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Abstract

Background: Genome-wide landscape of alternative promoter use remains unknown. We deter-

mined expression profiles of promoters in 26 lung adenocarcinoma cell lines using the transcrip-

tional start site-sequencing data and proposed an index ‘canonical promoter usage’ to quantify the

diversity of alternative promoter usage.

Methods: Transcriptional start site-sequencing and other datasets were obtained from the DataBase

of Transcriptional Start Sites. Transcriptional start site-sequencing read clusters were mapped onto

RefGene to determine the promoters. Commonly used promoters were designated as canonical

promoters. The sequence logos, CpG islands, DNA methylation and histone modifications of

canonical and non-canonical promoters were examined. Canonical promoter usage was calculated

by dividing ‘read counts of a canonical promoter’ by ‘read counts of all the units of promoters’

on each gene. The expressed genes were subjected to hierarchical clustering according to their

canonical promoter usage.

Results: Among 104 455 promoters for 14 297 genes, 8659 canonical and 68 197 non-canonical

promoters were identified. Corresponding to higher expression, canonical promoters showed core

promoter sequences, higher CpG island positivity, less DNA methylation and higher transcription-

promoting histone modifications. Gene ontology enrichment analysis revealed that the clusters

with lower canonical promoter usage were related to signalling pathways, whereas clusters of

tightly regulated genes with higher canonical promoter usage were related to housekeeping genes.

Conclusion: Canonical promoters were regulated by conventional transcriptional machinery, while

non-canonical promoters would be targets of ‘leaky’ expression. Further investigation is warranted

to analyse the correlation between alternative promoter usage and biological characteristics

contributing to carcinogenesis.
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Introduction

Transcription is an essential step in reading genomic information.
Transcriptional initiation occurs at multiple regions called ‘alterna-
tive promoters’, and 58% of 19 142 genes in the human genome
have alternative promoters (1–3). Alternative promoters may cause
diversity in transcriptional profiles and contribute to biological
phenomena. For example, TP73, a member of the TP53 tumour sup-
pressor gene family, selectively uses alternative promoters. Upstream
promoters code for transcriptionally active isoforms and serve as
tumour suppressors. Conversely, downstream promoters code iso-
forms lacking an N-terminal transactivation domain and antagonize
the active form to induce tumorigenesis (4,5). Alternative promoter
usage has been reported to be associated with the clinical subtypes of
breast cancer (6), suggesting critical roles for alternative promoters in
tumour biology. However, the genome-wide landscape of alternative
promoters in cancer genomes remains unclear.

Mammalian promoters contain closely separated transcription
start sites (TSSs) (7). These promoters are regulated by various
factors, including distal enhancers, DNA methylation and histone
modifications (8–10). Multi-omics datasets of various cancer types
are useful for studying transcriptional regulation (11–13). We have
obtained datasets of TSS sequencing (TSS-seq) of 26 lung adeno-
carcinoma (LUAD) cell lines, along with data of whole genome
sequencing, RNA sequencing, bisulfite-sequencing (BS-seq), chro-
matin immunoprecipitation sequencing (ChIP-seq) and assays for
transposase-accessible chromatin sequencing (ATAC-seq), and they
are publicly available via the DataBase of Transcriptional Start Sites
(DBTSS) (11,14).

In this study, we determined the position and expression levels of
all promoters in the genomes of 26 LUAD cell lines using TSS-seq
data. BS-seq and ChIP-seq data were then overlaid on the TSS-seq
data to characterize the regulatory features of alternative promoters.
Further, we propose an index to quantify the diversity of alternative
promoter usage to explore its biological significance.

Materials and methods

Dataset for multi-omics analysis

TSS-seq (DDBJ accession number, DRA005903), BS-seq (DRA001841),
RNA-seq (DRA001846) and ChIP-seq (DRA001860) data of 26
LUAD cell lines were obtained from DBTSS ver.9.0 (Supplementary
Table S1) (15). Cap Analysis of Gene Expression-sequence (CAGE-
seq) read count data of two LUAD cell lines (A549 and PC14)
were obtained from the Functional ANnoTation Of the Mammalian
Genome website (http://fantom.gsc.riken.jp/5/datafiles/reprocessed/
hg38_latest) (7). To align the CAGE-seq reads with the promoter
regions defined from the TSS-seq reads, the regions were expanded
10 bp upstream and downstream to prevent miscounting of reads
owing to a few base pair gaps between TSS-seq and CAGE-seq reads.
All data were in tsv, csv, and bed format with coordinate information
on the hg38 genomes.

Determination of promoters based on TSS-seq reads

Promoter regions based on TSS-seq reads were defined according
to previous studies with some modifications (16). Briefly, all TSS-
seq reads were mapped into the hg38 human genome by BWA
(17). The mapped TSS-seq reads were clustered to construct TSS-
seq read clusters (TSCs) within 500 bp intervals in the genomes for
each 26 cell line. If a TSC overlapped with other TSCs, the TSC

region was extended to include all neighbouring TSCs. All extended
TSCs from 1000 bp upstream of the annotated transcriptional start
sites to the transcriptional end site of each gene were mapped on
the UCSC reference gene coordinate information (RefGene, version
5.6.26). The extended TSCs spanning more than 5000 bps length
were omitted since visual inspection of several arbitrarily selected
extremely long TSCs suggested to contain multiple promoters. When
stratified by the length of the promoter, more than 95% of number of
genes and TSS read counts were included below 5000 bp, thus this
was used as the threshold. A TSS that corresponded to the highest
TSS-seq reads in the promoter was defined as the representative TSS.
Sequence logo analysis was performed around the representative TSS
using the Python package Logomaker (https://github.com/jbkinney/
logomaker) (18). We also used our original scripts written by Python
to produce alternative promoters from TSS-seq reads.

Definition of canonical and non-canonical promoters

The promoters with the highest expression for each gene in at least 13
of the 26 LUAD cell lines were designated as ‘canonical promoters’
and other promoters of that gene were defined as non-canonical
promoters. For the genes in which canonical promoters were not
identified, canonical-like promoters were defined as the promoters
with the highest expression for each gene in more than half of the
cell lines in which the gene was expressed.

Extraction of CpG islands

The GC contents around representative TSSs with 250 bp upstream
and downstream regions were calculated, and the ratio of observed
CpG and expected CpG was estimated using the reference genome of
GRCh38/hg38 (downloaded from the UCSC Genome Data). Promot-
ers with more than 55% GC content and more than 0.65 observed
CpG/expected CpG were identified as CpG island positive promoters
(19).

Epigenetic analysis of promoter regions

TSS, BS, and ChIP-seq reads mapped information to the human
genome 19 (hg19) in DBTSS were obtained, and the genome
coordinates of hg19 were converted to hg38 using the UCSC LiftOver
tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver) (20). The mapped
TSS-seq and ChIP-seq read counts were normalized to Reads Per
Million (RPM). The DNA methylation ratio was calculated using
the methylated-C read count/(methylated-C read count + non-
methylated-C read count) from the BS-seq. To estimate the DNA
methylation ratio of the promoters, regions extended by 250 bp
upstream and downstream from each representative TSSs were
used in the calculation. ChIP-seq reads of RNA polymerase II and
seven histone modifications (H3K4me1, H3K4me3, H3K27me3,
H3K36me3, H3K9me3, H3K27ac and H3K9/14 ac) were mapped on
an area of 1.5 kb upstream and downstream of determined promoters
of representative TSSs. To score and visualize, the mapped ChIP-seq
reads were normalized to log2 scale by ‘bamCompare’ and applied
to ‘computeMatrix’ and ‘plotHeatmap’ of deeptools (version 3.5.0)
(https://github.com/deeptools/deepTools) (21).

Definition of canonical promoter usage as the density

of the expression of alternative promoters

For genome-wide analysis of alternative promoter usage, a unique
quantitative value ‘canonical promoter usage’ (CPU) for each gene
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was defined as below:

CPU = Pcanonical∑n
k=1 Pk

,

where Pk is the total TSS-seq reads (RPM) belonging to promoter
k in a gene and Pcanonical is the total TSS-seq reads (RPM) on the
canonical promoter in the same gene.

Clustering and enrichment analysis of the genes and

cell lines

To segregate genes and cell lines based on the characteristics of CPU
values, hierarchical clustering (Euclidean distance, Ward’s method)
was applied. Five gene clusters were classified using the k-means
clustering method. Reads Per Kilobase of exon per Million mapped
reads (RPKM) values based on RNA-seq for each of the 26 cell lines
were obtained to estimate the RNA expression. Based on the UCSC
refGene.txt file, the longest transcription length for each splicing
variant was defined as the gene length. The P values of the statistical
test were obtained with the CPU, normalized read count of the CPs
and NCPs, promoter number, gene length and RPKM from RNA-seq
on the five gene clusters by ‘Steel-Dwass test’ with scikit-posthocs
(version 0.7.0) of Python package. The cut-off criterion was P value
<0.01. Enrichment analysis of Gene Ontology (GO) was performed
with the Metascape (22).

Results

Determination of promoters in genomes of 26 LUAD

cell lines

We defined promoters based on TSS-seq reads, according to a
previous study (Fig. 1a) (16). We used hg38 lift-overed TSS-seq
reads of 33 164 208 (min: 5347033–max: 80455398) on average
for genomes of 26 LUAD cell lines and obtained 767 560 (min:
288801–max: 2918312) transcriptional start sites. TSSs were clus-
tered into a total of 187 584 TSCs and defined as promoters. Each
cell line had an average of 159 087 (min: 107582–max: 357818)
promoters in its genome. These promoters were annotated using
RefSeq gene regions. However, 7010 promoters of 951 genes with
extremely long regions were excluded as potential mixed promoters
(Supplementary Fig. S1a and b). Finally, we obtained 104 455 pro-
moters for 14 297 genes from the genomes of 26 cell lines (Fig. 1b and
Supplementary Table S1). The defined promoters were compared
with and validated by CAGE-seq data (23). CAGE-seq reads from
A549 and PC14 cells were aligned to the promoter regions defined
above. The results showed that 95.0% and 96.7% of CAGE-seq
reads overlapped with TSS-seq-based promoters in A549 and PC14
cells, respectively. The correlation coefficients of CAGE-seq and TSS-
seq expression levels on these promoters were 0.655 and 0.491
and statistically significant (P < 0.001) in A549 and PC14 cells,
respectively (Supplementary Fig. S1c).

Among 19 014 RefSeq genes, an average of 9659 (min:
8865–max: 10465) genes were expressed in each cell line. Of
19 014 genes, 17.5–30.1% had a single promoter and 18.3–35.2%
had multiple promoters (Fig. 1c). The highest expressed promoters
tended to be detected at the 5′-end (first promoters) in the RefGene
region (Supplementary Fig. S1d). For example, in the STAU2 gene,
which reportedly has multiple alternative promoters (6), a total of 36
promoters have been identified from 26 LUAD cell lines. The number
of promoters in PC3 cells was 16, while those in the other LUAD

cell lines ranged from one to six. Among the 36 promoters from
25 cell lines, the 5′-end promoters (p1: chr8, 73746374–73748017)
showed the highest expression, but in PC3 cells, the p24 promoter
(chr8: 73585207–73586432) showed the highest expression (Fig. 1d,
Supplementary Fig. S1e). This suggested that even in the same cancer,
the expression patterns of the alternative promoters differed in
different cell lines.

Classification of canonical and non-canonical

promoters in genomes of 26 LUAD cell lines

As described for the STAU2 gene, the most highly expressed promot-
ers were largely common among the cell lines. We designated these
common promoters as canonical promoters (CPs). In this study, CPs
were the promoters with the highest expression for each gene in at
least 13 of the 26 LUAD cell lines, and other promoters of that gene
were defined as non-canonical promoters (NCPs) (Fig. 2a). CPs were
identified in 8659 genes. Meantime, 68 197 NCPs were identified in
these genes. According to this definition, CPs were not able to be
identified in 5638 genes since the promoters with highest expression
were detected in less than 13 cell lines, mainly due to the lack of the
expression of the genes in some cell lines. To further evaluate charac-
ters of the promoters in these genes, canonical-like promoters were
defined as the promoters with the highest expression for each gene
in more than half of the cell lines in which the gene was expressed.
As a result, canonical-like promoters were identified in 4382 genes
with 11 752 non-canonical-like promoters. Finally, 11 465 promoters
of the 1256 genes remained as unclassified (Supplementary Fig. S2).
Of identified CPs, 56.6% (4905 CPs) were commonly expressed
in all 26 cell lines (Fig. 2b). In each cell line, an average of 7990
(min: 7083–max: 8345) out of 8659 CPs (92.3%) were expressed.
In contrast, among the 68 197 NCPs, 52.0% (35 475 NCPs) were
uniquely expressed in a single cell line (Fig. 2b). In each cell-line,
an average of 10 146 (min: 5332–max: 17937) NCPs (14.9%) were
expressed (Supplementary Table S2).

Expression levels and genomic contexts of CPs

and NCPs

The expression levels of each CPs and NCPs had an average of 74.3
[standard deviation (SD) ± 3.5] and 0.609 (SD ± 0.173) RPM,
respectively (Fig. 2c). To address the genomic background of the
expression of CPs and NCPs, CpG islands in these promoters were
estimated. We detected 79.7% (6908/8659 promoters) of CPs and
1.5% (1002/68197 promoters) of NCPs were located inside CpG
islands (Fig. 2d). We further evaluated the DNA sequence patterns of
the core promoter region and drew a sequence logo for a short region
around the representative TSSs (±5 bp). In the CPs, pyrimidines and
purines were dominant at the position one and position minus one
of transcriptional start site, respectively. In contrast, no characteristic
motifs were detected in NCPs (Fig. 2e). These results suggest that CPs
are under the control of conventional and efficient transcriptional
regulation, while NCPs may be expressed in a rather abnormal
manner, resulting in less efficient transcription.

Epigenetic regulation of CPs and NCPs

Next, we evaluated the epigenetic modifications of CPs and NCPs.
The DNA methylation ratios of the CPs and NCPs were evaluated.
Among the expressed CPs, 6927 (SD ± 355, 80.0%) promoters
were hypomethylated (methylation ratio < 0.25) and 188 (SD ± 25,

https://academic.oup.com/jjco/article-lookup/doi/10.1093/jjco/hyac175#supplementary-data
https://academic.oup.com/jjco/article-lookup/doi/10.1093/jjco/hyac175#supplementary-data
https://academic.oup.com/jjco/article-lookup/doi/10.1093/jjco/hyac175#supplementary-data
https://academic.oup.com/jjco/article-lookup/doi/10.1093/jjco/hyac175#supplementary-data
https://academic.oup.com/jjco/article-lookup/doi/10.1093/jjco/hyac175#supplementary-data
https://academic.oup.com/jjco/article-lookup/doi/10.1093/jjco/hyac175#supplementary-data
https://academic.oup.com/jjco/article-lookup/doi/10.1093/jjco/hyac175#supplementary-data


100 Alternative promoter usage in lung cancer

Figure 1. Overview of alternative promoters. (a) Definition of the promoters from transcriptional start site-sequencing (TSS-seq) data. Most frequent TSS reads

in each promoter were defined as representative TSS reads (red allows). Other TSS (black arrows) reads within 500 bp bins were recognized as the reads within

the same promoter. Promoter activity is calculated from the total number of TSS reads within each promoter region. (b) Flow of the extraction of the promoters

in 26 lung adenocarcinoma (LUAD) cell lines based on the TSS-seq read data. (c) Percentage of the RefSeq genes according to the number of the determined

promoters (0, 1, 2, 3, 4 and over 4 promoters) in the 26 LUAD cell lines. (d) Representative alternative promoter usage in STAU2 gene (right to left) in PC3 and

PC7 cells. The middle box shows the positions of stacked TSS reads and identified promoters. Red boxes indicate the positions of p1 and p24.

2.2%) promoters were hypermethylated (methylation ratio > 0.75),
whereas among expressed NCPs, 627 (SD ± 88, 0.91%) were
hypomethylated and 2406 (SD ± 713, 3.5%) were hypermethylated
(Fig. 3a and Supplementary Table S3).

Examples of chromatin modifications in PC14 and RERF-LC-
Ad2 cells are shown in Fig. 3b and Supplementary Fig. S3a, respec-
tively. Around the representative TSSs of expressed CPs, ChIP-
seq scores of Pol II and active histone marks, such as H3K4me3,
H3K27ac and H3K9/14 ac, were elevated, whereas repressive marks
(H3K27me3 and H3K9me3), markers of gene bodies (H3K36me3)
and enhancers (H3K4me1) were low. Using a cut-off value of 0.5
with each normalized ChIP-seq reads in the region near the pro-
moter as calculated by computeMatrix in deeptools, 94.87% of
expressed CPs in PC14 cells had transcription-promoting histone
modifications, and these marks highly overlapped with each other
(Fig. 3c). This trend was observed across all cell lines, with 94.58%
of the expressed CPs of 26 cell lines having transcription-promoting
histone modifications (Supplementary Fig. S3b). These findings are
consistent with the hypothesis that CPs are subjected to conventional
transcriptional regulation. However, even in the expressed NCPs,
gene body marks were predominant. Active histone marks were
detected in 6.95% of the expressed NCPs of PC14 and 15.58%
of 26 cell lines, and the overlap of each marker was much less
than that in the CPs (Fig. 3c and Supplementary Fig. S3b). Similar
results were obtained for canonical-like promoters. Active histone

marks were more frequently detected in the expressed canonical-
like promoters (73.53%) than in the expressed non-canonical-like
promoters (30.19%) (Supplementary Fig. S3c).

Diversities of histone modifications among NCPs

Although canonical promoters were suggested to play important
roles, it was anticipated that some of the non-canonical promoters
would also be functionally significant. We focused on the cell lines
in which those canonical promoters were not expressed and selected
the most highly expressed non-canonical promoters in those genes
in those cell lines. The proportion of promoters with active histone
marks was increased in these non-canonical promoters with the high-
est expression (29.88%) compared with that of total non-canonical
promoters (15.58%) (Supplementary Fig. S4a).

Next, we compared the histone modifications of non-canonical
promoters commonly expressed in 26 cell lines (indicated by the
open arrowhead in Fig. 2b) to those of non-canonical promoters
uniquely expressed in 1–3 cell lines (indicated by the closed arrow-
head in Fig. 2b). The proportion of active histone marks in com-
monly expressed non-canonical promoters (27.45%) were higher
than those in uniquely expressed non-canonical promoters (14.87%)
(Supplementary Fig. S4b). Though the proportion of active histone
marks of those specific non-canonical promoters was still lower
than those of canonical promoters, these findings suggest that some
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Figure 2. Canonical promoters (CPs) and non-canonical promoters (NCPs) in genomes of 26 lung adenocarcinoma (LUAD) cell lines. (a) Definition of CP and

NCPs. CPs are the promoters with the highest expression (red arrows) for each gene in the majority of the cell lines. (b) Bar plots showing the number of CPs

(top box) and NCPs (bottom box) stratified by the number of cell lines in which the promoters were expressed. The point plot in each box shows the cumulative

number of CPs and NCPs. An open arrowhead at the bottom box means commonly expressed NCPs and closed arrowheads mean uniquely expressed NCPs.

(c) Expression of CPs and NCPs shown as mean log10 Reads Per Million value. (d) Percentage of the CpG islands positive CPs and NCPs. (e) The Sequence logo

in representative TSS ± 5 bp of CPs and NCPs.

non-canonical promoters were regulated by a canonical promoter-
like manner.

Diversity of alternative promoter usage among the

genes in 26 LUAD cell lines

A genome-wide evaluation of the usage of CPs and NCPs would
allow us to analyse the biological significance of alternative pro-
moters. We defined CPU as an index to evaluate the bias of CP
in alternative promoters in gene expression. CPU is calculated by
dividing ‘read counts of the TSS-seq on a CP’ by ‘read counts of
the TSS-seq on all the units of promoters (CP and NCPs)’ on each
gene. For example, the CPU value for the STAU2 gene was 0.18
(29.0/161.0 RPM) in PC3 cells and 0.96 (26.3/27.5 RPM) in PC7
cells. CPUs were calculated for all genes in each cell line. Figure 4a
illustrates the distribution of CPUs per gene in the PC14 and PC7 cell
lines with mean CPU values of 0.81 and 0.91, respectively.

We performed a cluster analysis based on the CPU values. There
were 14 297 genes for which promoters were identified in any of
the cell lines. Among them, 5301 genes that were expressed in all
26 cell lines were used for analysis. Genes were divided into five
clusters (Clusters 1–5, Supplementary Table S4), and cell lines were
sorted by mean CPU value (Fig. 4b). Supplementary Figure S5 shows
the cluster characteristics. Genes in clusters 1 and 2 had lower

CPU, suggesting relatively high or frequent expression of NCPs.
Conversely, cluster 3 had the highest CPU, suggesting a relatively
high expression in CPs. Although the total number of promoters
included in the genes tended to be higher in clusters 1 and 2 and
lower in cluster 3, there was no significant difference in the length of
the genes included in those clusters. No differences were observed in
gene expression levels in clusters 1–4 evaluated by RNA-seq data.

Next, GO enrichment analysis was performed on the clusters
(Fig. 4c and Supplementary Table S5). In clusters 1 and 2, terms
related to signalling pathways, such as ‘enzyme-linked receptor pro-
tein signalling pathway’ and ‘regulation of small GTPase mediated
signal transduction’, were found. On the other hand, cluster 3 had
an enrichment of terms related to translation, such as ‘ribosome
assembly’.

Alternative promoter usage and characteristics

of LUAD cell lines

The average CPU of non-cancerous small airway epithelial cell
was relatively high, between the top 4th and 5th LUAD cell lines
(Supplementary Fig. S6a). The relationship between the average
CPU of each cell line and the growth speed and proliferation
rate was examined, but no significant correlation was observed
(Supplementary Fig. S6b). Next, an association between the average
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Figure 3. Epigenetic regulation of canonical promoters (CPs) and non-canonical promoters (NCPs). (a) Number of CPs (top box) and NCPs (bottom box) stratified

by DNA methylation ratio. (b) Density heatmap showing the peaks of normalized read count of chromatin immunoprecipitation sequencing of PolII and histone

markers on CPs and NCPs in PC14 cells. (c) Venn diagram showing the number of CPs and NCPs with histone modifications in PC14 cells. Right side purple

circles represent promoters with any active histone marks. The circles on the left side represent the overlap of the active histone marks.

CPU and the presence of LUAD-associated driver mutations was
examined (Supplementary Fig. S6c). For the overall distribution of
all the associated genes, no clear correlation was observed. However,
the cell lines with previously reported mitogenic driver mutations
such as EGFR, KRAS and NRAS tended to have lower average CPUs.

Discussion

The diversity in the regulation of gene expression is considered an
important event in oncogenesis. In addition to epigenetic regulation,
the regulation of transcripts by non-coding RNAs or an increase in
splice variants has also attracted attention from diagnostic and ther-
apeutic perspectives. Dysregulation of alternative promoters diver-
sifies translated protein isoforms and functional non-coding RNAs,
leading to the disruption of cellular homeostasis. A previous study
reported that the alternative promoter of ERBB2 is associated with a
worse prognosis and is related to patient survival in breast cancer (6).
However, the genome-wide diversity of alternative promoter usage
in cancer biology has not yet been well studied. In this study, we
catalogued alternative promoter usage using multi-omics data from
LUAD-derived cell lines that were considered histologically close.

We classified all the observed promoters in each gene into CPs,
which are commonly and frequently used across cell lines and other
NCPs. Analysis of CpG islands, core promoter sequences and histone
modifications revealed conventional and efficient transcriptional
regulation in CPs. In contrast, NCPs were likely involved in gene

bodies and had fewer transcription initiation motifs and CpG islands.
In addition, NCPs had fewer active histone marks, and the overlap
among these marks was poor. These findings suggested that these
regions were located within genes and would be targets of ‘leaky’
expression that were not strictly transcriptionally regulated. The
relationship between changes in chromatin structure and alterna-
tive promoter usage needs to be investigated, such as overlaying
with high-resolution ATAC-seq data and whether CPU is altered by
inhibitors of chromatin-modifying enzymes.

Although leaky promoters were likely to increase with longer
gene length and higher overall gene expression, there were no dif-
ferences between clusters of genes with high or low CPU. Interest-
ingly, GO enrichment analysis suggested that the high-CPU gene
clusters were related to housekeeping genes, indicating that genes
maintaining fundamental cellular functions would tend to use strictly
regulated single promoters. These findings were consistent with
a previous study that analysed human full-length cDNAs derived
from oligo-cap cDNA libraries to identify differences in alternative
promoter usage between housekeeping and tissue-specific genes (24).
In contrast, the low-CPU gene cluster was enriched for genes related
to signalling pathways. The possibility that fluctuations in alternative
promoter usage may be associated with aberrant signalling in cancer
cells is intriguing.

Following our definition, canonical promoters were not deter-
mined in a considerable number of genes. So, we redefined canonical-
like promoters as the promoters with the highest expression for

https://academic.oup.com/jjco/article-lookup/doi/10.1093/jjco/hyac175#supplementary-data
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Figure 4. Alternative promoter usage indicated by canonical promoter usage (CPU). (a) Distribution of the CPU values in PC14 and PC7 cells. Mean CPU value of

PC7 cells was higher than that of PC14 cells. The CPU = 0 peak was the genes which had the expressed NCPs and did not have the expressed CP. (b) Hierarchical

clustering with the CPU values in 5301 genes among 26 lung adenocarcinoma cell lines. Genes were divided into five clusters. Cell lines were sorted by mean

CPU value and the number of total promoters was represented in a heat map on the top of the diagram. (c) A heatmap showing the Gene Ontology enrichment

of each gene clusters by CPU values.

each gene in more than half of the cell lines in which the gene was
expressed. As well, the possibility that NCPs contain functionally
important promoters is also considered and we selected NCPs with
the highest expression and commonly expressed NCPs. The positivity
of active histone marks for these redefined promoters was interme-
diate between CPs and NCPs. These findings suggest that some non-
canonical promoters were regulated by a canonical promoter-like
manner. More detailed classification is needed and will be challenged
in future investigation.

Since the distribution of CPUs per gene differed among cell lines.
The CPU value of non-cancerous lung epithelial cells was relatively
high. In other words, a higher proportion of promoters under con-
ventional regulation was expected in non-cancerous cells. Though,
no clear correlation between the average CPU of each cell line and
the growth speed and proliferation rate was observed, interestingly,
EGFR, KRAS and NRAS mutations, which are considered strong
mitogenic drivers, were more prevalent in the low CPU group.
Though the number of cell lines used in this study is limited and
analysis using a larger number of clinical specimens is needed, these
results may suggest that regulation of alternative promoters has some
link to the carcinogenic process of LUAD.

In this study, we classified alternative promoters in LUAD cell
lines in a genome-wide manner and demonstrated their distinct
transcriptional regulatory mechanisms. By designating a novel

indicator, CPU, we suggested different profiles of alternative
promoter usage in different cell lines. Further investigation is
warranted to elucidate the detailed molecular mechanisms using this
indicator to analyse the correlation between alternative promoter
usage and biological characteristics of individual cancers. Thus,
it is expected to be applicable to the analysis of the diversity of
carcinogenesis and treatment response.

Supplementary Material

Supplementary material can be found at Japanese Journal of Clinical
Oncology online.
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