363-5p, gga-miR-338-5p,
gga-miR-499-5p, gga-miR-1729-5p, gga-miR-26a-5p,
gga-miR-30e-3p, and gga-miR-10b-5p. The RT-qPCR
results and small RNA-Seq results were highly corre-
lated (Fig. 7), confirming the accuracy of the sequenc-
ing results. Four pairs of miRNA-mRNA were randomly
selected for RT-qPCR based on candidate miRNAs and
target gene prediction results, and found that although
there was a significant negative correlation of miRNA-
mRNA expression relationship (Fig. 8).

Discussion

Muscle development, growth, and regeneration occur
throughout the life cycle of vertebrates. Myogenesis
occurs in four consecutive, time-distinct but overlapping
stages in amniotes, including embryo, fetus, neonate,

and adult [18]. Fetal and neonatal myogenesis is key for
muscle growth and maturation. Adult myogenesis is nec-
essary for postpartum growth and repairing damaged
muscles [19]. Primary and secondary fibers are produced
during poultry embryonic and fetal development; after
that, the number of myofibers remains stable [20] except
during damage repair.

The small RNA sequence detection range is 18-30nt
endogenous RNA, including miRNA, siRNA, and
piRNA. However, the main objective of this study was
to detect miRNAs related to muscle development of
the chicken embryo to promote the genetic improve-
ment of Chengkou mountain chickens. Therefore,
2047 miRNAs were detected by small RNA sequenc-
ing of the embryonic leg muscle of Chengkou Moun-
tain chickens at different developmental time points.
The differential analysis identified 196 differentially
expressed miRNAs, indicating the significance of the
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196 miRNAs in the muscle development of the chicken
embryo.

A WGCNA systematic biological method described
the patterns of gene association among the different
samples and identified highly covariant gene sets, can-
didate biomarker genes, or therapeutic targets for use
in medical and biological fields. WGCNA revealed the
TERTMe"specific miR-17-92 cluster can targets bio-
logical processes enriched in the TERT" cancer in a
pan-cancer analysis [21]. Elsewhere, RNA sequencing
and WGCNA of cord blood samples from fetal growth-
restricted cases and controls combined with maternal
peripheral blood quantification revealed miR-42-5p
and miR-1306-3p as potential fetal growth restrictors
[22]. In calves, WGCNA identified bta-miR-145 and
bta-miR-199a-3p as important hub miRNAs regulating
rumen development, immune system, and protein diges-
tion [23]. This technique also established that DYNLL2
and its target miR-148-3p are important regulators of
chicken myogenesis [24]. In this study, the WGCNA
technique revealed key modules and hub genes related
to leg muscles of embryos at four different develop-
ment stages. Thus, many interesting genes for muscle

development-related biological process and signaling
pathways were identified through GO and KEGG hub
gene target analysis. The WGCNA analysis identified 537
miRNAs in the greenyellow module, highly correlated
(r=0.92) with E12, 78 miRNAs in the magenta module
for E16, 78 miRNAs in the purple module for E19, and
49 miRNAs in the cyan module for E21. These results
account for a quarter of the total muscle miRNA, indi-
cating that the progression of muscle development in the
embryo is extremely important during this period. The
results are consistent with an earlier study of E12 to E21,
the period of rapid maturity of muscle fiber during the
embryonic development of Chengkou mountain chicken
[17].

Previous studies have shown that miRNAs are involved
in muscle development; miR-222a and miR-126-5p sig-
nificantly reduced the CPEB3 and FGFR3 mRNA levels in
chicken embryo fibroblasts [25], emphasizing the signifi-
cance of miRNA-target interactions in embryonic mus-
cle regulation. A luciferase reporter gene assay showed
that miR-1 targets chicken ACVR2B UTR directly, but
network analysis predicted that ACVR2B targets gga-
miR-101, gga-miR-1la and gga-miR-499 [26]. Although
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gga-miRNA-454-3p does not affect primary myoblast
differentiation, it inhibits differentiation by targeting the
myotube-associated protein SBF2 [27]. A study focused
on the chicken skeletal muscle indicated that miR-29b-
1-5p inhibits the proliferation of chicken primary myo-
blasts and promotes the differentiation of myoblasts via
an effective target gene, ANKRD9 [28]. Meanwhile, miR-
29b-1-5p and miR-133a-5p are sponges for circFGFR2
in skeletal muscle proliferation and differentiation [29].
MiR-133 was earlier established as a miRNA specifically
expressed in skeletal muscles [30]. High-throughput
sequencing revealed novel miR_158, novel _miR_144,
novel_miR_291, and miR-205a as crucial miRNAs for
skeletal muscle development in Bian chicken, suggesting
their vital function in chicken growth [31].

The proliferation and differentiation of skeletal muscle
satellite cells are crucial in skeletal muscle development,

especially during repair after muscle injury. MiR-21-5p
targets KLF3 and regulates skeletal muscle satellite cell
proliferation and differentiation [32]. MicroR-27b-3p
regulates the proliferation and differentiation of chicken
primary myoblasts by targeting MSTN [33]. Moreover,
miRNA-214 regulates chicken myoblast proliferation and
differentiation by targeting TRMT61A [34]. The miRNA-
gene pairs gga-miR-499-5p/SOX6 and gga-miR-196-
5p/CALM1I might affect muscle fiber performance using
a miRNA-mRNA integrated analysis [35]. All these miR-
NAs, except novel_miRNA (naming rules were different),
were detected in this sequencing data, and gga-miR-
499-5p was the candidate hub miRNA within the purple
module for E19, suggesting its role in chicken muscle
development.

RT-qPCR results by randomly selecting miRNAs
and their target genes showed that there was extremely
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significant correlation between some miRNAs and
mRNA, however, there were some miRNAs and mRNA
with no obvious correlation. It confirmed that the tar-
geting relationship between miRNA and mRNA is not
unique. Besides, gga-miR-130b-5p, gga-miR-1643-5p,
gga-miR-12218-5p, and gga-miR-132b-5p were criti-
cal for muscle development at E12, E16, E19, and E21
embryo stages in Chengkou mountain chickens. Multiple
genes related to muscle development were identified by
predicting the targets of these miRNAs. MEF2C, a mem-
ber of the myocyte enhancer factor 2 family of MADS
(MCM1, agamous, deficiens, serum response factor), is
an important regulator of cardiac myogenesis and right
ventricular development. This gene is mainly expressed
in cardiac precursor cells before linear cardiac tube for-
mation in mice, and MEF2C mutation prevents right ven-
tricle formation in mice [36].

Meanwhile, MEF2C probably synergizes with MyoD
through amplification to establish skeletal muscle com-
mitment during cardiac and skeletal myogenesis [37].
Activation of satellite cells regulates the repair of injured
human skeletal muscles. However, after knocking out
the MEF2A, MEF2C, and MEF2D genes, satellite cells
only proliferated but failed to differentiate, showing the
dependence of skeletal muscle regeneration on MEF2
[38]. ERBB4 (Erb-B2 receptor tyrosine kinase 4), a Tyr
protein kinase family member and the epidermal growth
factor receptor subfamily, regulates muscle differentia-
tion [39]. The Janus kinase/signal transducer and activa-
tor of transcription (JAK/STAT) signaling cascade has
also been identified as a key factor in myogenesis. None-
theless, the STAT3 isoform is critical for satellite cell
migration and myogenic differentiation because it medi-
ates the expression of muscle-specific myogenic factors
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[40]. The SOCS (Suppressor of Cytokine Signaling) family
of proteins down-regulates STAT activation [41]. Other
target genes such as BRAF [42], DAAMI [43], FZD4 [44,
45], and NF1 [46, 47] affect muscle development in the
same or different ways.

GO, and KEGG enrichment results showed that some
muscle development entries were significantly enriched,
including the Wnt, ErbB, MAPK, and Notch signaling
pathways. As previously predicted, DAAM]1, FZD4, and
WNT16 constitute the Wnt signaling pathway that reg-
ulates the critical ability of muscles to break down and
reorganize fibers during development. Wnt signaling is
involved in muscle remodeling [48]. Consequently, correct
activation of the Wnt signaling pathway is essential dur-
ing the various steps of muscle formation [49]. Therefore,
deficiency of Wnt signaling effectors during pregnancy
leads to marked tissue damage and muscle dysplasia [50].
ERBB4 represents the ErbB signaling pathway, whose inhi-
bition leads to non-denervated skeletal muscle growth in
mice, but activation causes an opposite outcome [51].

In this study, the predicted members of the MAPK
signaling pathway were PPMIA, NFI, MEF2C, and

TRAF2. Ras-MAPK signaling promotes neuroactivity-
dependent differentiation of slow muscle fibers in vivo
[52]. Besides, the p38 MAPK is activated during myoblast
differentiation, and it also affects the activity of the MEF2
family of transcription factors, suggesting that p38 may
be involved in the myogenic program [53]. Early mor-
phogenesis of skeletal muscles during chicken embryo
development requires transient activation of the Notch
signaling pathway to drive terminal differentiation of
muscle progenitors [54]. Notch and NRG signaling
antagonistically regulate the synthesis and degradation
of the cardiomyocyte extracellular matrix in a mouse
trabecular model, which is critical for the individuali-
zation and rearrangement growth of trabecular units
[55]. Generally, the growth and development of organ-
isms is a complex process, often regulated by several
signaling pathways. Studies have shown that myogenic
progenitor cell differentiation transitions from Notch
to Wnt signaling. The temporal balance between Notch
and Wnt signaling coordinates the precise progression
of muscle precursor cells along the myogenic lineage
pathway [56].
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Conclusions

This work constructed the miRNA sequencing library
of Chengkou mountain chicken, generating 2047 miR-
NAs and 196 differentially expressed miRNAs. Key
modules, hub miRNAs, and targets corresponding to
different chicken embryo developmental stages were
identified through WGCNA and functional enrichment
analysis. GO and KEGG enrichment analysis of target
genes revealed several significantly enriched signal-
ing pathways during embryonic muscle development,
including the Wnt, ErbB, MAPK, and Notch signaling
pathways. This report is highly consistent with previous
mRNA sequencing results [17]. Combining these reports
can provide a more accurate molecular basis for explor-
ing the embryonic muscle development of Chengkou
Mountain Chicken and guide the genetic improvement of
local breeds.

Methods

Chicken embryo incubation and tissue collection

This study used the Chengkou mountain chicken as
the experimental animal. Chengkou mountain chicken
breeding eggs were obtained from the Chongqing Xuan-
peng Agricultural Development Co. Ltd Chongging,
China. The eggs were incubated at 37.8 °C and 55%
humidity. Twelve chicken embryos were obtained from
four time points (12, 16, 19, and 21 embryonic ages), with

three replicates at each time point. The embryos were
euthanized via cervical spine dislocations, and leg mus-
cles were collected from the same sampling sites. The
12 samples were stored at -80 C (wrapped in RNA pro-
tective solution (QIAGEN, Hilden, Germany)) for RNA
extraction.

cDNA library construction and sequencing

The Trizol reagent (Invitrogen, USA) was used to extract
total RNA from chicken embryo leg muscles during the
four stages, following the manufacturer’s protocol. The
RNA molecules within 18—-30 nt were enriched by poly-
acrylamide gel electrophoresis (PAGE). Nucleic acid tests
and gel electrophoresis assessed total RNA quality and
purity. rRNA was removed from the total RNA using
the Ribo-Zero rRNA removal kit (Epicentre, USA). The
Ilumina HiSeq™ 2500 (Illumina, CA, USA) was used for
sequencing at the GENE DENOVO Biotechnology co.
LTD (Guangzhou, China). The original data were filtered
as follows to ensure quality. Reads containing: (1) > 1low-
qualityy base (Q-value <20) or unknown nucleotides (N),
(2) without 3" adaptors, (3) containing 5 adaptors, (4)
containing 3’ and 5" adaptors but no small RNA fragment
in between, (5) containing polyA in small RNA frag-
ments and <18 nt were excluded. The clean reads were
compared with the GenBank and Rfam species databases
using the Blastall tool. Meanwhile, the chicken genome
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short reads were aligned using the tool Bowtie. Reads
within the databases were divided and compared to avoid
no mismatches. Then, the reserved unmapped reads were
used for subsequent transcriptome analysis. The TPM
determined the sample expression. Sample repeatability
was tested via principal component analysis (PCA).

Identification of miRNAs

All clean tags were searched against the miRbase data-
base (Release 22) to identify existing miRNAs and known
miRNAs via alignment with other species. The novel
miRNAs were identified according to their genome
positions and hairpin structures as predicted by the
Mireap_v0.2 software. The default parameters of the
Mireap_v0.2 software were as follows: (1) 18nt minimal
and (2) 26nt maximal miRNA sequence length. (3) Mini-
mal, 20nt, and (4) maximal miRNA sequence length,
24nt. (5) Minimal depth of Drosha/Dicer cutting site, 3,
(6) maximal copy number of miRNAs on reference, 20,
and (7) maximal free energy allowed for a miRNA pre-
cursor, 18 kcal/mol. (8) Maximal space between miRNA
and miRNA*, 35nt, (9) minimal space between miRNA
and miRNA*, 14nt, and (10) maximal bulge between
miRNA and miRNA*, 4nt. (11) Maximal asymmetry of
miRNA/miRNA* duplex, 5nt, and (12) flank sequence
length of miRNA precursor, 10nt. The tag annotation
results were determined in this priority order: rRNA
etc.>existing miRNA >existing miRNA edit>known
miRNA > repeat > exon > novel miRNA >intron. The tags
that were not annotated at any of the above molecules
were recorded as unannotated.

MiRNA expression analysis

The total miRNA consisted of existing miRNA, known
miRNA, and novel miRNAs, based on their expression in
each sample. The miRNA expression was calculated and
normalized to TPM. In addition, the expression of exist-
ing miRNA, known miRNA, and novel miRNA was also
analyzed individually. The edgeR tool revealed the signifi-
cantly different miRNAs based on the P value<0.05 and
|log2FC|> 1 threshold. RNAhybrid (Version 2.1.2) 4+ svm_
light (Version 6.01), Miranda (Version 3.3a) and Tar-
getScan (Version 7.0) were used to predict targets. The
intersection of the results was more credible and chosen
as predicted miRNA target genes.

Function enrichment analysis

The miRNA-mRNA regulatory relationship was con-
structed to analyze the function of target genes and
clarify the mechanism of miRNA involvement in chicken
embryo muscle development. The Genes to GO term
mapping database calculated the number of genes in
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each GO term and GO functional statistics [57]. A hyper-
geometric test identified the significantly enriched GO
entries compared with the entire genome background. A
hypergeometric test used the KEGG databases to iden-
tify significantly enriched pathways against the entire
genome background [58]. The most important biochemi-
cal metabolic and signal transduction pathways were
determined through enrichment analysis. The calculated
p-values were subjected to FDR correction, and pathways
with FDR <0.05 were considered statistically significant.

Verification and statistical analysis

Herein, eight miRNAs and four mRNAs were used
to verify the sequencing results and the relationship
between miRNAs and mRNAs expression levels via
RT-qPCR. The primers were designed by Primer Pre-
mier (Table S8). RNA reverse transcription and real-
time fluorescence quantitative PCR were performed
as previously described [17], U6 and ACTB were used
as housekeeping genes for miRNA and mRNA, respec-
tively. The relative miRNA and mRNA expression were
calculated via the 2-2ACT method [59], and data were
expressed as mean = standard deviation of the mean.
Duncan’s Multiple Range Test was used for two-group
comparisons in SPSS 23.0 (SPSS Inc., IL, USA). Graph-
ics were plotted using GraphPad Prism 9 (GraphPad
Software, CA, USA). P<0.05 and P<0.01 were consid-
ered statistically significant and extremely significant,
respectively [60].
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