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Abstract Realizing the full individual and population-wide
benefits of antiretroviral therapy for human immunodefic-
iency virus (HIV) infection requires an efficient mechanism
of HIV-related health service delivery. We developed a
system dynamics model of the continuum of HIV care
in Vancouver, Canada, which reflects key activities and
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decisions in the delivery of antiretroviral therapy, includ-
ing HIV testing, linkage to care, and long-term retention in
care and treatment. To measure the influence of operational
interventions on population health outcomes, we incorpo-
rated an HIV transmission component into the model. We
determined optimal resource allocations among targeted and
routine testing programs to minimize new HIV infections
over five years in Vancouver. Simulation scenarios assumed
various constraints informed by the local health policy. The
project was conducted in close collaboration with the local
health care providers, Vancouver Coastal Health Authority
and Providence Health Care.
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1 Introduction

1.1 Antiretroviral therapy and the HIV epidemic

Human immunodeficiency virus (HIV) infection is a major
contributor to disease burden [38, 50, 62] and a lead-
ing cause of death [88]. Globally, 35 million people are
living with HIV. Treatment has advanced enormously in
recent years, although a vaccine or a cure is still likely
to be years away. Combinations of drugs known as highly
active antiretroviral therapy (HAART)1 have the capacity to
dramatically alter the course of HIV disease, improving
health outcomes and extending life expectancy.

1Highly active antiretroviral therapy (HAART) and antiretroviral ther-
apy (ART) are used interchangeably in the literature.
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HIV brings on a progressive failure of the immune sys-
tem. Untreated infection generally proceeds to acquired
immunodeficiency syndrome (AIDS) within eight to twelve
years. The first stage of disease is the highly infectious
acute phase that lasts six to eight weeks, followed by a long
asymptomatic latent phase preceding the onset of AIDS.
This natural disease progression may be interrupted through
treatment with HAART, which restricts viral replication and
thereby slows immune system deterioration.

The risk of HIV transmission is influenced by viral
load—the amount of virus circulating in the bloodstream.
HAART has the potential to reduce HIV transmission by
as much as 96 % [18]. Therefore, antiretroviral treatment
also functions as a method of prevention [55]. Several stud-
ies found a decline in HIV diagnoses after improved access
to HAART, providing empirical support for a prevention
effect at the population level [19, 54, 56, 79]. These obser-
vations form the rationale for the Treatment as Prevention
(TasP) public health strategy, which aims to combat the HIV
epidemic through improved access to HAART.

1.2 Challenges in treatment access

Access to HAART is inequitable around the world.
Marginalized groups with high HIV prevalence often face
the greatest barriers to health care access. Only about 30 %
of people living with HIV in low and middle income coun-
tries receive treatment [38]. HAART coverage is inadequate
in resource-rich countries as well. For example, only 25 %
of people living with HIV in the USA have suppressed viral
load [26]. As of 2011, an estimated 65 % of HIV-positive
individuals were potentially infectious due to unsuppressed
viral load in British Columbia (BC), Canada [59]. The
World Health Organization (WHO), other international bod-
ies, and a growing number of national governments are
integrating TasP into guidelines and policies to reduce HIV
transmission, as well as HIV-related morbidity and mor-
tality. In 2014, the Joint United Nations Programme on
HIV/AIDS (UNAIDS) announced ambitious new testing
and treatment coverage targets in order to achieve viral sup-
pression for 73 % of all people living with HIV/AIDS by
the year 2020 [39].

Expanding treatment coverage poses significant opera-
tional challenges [20, 83]. Treatment transforms HIV infec-
tion into a chronic condition; therefore, HIV management
demands a shift to a chronic disease service delivery model
[24]. HAART must be taken for life to maintain viral load
suppression, improved health, and low infectiousness. This
requires an effective mechanism for the sustained delivery
of a continuum of health care services that range from HIV
testing and linkage to care, through to long-term monitoring
and retention in treatment. Numerous gaps and inefficien-
cies in the HIV care continuum have been documented

[26, 33, 59]. Implementation studies and ongoing projects
worldwide are evaluating the effectiveness of TasP strate-
gies in overcoming these obstacles to treatment delivery [30,
83]. TasP was evaluated in British Columbia during 2010–
2013 through the Seek and Treat for the Optimal Prevention
of HIV/AIDS (STOP HIV/AIDS) pilot project [36].

1.3 The role of HIV testing

Clearly, diagnosis of HIV infection is a prerequisite for
treatment. Until recently, the WHO has recommended rou-
tine voluntary HIV testing with counselling in generalized
epidemics and targeted testing to individuals presenting
with the signs and symptoms of HIV infection in concen-
trated epidemics [86]. The HIV epidemic in most countries
outside of sub-Saharan Africa is concentrated in key pop-
ulations, including men who have sex with men (MSM),
injection drug users (IDU), and female sex workers (FSW).
Targeted HIV testing is usually employed in these countries.
In sub-Saharan Africa, routine voluntary testing is recom-
mended because HIV prevalence is high in the general
population [27].

Recently updated WHO guidelines include provider-
initiated testing at health care facilities serving populations
most at risk for HIV. These guidelines also go a step fur-
ther, recommending the implementation of an appropriate
mix of routine and targeted testing delivery models based on
the local epidemiological context and available resources to
ensure equitable access to HIV testing and counselling [87].
A re-examination of the traditional dichotomized approach
to HIV testing is now necessary to develop nuanced strate-
gies that better address the need to diagnose HIV as early in
the course of the infection as possible [9, 84, 87].

Over the past decade, some jurisdictions with concen-
trated epidemics have already begun to challenge conven-
tional testing recommendations. Routine testing in non-
traditional settings was found acceptable and effective in
several studies, including in Argentina [75], Spain [40],
and the UK [67, 78]. On the other hand, a study in
the USA found only modest gains in new diagnoses—
most of these late in the course of infection—through
non-targeted HIV screening in an emergency department
[34]. Nevertheless, economic modelling studies consis-
tently find routine screening to be cost-effective in terms
of increased quality-adjusted-life-years (QALYs) [47, 48,
64, 65, 71, 89], although the impact varies by the state
of the epidemic and model assumptions. Routine testing
guidelines and policies already exist in a few countries
with concentrated epidemics. For example, the U. S. Pre-
ventive Services Task Force has recently recommended
screening for the general population, reinforcing the routine
testing policy launched by the Center for Disease Con-
trol already in 2006 [57]. Routine testing is recommended
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in the United Kingdom for any setting with HIV prevalence
above 0.2 % [35].

Targeted testing has been the default policy in Canada.
In Vancouver, British Columbia, Vancouver Coastal Health
(VCH) and Providence Health Care (PHC)—local organi-
zations that oversee HIV testing—have undertaken a pilot
project within the context of the STOP HIV/AIDS initiative
to evaluate routine HIV testing in hospitals [32]. In parallel,
we conducted a resource allocation analysis of Vancou-
ver’s HIV testing program to identify strategies to achieve
optimal TasP outcomes.

1.4 Mathematical models of HIV testing programs

Resource allocation models for HIV health services have
been under-utilized in the past [3, 11, 44, 87]. Existing
models focus mainly on prevention and treatment rather
than testing. Alistar and Brandeau provide an overview of
the literature on resource allocation models [2], in which
they describe three main methodologies: linear models,
deterministic nonlinear epidemic models, and stochastic
agent-based models. In contrast to linear models, epidemic
models capture non-linear epidemic growth and can account
for changes in epidemic outcomes due to interventions.
Stochastic agent-based models are more complex and have
been used to study mixed interventions.

Modelling analyses have largely approached HIV test-
ing from a health economics perspective to evaluate the cost
effectiveness of HIV testing programs [4, 5, 6, 31, 37, 48,
41]. These studies, which we review below, differ from our
operational approach, which seeks ways to utilize a previously
allocated budget for the best possible effect on population
health.

Cost-effectiveness models have been used to determine
optimal HIV testing frequencies for high-risk groups [31,
48]. Gray et al. [31] used a stochastic agent-based model
to assess the impact on HIV incidence of increasing test-
ing coverage and frequency for gay men in New South
Wales, Australia. They found that in the current test-
ing and treatment environment, further increases in the
testing rate would only modestly reduce HIV incidence.
However, increasing testing coverage and frequency is
likely to have a greater impact on incidence in juris-
dictions with lower testing levels. Lucas and Armbruster
[48] used a simple model without disease dynamics to
assess the cost-effectiveness of increasing testing rates
in screening high-risk groups in the United States. They
found that the testing rates recommended by the Cen-
ters for Disease Control are too conservative and that
increasing the rate of testing is cost-effective for all risk groups.

Katz et al. [41] used a nonlinear deterministic model
to determine potential changes in HIV prevalence associ-
ated with promoting home-use testing as an alternative to

testing in clinics for MSM in Seattle, USA. They found
that HIV prevalence would increase in this scenario even
with an overall greater testing rate, because the length of
the HIV infection-to-detection window period for home-
use testing is 90 days, as opposed to 15 days for clinic-
based testing. They also determined the required window-
period for home-use testing that would decrease HIV
prevalence.

The relative effectiveness of random HIV screening and
contact tracing was analyzed by Hyman et al. [37] using
two differential equation models: the differential infec-
tivity model and the staged-progression model. In the
former, newly infected individuals enter one of several
compartments with specific infectivities. This captures risk
behaviour variation in the population. The epidemic in
this model is driven by “superspreaders” who frequently
engage in high-risk behaviours. In the staged-progression
model, individuals progress through disease stages with dif-
ferent infectivities, which represent the acute, latent, and
AIDS stages of HIV infection. The differential infectivity
model captures differences in infectivity between individu-
als, while the staged-progression model captures variation
in infectivity over time for a single individual. The authors
find that contact tracing is more effective in controlling the
spread of HIV if epidemic dynamics follow the differential
infectivity model. However, random screening is more effective
if epidemic dynamics follow the staged-progression model.

Armbruster and Brandeau analyzed the cost effectiveness
of mixed contact tracing and screening strategies in a series
of papers [4–6]. They approach the problem using both
compartmental models [4, 6] and a network model [5]. Gen-
erally, they find that there is a threshold investment in testing
programs required to achieve cost-effective control of an
endemic disease. Investment in testing programs beyond
this level leads to diminishing returns and is not cost effec-
tive. The cost-effectiveness threshold depends on the mix of
contact tracing and screening programs and there is an opti-
mal mix of testing programs, which minimizes total testing
costs at threshold. The authors consider not only HIV, but
also other chronic infectious diseases, such as tuberculosis,
hepatitis B, and hepatitis C.

Additionally, operations research has been applied to
determine the optimal procedure for identifying all positive
blood samples in a routine screening program [82]. Specifi-
cally, the authors compared the efficiency of directly testing
individual samples to testing sub-groups of samples prior
to individual testing. This method to optimize screening for
infectious diseases in large populations was first used dur-
ing World War II for syphilis screening [21, 82]. Optimal
algorithms for testing large numbers of samples were also
investigated by Abolnikov and Dukhovny using queueing
theory; they found that the optimal testing approach depends
on HIV prevalence in the population [1].
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We are not aware of previous analyses that use
operations research to optimize existing testing pro-
grams by reallocating resources among testing activities.
This paper describes an operational analysis in which we
assume an a priori testing budget and seek to optimally
allocate resources between targeted and routine testing pro-
grams to achieve the best public health outcomes. Our focus
on testing resources was motivated by the priorities of the
public health stakeholders on the team, who manage Van-
couver’s HIV testing program. However, the influence of
testing on the HIV epidemic depends strongly on the entire
follow-up and treatment framework. Vancouver follows a
test and treat policy [29], in which treatment is offered at
no cost to patients, immediately after an HIV diagnosis.
Therefore, to assess the epidemic impact of testing program
interventions, we consider HIV testing in the context of the
entire continuum of HIV care. We explore the TasP objective
of preventing infections by optimizing resource allocation
to minimize new HIV infections over five and ten years.

1.5 Collaboration background

From 2010–2013, Vancouver Coastal Health and Provi-
dence Health Care were participants in the STOP HIV/
AIDS Treatment as Prevention implementation pilot project
in Vancouver. Aligned with TasP goals, VCH and PHC
sought ways to boost case finding and early HIV diagnoses.
We assembled a team of operations research and VCH/PHC

public health experts to carry out the mathematical modelling
analysis to improve the performance of Vancouver’s HIV
testing program.

Prior to the collaboration, VCH/PHC partners devel-
oped a conceptual framework for categorizing HIV testing
activities to facilitate planning and management of the test-
ing program. Similarly, the operations research participants
brought to the collaboration their previously developed con-
ceptual framework for modelling the HIV care continuum
in Vancouver. The team decided to integrate the VCH/PHC
testing framework into a continuum of HIV care model to
produce a highly customized modelling tool for answering
questions of interest to the local public health stakeholders.
The model was developed jointly, with frequent consulta-
tions and meetings of the entire team to ensure that the
relevance of the model to the practical public health ques-
tions was retained. The project concluded with several
meetings with the team dedicated to interpretation of the
findings and their relevance to programming and policy.

2 System dynamics to model the HIV care continuum

Health services in the continuum of HIV care include testing
programs; linkage of the newly diagnosed to care; clinical
assessment; monitoring for clinical indicators of treatment
initiation, adverse events and drug resistance; long-term
retention in treatment; and hospital care. Components of the

Fig. 1 A simple causal loop diagram of the continuum of HIV care
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care continuum are interdependent—a change in one has the
potential to trigger changes in others—creating a complex
system with outcomes that are often difficult to predict or
quantify. Therefore, the full impact of a single intervention
is most accurately assessed in the context of the entire sys-
tem. System dynamics modelling is well suited to capturing
complex feedback structures within systems.

The causal loop diagram in Fig. 1 is a high-level depic-
tion of relationships among elements of the HIV care
continuum. In the diagram, arrows represent positive and
negative causal influences between elements of the system.
The small, circular arrows represent two feedback loops.
For example, consider an intervention that improves the
efficiency of an HIV testing program. As people living
with HIV are diagnosed and referred to further care, the
proportion of the infected population engaged in care and
receiving antiretroviral therapy grows. Those who achieve
viral suppression and adhere to HAART have a reduced
probability of transmitting HIV. Fewer new infections even-
tually leads to a drop in new diagnoses. Figure 1 shows how
this feedback loop spans the entire continuum of HIV care.

The system dynamics model of the HIV care contin-
uum in Vancouver we describe in this paper is coupled to a
non-linear compartmental HIV transmission model. Mathe-
matically, both system dynamics models and compartmental
transmission models are systems of coupled ordinary differ-
ential equations. Therefore, the combined model is simply
a large nonlinear system of ordinary differential equations,
which relates testing strategies to HIV incidence, the num-
ber of new infections per unit time. This model is used to
find optimal allocations of testing resources, which minimize
the total number of new infections over five and ten years.

3 Developing a qualitative model

We developed a qualitative model of Vancouver’s con-
tinuum of HIV-related health services—incorporating a
detailed representation of the testing program—to guide
construction of the system dynamics model. Through inter-
views with system experts, including HIV physicians and
public health representatives, we identified key activities
and decisions, which were documented using the Unified
Modelling Language (UML) [60] activity diagram shown in
Fig. 2. UML was originally developed as a visual modelling
language for software design. The application of UML in
the context of simulation model development is discussed
by Sonnessa [76]. UML activity diagrams provide a graph-
ical depiction of system workflow. Their visually intuitive
structure facilitated our discussions with system experts,
while the precise UML syntax served as a blueprint for con-
structing the system dynamics model described in Section 4.
Below, we explain the diagram in Fig. 2, starting at the

black circle at the top left and proceeding through the public
health, community care and acute care sectors of the health
care system, which are shown as separate swim lanes.

In the Public Health swim lane, the event boxes Iden-
tify Populations at Risk, Identify Cases and Test for HIV
show HIV testing activities in a simplified form. If the test
is negative, further tests may follow. A positive test leads
to the Diagnose Infection event. Each new diagnosis trig-
gers Partner Notification, which is a public health service to
identify and offer HIV testing to partners of HIV cases. The
newly diagnosed are either linked or lost to care, as shown
by Link to Care from Public Health Sector or Patient Lost
to Follow-Up, respectively.

In the Community Care swim lane, health service
providers Identify Cases for testing and offer a Test
for HIV. A negative test result may lead to further
testing, whereas a positive result leads to the event
Diagnose Infection. Each diagnosis triggers a Report
to Public Health and partner notification. In paral-
lel to partner notification, a newly diagnosed individ-
ual may be linked to care by the test provider (Link to
Care from Community Care Sector) or through public
health. If neither avenue is successful, the patient is lost to
follow-up.

In the Acute Care swim lane, HIV testing may be admin-
istered to patients presenting with symptoms suggestive of
HIV infection, or through routine screening for HIV (Iden-
tify Cases via Diagnostics or Screen). As in community
care, all newly diagnosed infections are reported to public
health officials and are either linked to care by the test provider,
linked to care from public health, or lost to follow-up.

Patients diagnosed with HIV while in a hospital may
undergo Clinical Assessment in Acute Care. All others
linked to care undergo initial Clinical Assessment in com-
munity care, including viral load testing. Clinical assess-
ment may have various outcomes. Patients in the acute or
latent phase of infection may proceed to monitoring with
or without treatment initiation, as indicated by the Acute
and Latent events, or Acute on HAART and Latent on
HAART events, respectively. Patients with AIDS trigger the
event Diagnose AIDS in Acute Care. Finally, patients may
become disengaged from the health care system after initial
assessment in the Patient Lost to Follow-Up event.

Once in care, it is possible to initiate treatment,
achieve viral suppression, experience treatment interrup-
tions, or become non-adherent to treatment regimens, as
shown by the vertical arrows between the Latent or AIDS
events, Latent on HAART or AIDS on HAART events,
and Latent Suppressed or AIDS Suppressed events. The
events labelled Suppressed refer to patients who are virally
suppressed on HAART. The events labelled on HAART
refer to treatment failure, non-adherent cases, and those
who have not yet achieved viral suppression. After the
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Fig. 2 A Unified Modelling Language (UML) diagram of the con-
tinuum of HIV care in Vancouver. Activities take place in the public
health, community care, and acute care sectors of the health care sys-
tem, depicted as separate swim lanes. Boxes with rounded corners are
events. Purple and pink diamonds represent decision and merge points,
respectively. Vertical bars with multiple out arrows are logical or

statements for events that may occur simultaneously, whereas multi-
ple in arrows represent logical and statements, which means that all
prior events must occur before moving forward. Pink boxes represent
epidemic outcomes of the HIV care continuum. Patients may die and
leave the system at any stage

onset of AIDS, hospitalization may result for patients who
are not virologically suppressed, which is indicated by
arrows from AIDS and AIDS on HAART down to Hospita-
lization – ICU or Hospitalization –General Medical Bed.

Sustained viral suppression reduces morbidity, mortal-
ity, and risk of HIV transmission, which is indicated by the
arrows from Latent Suppressed and AIDS Suppressed to the
outcomes Sustained Suppressed Viral Load, Reduced Mor-
bidity and Mortality and HIV Incidence. Fewer new infec-
tions lead to a reduction in HIV Prevalence, which in turn
influences the yield of positive diagnoses through testing
in the three health care sectors. These population health out-
comes reflect the combined effects of interventions and are
measures of the efficiency of the HIV care continuum.

We incorporated a detailed representation of Vancouver’s
HIV testing program into the qualitative model in Fig. 2
by adapting a conceptual framework developed by VCH for
categorizing their HIV testing activities. In Vancouver, HIV
diagnoses may occur through targeted testing based on an
identified HIV risk; routinely offered voluntary testing in
high HIV-prevalence settings, for example detox centres;

or routine testing programs in acute care settings, such as
hospital departments for internal medicine, renal or cardiac
services. Expansion of the routine testing program to family
practices, primary care clinics, and other general health care
settings was under consideration during our collaboration
and has subsequently moved forward. However, the only
general health care setting included in our model is acute
care in hospitals because data were not available for other
general health care settings at the time of the analysis.

The VCH testing framework considers the key popula-
tions of men who have sex with men, injection drug users
and street-based female sex workers. In addition to reaching
key populations, routine testing in general health care set-
tings also reaches the general population. A summary of the
VCH testing framework as incorporated into the model is
given in Table 1.

4 System dynamics model

The activities and decision points in the UML activity diagram
of Fig. 2 were translated into the stocks and flows of a



340 S. Kok et al.

Table 1 HIV testing categories and subpopulations

Type of testing Subpopulation reached

Targeted Key populations

Routine in high prevalence settings Key populations

Routine in general health care settings Key populations and

(Acute care only) General population

system dynamics model. In the model, we combine the
IDU and street-based FSW into one key population, because
they are closely linked in Vancouver. A 2006 cohort study
of street-based FSW found that 60 % were engaged in
injection drug use [74]. Therefore, there is substantial cross-
transmission between these groups. Furthermore, VCH con-
firmed that the two groups have similar risks for acquiring
HIV. We denote this combined key population in the model
as IDU-FSW.

Independent system dynamics models were constructed
for each of the subpopulations MSM, IDU-FSW, and the
general population. As shown in Fig. 3, each model consists
of 17 compartments representing stocks of undiagnosed and
diagnosed groups. Susceptible, HIV-negative individuals S

may become infected and subsequently progress through
the acute E, latent L, and AIDS A phases of infection.
Diagnoses can take place during any infection phase, either
through targeted testing, routine testing in high prevalence
settings or routine testing in acute care. Following testing
and diagnosis (flows a, b, and c in Fig. 3), there is a period
of waiting to be linked to care, represented by the five com-
partments denoted by W , with subscripts indicating disease
state and method of diagnosis. Due to the short six to eight
week duration of the acute phase [14] and the delay in
engagement in care after diagnosis, we make the simplify-
ing assumption that patients can only be linked to care in
the latent or AIDS phase of infection. Once in care, patients
may be: (i) off treatment (LC and AC), (ii) receiving treat-
ment yet not have achieved viral suppression (LT and AT ),
or (iii) receiving treatment and virologically suppressed (LS

and AS). Patients may also leave care after diagnosis and
become lost to follow up (LO and AO ).

4.1 Model assumptions

The subpopulations MSM, IDU-FSW, and the general pop-
ulation are treated as independent and non-interacting in
the model. These groups are socially, and to some extent,

Fig. 3 System dynamics model of the HIV care continuum in Van-
couver. Labels for flows of new diagnoses from each stage of infection
are a: targeted testing and routine testing in high prevalence settings;
b: routine testing in acute care; c: diagnoses through symptom-based
testing. Labels for stocks are S: HIV-negative, susceptible to infec-
tion; E: undiagnosed HIV-positive in acute phase; L: undiagnosed

HIV-positive in latent phase; A: undiagnosed HIV-positive with AIDS;
W : waiting to be linked to care. Subscripts for L and A are O: out of
care; C: in care, off treatment; T : treated, not virologically suppressed;
S: treated, virologically suppressed. Death from each compartment is
not shown but taken into account. The flow “1”, is used to link different
portions of the diagram
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geographically distinct in Vancouver. The size of any bridge
groups have not been precisely estimated. A mathemati-
cal model developed to study HAART expansion in British
Columbia assumed that 5 % of the MSM population and
6.5 % of the IDU population belong to both key populations
[46]. The assumption of minimal overlap was supported
by surveillance data from the British Columbia Centre for
Excellence in HIV/AIDS (BC-CfE) [46] and expert opin-
ion of our public health partners. No equivalent estimates
for interactions of key populations with the general popu-
lation are currently available. While we might expect some
interaction between IDU-FSW and the general population
through clients of FSW in the general population, it is
important to note that the IDU-FSW key population does
not include brothel-based sex workers or sex work through
escort agencies. Based on the expert optinion of our public
health partners, HIV prevalence among these sex workers is
quite low, because they receive frequent HIV testing. Clients
of street-based sex workers are often engaged in injection
drug use and, therefore, are also members of the IDU-
FSW key population in the model. We will investigate the
potential impact of bridge groups in future analysis using a
network model.

British Columbia practices a test and treat policy for HIV
management [29]. Local guidelines recommend treatment
for everyone living with HIV, except for elite controllers
and long-term non-progressors, who are infected but have
the biological capacity to maintain low or undetectable viral
load without treatment [16]. Antiretroviral therapy is sup-
plied by the province at no cost to patients. This immediate
treatment policy in BC differs from international recom-
mendations: WHO guidelines for treatment initiation are
based on CD4 cell count, which is an indicator of the health
of the immune system. To reflect this culture of willing-
ness to treat and be treated, treatment in our model may be
initiated upon linkage to care. Although physicians usually
offer immediate treatment, there is a minority of patients
who choose to remain in care and begin treatment only when
symptoms arise. To simplify the model, we assume that
these patients will not be treated until hospitalization due to
an AIDS-related illness or the onset of AIDS.

In the model, progression from being on HAART to
being on HAART with viral suppression occurs at a rate
corresponding to the mean time required to achieve viral
suppression. In practice, individuals may move in and out
of a virologically suppressed state due to short treatment
interruptions or low adherence to the treatment regimen. We
address this by using data on the proportion of the pop-
ulation on treatment, but not virologically suppressed, to
calibrate an effective suppression level for the LS and AS

compartments. We assume that death rate and infectiousness
are not affected by treatment status until an individual has
achieved viral suppression and those who do achieve viral

suppression are assumed to have the same life expectancy
[70].

Retention rates in Vancouver are high, with approxi-
mately 88 % of people diagnosed with HIV retained in care
at the end of 2013 [15]. We assume that patients not retained
in care are those who never engaged in care after a possi-
ble initial clinical assessment. Although some individuals
not retained in care may have become disengaged from the
health care system at a later time, there is no data avail-
able on when this occurs. For individuals not in care, entry
to care may occur after the onset of AIDS, when medical
attention becomes necessary.

In practice, AIDS patients who are hospitalized may start
treatment either during their stay or upon discharge. To
capture this opportunity for initiating treatment, we model
hospitalization as a trigger for treatment initiation. Since the
average length of stay in the hospital due to an AIDS-related
illness is less than 11 days [8], we do not consider in-
hospital dynamics. Therefore, to simplify the model, there
is no hospital compartment and patients who are hospital-
ized move to either the treatment compartment AT or to the
in care off treatment compartment AC . We assume that hos-
pitalization occurs only due to AIDS-related illnesses and
virally suppressed patients are not hospitalized.

We also assume that the HIV epidemic in Vancouver is
approximately in equilibrium at the time of model initiation.
This assumption simplified calibration and validation of the
model. Validity of this approximation does not require the
state of the epidemic to be constant in recent years. Rather,
if the epidemic is evolving at a rate much slower than the
response time of the model, then we can assume adiabatic or
moving stationary evolution of the dynamical system over
recent years. This assumption is supported by data on the
number of new diagnoses, which is a commonly used, albeit
not necessarily accurate, proxy for the number of new infec-
tions. The estimated number of incident HIV infections in
British Columbia has been relatively stable, falling from
418 cases in 2007 to 368 in 2012 [56]. Furthermore, in the
VCH jurisdiction the number of new diagnoses has also
been relatively stable in recent years, decreasing from 164
in 2009 to 151 in 2013 [15]. The most significant perturba-
tion to the HIV epidemic was the introduction of HAART,
which occurred in 1996, well before the time of model
initiation.

4.2 Model equations

The time evolution of each subpopulation in the system
dynamics model is governed by the system of ordinary dif-
ferential Eqs. 1–17. Each equation corresponds to a model
compartment in Fig. 3. The superscript i denotes the sub-
populations, where i is 1 for MSM, 2 for IDU-FSW, and
3 for the general population. Therefore, the total number
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of equations is 51. A complete list of model parameters is
given in Tables 2 and 3.
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Equation 1 determines the time evolution of the suscep-
tible compartment S. The rate of flow into compartment S

is set equal to the total population death rate in order to
maintain a constant population. The natural death rate for
subpopulation i is denoted di . There is an additional HIV-
related death rate da for the AIDS phase of infection. This
additional death rate is the same for all subpopulations.

Susceptibles in each subpopulation are infected at a rate
given by a bilinear contact term that is proportional to the
number of infected individuals times the number of sus-
ceptible individuals. The proportionality constant, which is
termed the infectivity, is the probability per unit time of dis-
ease transmission from a single infected individual to a sin-
gle susceptible individual. It depends on both behavioural
and biological factors, such as the viral load of the infected
individual. Behavioural factors which influence infectivity
include condom use and needle exchange programs. The
prevalence of male circumcision in the population will also
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Table 2 Model parameters

Parameter Definition Value Reference

N1 Size of MSM population 20,000 [51]

N2 Size of IDU-FSW population 6,500 [51, 85]

N3 Size of general population 470,000 [51]

λ1
1 Number of targeted tests per month (MSM) 430 Unpublisheda

λ1
2 Number of routine tests in high prevalence settings per month (MSM) 203 Unpublisheda

λ1
3 Number of routine tests in acute care per month (MSM) λ3 · (N1/N1 + N2 + N3) —

λ2
1 Number of targeted tests per month (IDU-FSW) 400 Unpublisheda

λ2
2 Number of routine tests in high prevalence settings per month (IDU-FSW) 610 Unpublisheda

λ2
3 Number of routine tests in acute care per month (Key populations) λ3 · (N2/N1 + N2 + N3) —

λ3
1 Number of targeted tests per month (General population) 0 —

λ3
2 Number of routine tests in high prevalence settings per month (General population) 0 —

λ3
3 Number of routine tests in acute care per month (General population) λ3 · (N3/N1 + N2 + N3) —

λ3 Number of routine tests in acute care per month (Total) 681 Unpublisheda

μ Proportion of patients on treatment who achieve viral suppression 0.77 [15]

δa Infectivity multiplier in acute phase 9.2 [10]

δb Infectivity multiplier in AIDS phase 7.3 [10]

δd Infectivity multiplier after diagnoses 1 − 0.68 [49]

δv Infectivity multiplier for patients with suppressed viral load 1 − 0.96 [18]

δh Infectivity multiplier for patients in treatment μδv + (1 − μ) —

δp Infectivity multiplier for patients in hospital 0 Assumptionb

1/τa Length of acute phase 7 weeks [14]

1/τ� Length of latent phase 10 years [52]

1/τd Length of time from acute or latent diagnosis to onset of AIDS 7 years Assumptionc

d1 Natural death rate (MSM) 68 years−1 [77]

d2 Natural death rate (IDU-FSW) 58.8 years−1 [80]

d3 Natural death rate (General population) 68 years−1 [77]

da HIV-related death rate (AIDS phase) 2 years−1 [52]

1/γ Mean time to linkage to care 11 days [81]

� Proportion of patients not retained in care 0.12 [15]

k Proportion of patients diagnosed in acute care or in AIDS phase — Model dynamics

α0 Proportion of patients initiating treatment within 1 month of diagnosis 0.38 Unpublishedd

h1 Probability of non-AIDS patients initiating treatment after diagnosis out of acute care See Eq. 20 —

h2 Probability of patients initiating treatment after diagnosis in acute care or AIDS phase 0.9 · (1 − �) Unpublishede

h3 Proportion of patients initiating treatment immediately after AIDS diagnosis 0.9 Unpublishede

h4 Proportion of patients initiating treatment after discharge from hospital 0.9 Unpublishede

1/ν Mean time to viral suppression 4.1 months Unpublishedd

ζ Rate of treatment interruptions 0.0055/person-month [28]

1/ρu Mean time to diagnosis after onset of AIDS (Undiagnosed HIV infection) 6 months Assumption

ρv AIDS-related hospitalization rate 0.345/person-month [22]

The superscript i determines the subpopulations, where i is 1 for MSM, 2 for IDU-FSW and 3 for the general population
aVancouver Coastal Health data
bAssume hospitalized patients do not interact with susceptible subpopulation
cBased on stage of disease at diagnoses data from [15]
dDrug Treatment Program at the British Columbia Centre for Excellence in HIV/AIDS data
eExpert opinion, British Columbia Centre for Excellence in HIV/AIDS
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Table 3 Model calibration parameters

Parameter Definition Value

HIV infectivity

β1 MSM 3.438 × 10−7

β2 IDU-FSW 1.166 × 10−6

β3 General population 1.023 × 10−8

Modifier for probability of acute phase diagnoses

a1 MSM 9.60

a2 IDU-FSW 6.32

a3 General population 110.31

Modifier for probability of latent phase diagnoses

Targeted testing

b1
1 MSM 0.2102

b2
1 IDU-FSW 0.061963

Modifier for probability of latent phase diagnoses

Routine testing in high prevalence settings

b1
2 MSM 0.23834

b2
2 IDU-FSW 0.061445

Modifier for probability of latent phase diagnoses

Routine testing in acute care

b1
3 MSM 1.1101

b2
3 IDU-FSW 1.6153

b3
3 General population 0.7429

influence the infectivity for female to male sexual transmis-
sion. The force of infection, defined as the rate at which
susceptible individuals acquire HIV, is the infectivity times
the number of infected individuals.

The baseline infectivity βi for subpopulation i is defined
to be the infectivity when the infected individual is in the
latent stage of the disease. When the infected individual
is in the acute or AIDS stages, the infectivity is increased
through multiplying by δa or δb, respectively. Furthermore,
βi is decreased through multiplying by δd or δh when indi-
viduals are diagnosed or treated, respectively. Hospitalized
patients have their infectivity further reduced by the factor
δp. The infectivity modifiers δa , δb, and δh are the same for
all subpopulations, because they account for the impact of
changes in viral load on infectivity. The infectivity modifier
δd arises from changes in the risk behaviour of patients after
diagnosis. Although this could be different for the subpopu-
lations, there is no data available to calibrate this difference.
Therefore, we made the simplifying assumption that δd is
the same for all subpopulations. The infectivity modifier δp

for hospitalized patients is also assumed to be the same for
all subpopulations.

Following infection, individuals progress through the
acute phase E, latent phase L, and AIDS phase A of undi-
agnosed HIV, as described in Eqs. 2–4. The mean duration
of the acute phase and latent phase are 1/τa and 1/τl ,
respectively. Undiagnosed individuals in states E and L are
typically asymptomatic. Therefore, diagnosis in these com-
partments occurs at a rate proportional to the undiagnosed
prevalence in the population being tested within each sub-
population. The number of tests per unit time in each testing
stream for subpopulation i is λi

n, where n is 1 for targeted
testing, 2 for routine testing in high prevalence settings, or 3
for routine testing in acute care. Conversely, the AIDS phase
of HIV infection is typically symptomatic. Therefore, HIV
diagnosis in the AIDS phase occurs at a constant rate ρu,
which represents the average time from the onset of AIDS
to the time of seeking health care. A portion of these diag-
noses are attributed to routine testing in acute care based on
historical numbers and the remaining AIDS diagnoses are
equally attributed to targeted testing and routine testing in
high prevalence settings.

An important limitation of compartmental models is that
they assume perfect mixing of the population. In this con-
text, the probability of a test yielding a positive diagnosis
is simply the fraction of the undiagnosed population that is
HIV positive. However, this fails to capture the important
concept of testing reach, wherein HIV-positive individuals
have varying probabilities of being tested. Therefore, mod-
ifying factors for each subpopulation and testing program
were introduced. For diagnosis in the acute stage of infec-
tion and subpopulation i, the modifying factors are denoted
by ai . The modifying factors for the latent stage of infec-
tion are bi

j , for subpopulation i and testing program j . In the
model, the probability of a test being positive is the naive
compartmental model probability, given by the HIV preva-
lence in the undiagnosed segment of the subpopulation,
times the modifying factor. Data is not available for these
modifying factors and they are treated as calibration param-
eters in the model.

Equations 5 through 9 correspond to compartments WEa

through Wc, which represent patients waiting to be linked
to care, depending on the method of testing and stage of
infection at diagnosis. Compartment WEa represents indi-
viduals in the acute phase of infection, who were diagnosed
via targeted testing or routine testing in high prevalence
settings. Similarly, compartment WLa represents those in
the latent phase of infection who were diagnosed via tar-
geted testing or routine testing in high prevalence settings.
Compartments WEb and WLb represent individuals diag-
nosed in the acute phase and latent phase via routine testing
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in acute care settings, respectively. Compartment Wc rep-
resents those diagnosed via symptom-based testing during
the AIDS phase of infection. We assume that all of these
patients are hospitalized after diagnosis to treat an AIDS
defining illnesses.

Equations 10–13 describe the population dynamics of
individuals in the latent phase of HIV who have been diag-
nosed. The subpopulation of diagnosed but not retained in
care is denoted by LO ; the subpopulation in care but not on
treatment is denoted by LC ; the subpopulation on treatment
but not suppressed is denoted by LT ; and the subpopulation
with suppressed viral load is denoted by LS . Equations 14–
17 describe the dynamics of corresponding compartments
for individuals in the AIDS phase of infection.

Linkage to care occurs at rate γ . A fraction � of patients
are not retained in care and enter compartment LO or AO .
The probability of starting treatment after being linked to
care from compartments WEa or WLa is h1. The probability
of starting treatment after being linked to care from com-
partments WEb, WLb or Wc is h2. Patients may also initiate
treatment with the onset of AIDS or after an HIV-related
hospitalization, which occur with probabilities h3, and h4,
respectively. Hospitalization occurs at rate ρν . Treatment
interruptions occur at rate ζ and individuals on treatment
achieve viral suppression at rate ν. The mean time from
diagnosis in the acute or latent phase of infection to AIDS
is 1/τd .

The system of Eqs. 1–17 was solved numerically in MAT-
LAB using the function ode45, a 4th and 5th order Runge-
Kutta method with variable time step [72]. No numerical
instability problems were encountered.

4.3 Parameters and data sources

Parameter estimation was based on data from our public
health partners (VCH and PHC), the British Columbia Cen-
tre for Excellence in HIV/AIDS (BC-CfE), public health
reports [14, 15, 77, 80, 81] and published literature [10, 22,
49, 51, 52, 85]. A complete list of model parameters, values,
and references is given in Table 2.

The model parameters for the monthly rate of targeted
tests and routine tests in high prevalence settings were cal-
ibrated from the average testing rate from January 2010
through October 2012. The number λ3 of routine tests per
month in acute care were calibrated from the acute care test-
ing rate during the sustained implementation of the STOP
HIV/AIDS acute care strategy, from July 2012 through June
2013.

Data from the provincial Drug Treatment Program was
provided by the BC-CfE, which is responsible for dispens-
ing all HIV antiretroviral treatment in the province. Data
for the year 2011 were used to estimate model parameters
for the proportion of patients starting treatment within one

month of diagnosis and the mean time to achieve viral
suppression. The mean time for linkage to care, 1/γ , was
calibrated from the VCH report [81]. The proportion of
diagnosed individuals � who are not retained in care was
calibrated from a VCH 2013 public health report [15]. Hos-
pitalization rates in the model are based on British Columbia
data from the BC-CfE Drug Treatment Program and the BC
Ministry of Health administrative databases [22].

The rate at which patients start treatment in the model
was calibrated as follows. Let αi be the probability of start-
ing treatment within one month of diagnosis, where the
category of diagnosis i is 0 for all new diagnoses, 1 for
acute and latent phase diagnoses outside of acute care, and
2 for AIDS diagnoses and all diagnoses in acute care. Sim-
ilarly, let hi be the probability of starting treatment after
being linked to care, where i denotes the category of diag-
nosis as above. Compartmental models are continuous or
large population approximations to stochastic agent-based
models in which the length of time that agents spend in a
state is exponentially distributed. Therefore, it follows from
standard properties of the exponential distribution that αi is
given by

αi = Pr{individual is linked to care within 1 month} · hi

= (1 − exp(−γ · 1)) · hi , (18)

where γ is the rate per month of linkage to care. Further-
more, we have that

α0 = α1(1 − k) + α2k and h0 = h1(1 − k) + h2k , (19)

where k is the fraction of all patients linked to care after
diagnoses in acute care or in the AIDS stage of infection.

The parameter h2 is estimated from data and the frac-
tion k is determined through model dynamics. Therefore,
we solve for h1 using Eqs. 18 and 19 to obtain

h1 = α0 − h2k
(
1 − exp(−γ · 1)

)

(1 − k)
(
1 − exp(−γ · 1)

) . (20)

This expression for h1 is substituted into Eqs. 11 and 12.
The modifying factors for the infectivity in the acute and

AIDS phases of infection are not specific to Vancouver and
estimates were taken from the literature [10]. Estimates of
the average length of the latent and AIDS phase of HIV
infection were also also taken from the literature [52]. Van-
couver data on the change in infectivity after diagnosis were
not available and it was necessary to estimate this modifier
from the literature [49]. However, the change in infectiv-
ity after diagnosis results from behaviour change and this is
likely to depend on the counselling and followup programs
in the health care jurisdiction.
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4.4 Model calibration and validation

The model has five free parameters each for the MSM and
IDU-FSW populations and three free parameters for the
general population, for a total of 13 free parameters that
are determined through model calibration. These parameters
are listed in Table 3. Model calibration was done at equilib-
rium, because we have assumed in Section 4.1 that the HIV
epidemic is close to equilibrium at the time of model initiation.

There are three infectivity parameters, one for each of
the subpopulations. These infectivities are difficult to calcu-
late from data because this would require accurate estimates
of the frequency of potential transmission acts and various
factors which modify the probability of HIV transmission
per act, including condom use, prevalence of other sexu-
ally transmitted diseases, and male circumcision. Therefore,
these infectivities were treated as free parameters and were
determined through model calibration.

The modifying factors ai and bi
j for the probability of

a diagnosis in the acute phase and latent phase of infec-
tion, respectively, were introduced in Section 4.2 to account
for testing reach. There are a total of ten diagnosis modify-
ing factors. MSM and IDU-FSW each have an acute phase
modifier and one for each of the testing programs. The gen-
eral population only has two diagnosis modifiers, because
routine testing in high prevalence settings and targeted test-
ing do not apply to the general population. Data were not
available for the diagnosis modifying factors and they were
treated as free parameters, which were determined through
calibration.

Data used for model calibration and validation are listed
in Table 4. Data on the number of new diagnoses were
available from multiple sources. VCH provided the num-
ber of new diagnoses stratified by testing program for the
years 2010–2012. The British Columbia Centre for Dis-
ease Control (BCCDC) and the Drug Treatment Program
of the BC-CfE both provided data on the total number of
new diagnoses; however, they were unable to stratify new
diagnoses by testing program. The total number of new
diagnoses in 2011 reported by the BCCDC [14] is similar
to the total number reported by VCH. However, the annual
numbers of new diagnoses reported by BCCDC and VCH
are historically lower than the annual number from the Drug
Treatment Program. Data from the BC-CfE Drug Treatment
Program are considered to be more accurate [36]. The aver-
age value of the ratio φ of the total number of new diagnosis
from the Drug Treatment Program to the total number of
new diagnosis from VCH is 1.2 for the years 2007–2009,
which are the most recent three years of common data.
Data from VCH on the number of new diagnoses by testing
program were corrected by multiplying by φ = 1.2.

Vancouver Coastal Health Authority provided
surveillance data from the STOP HIV/AIDS project on the

proportion of diagnoses during the acute phase of infection,
determined through viral load testing; however they were
only able to stratify these data by testing program and not
by subpopulation. Therefore, we had to assume that within
each testing program, the proportion of diagnoses in the
acute phase of infection is the same for all subpopulations.

Table 4 lists the 19 data values that were used for model
calibration and validation. We used 18 of these data points
to calibrate the 13 free parameters, employing a nonlinear
least squares fit. Therefore, calibration is over-determined
by 5 degrees of freedom, which is sufficient for model vali-
dation. An additional data value, the percentage of the diag-
nosed population on treatment, was used for independent
out-of-sample validation. The model for each of the three
subpopulations were calibrated independently, because they
are treated as noninteracting subpopulations.

4.4.1 Calibration of the MSM and IDU-FSW populations

We fit five model parameters for each of the MSM and
IDU-FSW subpopulations. Denoting the MSM subpopula-
tion by superscript i = 1 and the IDU-FSW subpopulation
by superscript i = 2, these parameters are the HIV infec-
tivity βi , the modifier ai for the probability of a positive
diagnosis in the acute phase of infection, the modifier bi

1
for the probability of a positive diagnosis in the latent phase
of infection for targeted testing, the modifier bi

2 for rou-
tine testing in high prevalence settings, and the modifier bi

3
for routine testing in acute care. Data used for optimization
were HIV prevalence; the number of new diagnoses from
targeted testing, routine testing in high prevalence settings,
and routine testing in acute care; and the proportion of diag-
noses in the acute phase of infection for each of targeted
testing, routine testing in high prevalence settings, and rou-
tine testing in acute care. For each subpopulation i, these
data points are denoted in corresponding order by yi

j , for
j = 1, 2, . . . , 7. All data values are listed in Table 4.

We calibrated the parameters for the MSM and IDU-
FSW subpopulations by weighted nonlinear least squares
fit, defined by minimizing the objective functions

F i
(
xi , φ

)
=

7∑
j=1

(
yi
j − ỹi

j

(
xi

)

yi
j

)2

, (21)

where xi = (
βi , ai , bi

1 , bi
2 , bi

3

)
is the parameter vector

and the model output corresponding to the data point yi
j is

ỹi
j

(
xi

)
.

Minimizing the objective function in Eq. 21 is a 5-
dimensional optimization problem. Each evaluation of the
objective function requires finding the equilibrium solu-
tion to the system of Eqs. 1 through 17. High-dimensional,
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Table 4 Model calibration and validation results

Outcome Measure Model Estimate Data Value Year of Data Source

New diagnoses due to targeted testing per year

MSM 52 73a 2010–2012 Unpublishedb

IDU-FSW 12 14a 2010–2012 Unpublishedb

New diagnoses due to routine testing in high prevalence settings per year

MSM 35 35a 2010–2012 Unpublishedb

IDU-FSW 17 20a 2010–2012 Unpublishedb

New diagnoses due to routine testing in acute care per year

MSM 19 17a 2012–2013 Unpublishedb

IDU-FSW 10 7a 2012–2013 Unpublishedb

General population 10 10a 2012–2013 Unpublishedb

Proportion of diagnoses during the acute phase of infection (Targeted testing)

MSM 17 % 14 % c 2011–2013 Unpublishedb

IDU-FSW 15 % 14 % 2011–2013 Unpublishedb

Proportion of diagnoses during the acute phase of infection (Routine testing in high prevalence settings)

MSM 13 % 14 % c 2011–2013 Unpublishedb

IDU-FSW 16 % 14 % 2011–2013 Unpublishedb

Proportion of diagnoses during the acute phase of infection (Routine testing in acute care)

MSM 16 % 20 % c 2011–2013 Unpublishedb

IDU-FSW 11 % 20 % 2011–2013 Unpublishedb

General population 20 % 20 % 2011–2013 Unpublishedb

% of infected population undiagnosed

General population 24 25 2011 [66]

HIV prevalence

MSM 17.9 % 15 % (9–25 %) d 2006 [51]

IDU-FSW 19.3 % 18 % (14–24 %) 2006 [51]

General population 0.085 % 0.09 % (0.087–0.093 %) 2006 [51]

% of the diagnosed population on treatment 85 % 83 % 2013 [15]

aValues are data estimates multiplied by the correction factor φ = 1.2
bVancouver Coastal Health data from the STOP HIV/AIDS program
cThis data value applies to all of Vancouver, however was applied independently to each subpopulation
dRange of values determined by using low/high estimates of number infected with high/low estimates of population size

computationally expensive optimizations are difficult to
solve and often require a parallelized approach [73].

We reduced the dimensionality of the problem in each
subpopulation by performing a parallelized direct grid
search over the parameters ai . Therefore, each problem is
now a 4-dimensional optimization involving a fixed value

of ai . These 4-dimensional optimizations were solved using
the simulated annealing algorithm implemented in the MAT-
LAB function simulannealbnd [23, 58]. Initial values
for the simulated annealing algorithm were obtained using a
visual trial-and-error approach to model calibration. Values
of the best-fit parameters are given in Table 3.
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4.4.2 Calibration of the general population

We fit HIV infectivity β3 and the modifiers a3 and b3
3 for

the probability of a positive diagnosis in the acute phase and
latent phase of infection, respectively, for routine testing in
acute care. Data used for optimization are HIV prevalence
y3

1 , total new diagnoses per year for the general popula-
tion y3

2 , the proportion of new diagnoses occurring in the
acute phase of infection for routine testing in acute care
settings y3

3 , and the proportion of the infected population
undiagnosed y3

4 . These are listed in Table 4. Calibration
was performed using a weighted nonlinear least-squares fit,
defined by minimizing the objective function

F 3
(
x3

)
=

4∑
j=1

(
y3
j − ỹ3

j

(
x3

)

y3
j

)2

, (22)

where x3 =
(
β3 , a3 , b3

3

)
is the parameter vector and ỹ3

j

(
x3

)

is the model output corresponding to the data point y3
j .

Optimization of the objective function was carried out
using the pattern search algorithm implemented in the MAT-
LAB function patternsearch [7, 45]. Values of the
best-fit parameters are given in Table 3.

4.4.3 Calibration and validation results

The model was calibrated to the end of 2013. Calibration
and validation results are provided in Table 4. The model
gives similar output to data on the percent of diagnosed
on treatment, new diagnoses due to routine testing in high
prevalence settings, and new diagnoses due to routine test-
ing in acute care. HIV prevalence estimates for the MSM
and IDU-FSW subpopulations fall within the estimated
range of prevalence given in [51], where the upper and lower
estimates from the data were calculated using low estimates
for the number infected with high estimates on popula-
tion size, and high estimates for the number infected with
low estimates of population size, respectively. However, the
model predicts slightly lower than expected prevalence for
the general population. Part of this discrepancy could be
attributed to a possible decrease in prevalence among the
general population in recent years.

The model predicts a lower than expected number of
new diagnoses due to targeted testing among MSM. How-
ever, the data used for calibration was an average from
2010 to 2012, which is during the STOP HIV/AIDS pilot
project when testing was significantly increased. It is pos-
sible that new diagnoses have decreased since then, as we
are validating the model to the end of 2013. The model also
underestimates the proportion of new diagnoses during the
acute phase of infection for routine testing in acute care of
the IDU-FSW subpopulation. However, data on the stage of
infection at time of diagnosis is difficult to collect and this
could simply represent inaccuracy in the data.

The model is most reliable for short-term projections,
because it was validated against recent data on the percent-
age of positive test results. Testing yield may change over
time as the epidemic evolves and potentially becomes more
concentrated in groups that are hard to reach. For example,
the yield of positive tests obtained in acute care settings is
unlikely to continue at current levels. Trends in testing yield
over time are not yet known because any previous trends
were altered by the recent STOP HIV/AIDS pilot project.

5 Resource allocation analysis

5.1 Optimization scenarios

We use the system dynamics model to determine resource
allocation strategies among HIV testing programs under
various constraints that minimize the cumulative number of
new HIV infections in Vancouver over five or ten years.
We consider the four simulation scenarios listed in Table 5
for allocating resources among targeted testing, routine test-
ing in high prevalence settings and routine testing in acute
care. We evaluated both the reallocation of existing testing
resources (Scenario 1) and the distribution of resources fol-
lowing a hypothetical increase to the total testing budget of
up to 200 % (Scenarios 2, 3 and 4).

In Scenario 1, we seek the optimal distribution of existing
resources between the three testing programs. In Scenario
2, we hold existing resources fixed at the current allocation
and determine the optimal allocation of new resources only.
In Scenario 3 we remove this constraint and determine the

Table 5 Resource allocation scenarios

Scenario Budget increase Resources allocated Allocate resources between

1 None Existing resources only Targeted and routine testing programs

2 0–200 % New resources only Targeted and routine testing programs

3 0–200 % Existing resources and new resources Targeted and routine testing programs

4 0–200 % Existing resources and new resources Targeted and routine testing programs, and subpopulations
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optimal allocation of the entire testing budget. For Scenarios
1 to 3, we assume that resources allocated to a testing pro-
gram were distributed among each of the relevant subpopu-
lations in proportion to the current distribution of resources.
With this constraint, 52 % of resources for targeted testing
and 25 % of resources for routine testing in high preva-
lence settings were dedicated to testing programs for MSM
and the remaining resources to IDU-FSW. In Scenario 4,
we remove the constraint on subpopulations and determine
the optimal allocation of resources over both testing pro-
grams and subpopulations. Accordingly, resource allocation
in Scenario 4 is optimized for the following five programs:
targeted testing for MSM, targeted testing for IDU-FSW,
routine testing in high prevalence settings for MSM, rou-
tine testing in high prevalence settings for IDU-FSW, and
routine testing in acute care for all populations.

Targeted testing is typically associated with a high yield
of positive diagnoses, has a higher cost per test and reaches
a comparatively small portion of the population (low pop-
ulation reach). Routine testing is generally associated with
a lower yield of positive HIV diagnoses, is relatively inex-
pensive, and potentially has a greater population reach.
Therefore the optimization scenarios seek to balance the
cost and diagnostic yield of each type of test to minimize
HIV incidence.

All scenarios were evaluated over a five-year time hori-
zon and we also evaluated Scenario 1 over a ten-year time
horizon. The model was calibrated to year 2013 and evalu-
ated over the time periods 2014–2018 or 2014–2023, for the
ten-year horizon.

Optimization was performed for Scenarios 1 to 3 using
the patternsearch algorithm [7, 45] in MATLAB to
find the optimal strategy when allocating resources in two
dimensions. For Scenario 4, allocating resources over five
dimensions was computationally challenging. The fixed
budget constraint reduced this to a four dimensional prob-
lem, which we optimized using a parallelized layered
approach over increasingly smaller domains. We began with
the simulated annealing algorithm simulannealbnd
[23, 58] in MATLAB. The result was then refined using a
parrarelized direct grid search in two dimensions and a pat-
tern search algorithm in the remaining two dimensions. To
further refine the results, we applied MATLAB’s fmincon
function for interior point optimization [17].

5.2 HIV test costs and determining the testing budget

Precise estimates for the cost of each type of HIV test were
not available for this analysis. Furthermore, the cost of tests
within the three main categories of testing that we consid-
ered is likely to vary according to the testing venue and the
operational specifics of the testing program. However, tar-
geted tests are always more expensive because they require a

greater investment in dedicated human resources and infras-
tructure. A routine testing program makes use of existing
health care infrastructure and any additional investment
required is likely to be minimal.

For our analyses, we assumed that laboratory costs for
all three types of tests are identical. We further assumed
that the cost for a single routine test is the same regardless
in which setting it is administered. Without information on
testing costs and the total testing budget, we chose to con-
sider a range of relative costs for targeted and routine tests
from 1:1 through 9:1. This range was based on a combi-
nation of expert feedback from the public health partners
and a United Kingdom Health Protection Agency report on
pilot studies that determined the relative costs of routine and
targeted tests [35].

The assumed cost ratio combined with data on the num-
ber of HIV tests administered in each setting was used to
determine the total pool of testing resources. Therefore, the
total resource pool is defined in terms of the number of rou-
tine tests the program can administer, rather than a dollar
amount. A consequence of calculating available resources in
this manner is that the total testing budget varies depending
on the assumed cost ratio. For example, for the same distri-
bution of resources among testing programs, the total dollar
value of the budget is greater for the 9:1 than for the 5:1 cost
ratio assumption.

5.3 Scenario 1: optimal allocation of existing resources

In Scenario 1, we hold the total testing budget fixed and seek
to reallocate existing resources among testing programs.
Figure 4 compares the current distribution of resources
in Vancouver with the optimal distribution of existing
resources for the testing programs listed in Table 1, over
5 and 10 years. If the cost of a targeted and a routine test
are equal, then, as expected, all of the resources should
be allocated to targeted testing. When the cost ratio of a
targeted test to a routine test increases above a threshold,
which is approximately 1.68 for five-year incidence and
1.66 for ten-year incidence, then the optimal allocation of
testing resources changes abruptly to all resources allocated
to routine testing.

Second thresholds are reached at cost ratios of approx-
imately 5.13 and 3.09 for the five-year and ten-year time
horizons, respectively. Above these values, the optimal
resource allocation consists of a mix of routine testing in
high prevalence settings and routine testing in acute care.
For the 9:1 cost ratio, the optimal allocation of resources to
routine testing in acute care reaches 12 % and 23 % for the
five-year and ten-year time horizons, respectively.

These results show that benefits derived from the high
diagnostic yield for targeted testing quickly diminish due to
its relatively high cost. Achieving the optimal mix of testing
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Fig. 4 Scenario 1: optimal allocation of existing resources as a function of the cost ratio for a targeted test to a routine test. Each curve is generated
from a regular grid of 1,000 data points

programs would require moving resources away from tar-
geted testing and into routine testing in high prevalence
settings. For lower cost ratios, corresponding to smaller total
budgets, the optimal strategy additionally requires shifting
resources from routine testing in acute care to routine testing
in high prevalence settings.

Cumulative incidence after resource optimization for the
five and ten-year time horizons are plotted in Fig. 5. With no
optimization, the model predicts 896 and 1792 new infec-
tions over the next five and ten years, respectively. At the
point where the optimal allocation of resources switches
from all targeted testing to all routine testing, the two modes
of testing have equal impact on incidence. Therefore, opti-
mization will not reduce incidence, which is apparent in
the graphs in Fig. 5. Optimally reallocating resources would
avert between 18 to 114 cases over five years for cost ratios
in the range of 1:1 to 9:1. This equates to a 2 % to 13 %
reduction in incidence. Over ten years, between 52 and 298
new infections would be averted, which is a 3 % to a 17 %
reduction in incidence.

The qualitative results for five and ten years are simi-
lar. However, more resources should be allocated to routine
testing in acute care if a longer time frame is considered.
We also examined the impact of five-year versus ten-year
testing program optimization by assuming a 7:1 cost ratio

and computing ten-year cumulative incidence for three opti-
mizations: 5-year optimization in which the testing program
is optimized for the first five years, but allowed to run for ten
years; 5+5-year optimization in which the testing program
is optimized for the first five years and then re-optimized
again after five years has passed; and 10-year optimiza-
tion in which the testing program is initially optimized for
the entire ten years. Cumulative incidence at the end of ten
years is 1543 cases with 5-year optimization, 1542 cases
with 5+5-year optimization, and 1541 cases with 10-year
optimization. As expected, the lowest number of cases is
with 10-year optimization and the highest is with 5-year
optimization. However, the differences of only one case are
negligible, especially given potential uncertainties in pro-
jecting model parameters forward for ten years. Virtually
all of the outcome gains are achieved with testing pro-
gram optimization over a five-year time horizon. Therefore,
for the remainder of the paper we consider only five-year
optimizations.

Sensitivity analysis with respect to model parameters is
performed in the Appendix for the 5:1 cost ratio. The opti-
mal distribution of testing resources is qualitatively robust
under variation in the model parameters. The strongest
sensitivity is to the infectivity multipliers δd and δv for diag-
nosis and viral suppression, respectively. An increase in

Fig. 5 Scenario 1: cumulative
five and ten-year incidence
values for the optimal resource
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Fig. 6 Scenario 2: optimization of the entire budget without and with a budget increase (Scenario 1 and 3, respectively)

either δd or δv leads to a decrease in the threshold above
which the optimal distribution of resources is a mix of rou-
tine testing in high prevalence settings and routine testing in
acute care.

5.4 Scenario 2: optimal allocation of new resources

We increase the total testing budget and optimize the
allocation of new resources among the three testing pro-
grams, while keeping the allocation of existing resources
unchanged. Only reallocation of new resources is consid-
ered, because existing programs may be rooted in com-
mitments and public health responsibilities of the health
authorities. For this scenario, we only consider cumulative
incidence over five years.

Figure 6 shows surface plots of the optimal distribution
of resources as a function of both cost ratio and budget
increase. Cross-sections of the surface plots for five cost
ratios are shown in Fig. 7. As with Scenario 1, all test-
ing resources should be allocated to targeted testing, for the
1:1 cost ratio. The switching point at which all resources

should be allocated to routine testing in high prevalence set-
tings varies slightly with the size of the budget increase.
The switching point decreases from approximately 1.82 for
a 50 % budget increase to 1.65 for a 200 % budget increase.

The optimal allocation of testing resources is a mix
of routine testing in high prevalence settings and rou-
tine testing in acute care for sufficiently large budget
increases or sufficiently high cost ratios. This reflects
the fact that it becomes increasingly optimal to allo-
cate some resources to routine testing in acute care
as both initial and additional testing resources become
larger.

Cumulative five-year incidence is plotted as a func-
tion of increased testing resources in Fig. 8, with the new
resources either prorated according to the current distribu-
tion or optimally allocated among the three testing pro-
grams. If testing resources are increased by 200 %, then
optimally allocating the additional resources averts 29, 54,
and 73 new infections, if the cost ratio is 3:1, 5:1, and 7:1,
respectively, corresponding to a 4 % to 9 % reduction in
incidence.
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Fig. 8 Scenario 2: five-year HIV incidence as a function of optimized budget increase

5.5 Scenario 3: optimal allocation of all resources
with budget increase

We extend Scenario 2 by optimizing both new and exist-
ing testing resources. The objective function minimized is
again cumulative incidence over five years. Figure 9 shows
the optimal allocation of the entire testing budget for cost
ratios up to 9:1 and budget increases up to 200 %. Constant
cost ratio cross sections are plotted in Fig. 10. Similarly to
the previous scenarios, all resources should be allocated to
routine testing when the cost of a targeted test is below a
switching point, which lies at 1.82 with no budget increase
and 1.65 with a 200 % budget increase.

The optimal allocation of the entire testing budget
is qualitatively similar to the optimal allocation of new
resources only in Scenario 2. However in Scenario 3, rou-
tine testing should be split between high prevalence settings
and acute care at smaller cost ratios and budget increases.
In the limit of no budget increase, Scenario 3 corresponds
to Scenario 1 and allocating resources to routine testing in
acute care becomes optimal when the cost ratio exceeds

approximately 5.5:1. The amount of resources that should
be allocated to routine testing in acute care increases with
both the cost ratio and the size of the budget increase. For
a cost ratio of 9:1 and a budget increase of 200 %, approx-
imately 39 % of testing resources should be allocated to
routine testing in acute care and the balance to routine test-
ing in high prevalence settings. A 200 % budget increase
followed by the optimal allocation of the entire testing bud-
get leads to a 14 % to 23 % decrease in incidence, for cost
ratios ranging from 1:1 to 9:1, respectively.

5.6 Scenario 4: optimal allocation of new resources over
subpopulations

We relax all constraints on the reallocation of resources for
this scenario. Cumulative five-year incidence is minimized
for cost ratios up to 9:1 and budget increases up to 200 %.
In contrast to the previous scenarios, new testing resources
may now be allocated to targeted testing for MSM, targeted
testing for IDU-FSW, routine testing in high prevalence set-
tings for MSM, routine testing in high prevalence settings
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Fig. 9 Scenario 3: optimal allocation of all resources after a budget increase. Each surface is generated from regular 50 × 50 grid of data points
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Fig. 10 Scenario 3: optimal allocation of all resources after a budget increase. Each curve is generated from a regular grid of 1,000 data points

for IDU-FSW, or routine testing in acute care. Therefore,
optimization is over a four-dimensional domain, because
total resources are fixed.

Figures 11 and 12 show the optimal allocation of the
entire testing budget for cost ratios up to 9:1 and budget

increases of up to 200 %. Allocating resources to targeted
testing for MSM is not optimal for any of the cost ratios or
budget increases studied.

At a 1:1 cost ratio all resources should be split between
routine testing of the MSM population in high prevalence
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settings and targeted testing of IDU-FSW. For no budget
increase, all resources should be allocated to routine test-
ing of MSM in high prevalence settings. The percentage
of resources that should be allocated to targeted testing of
IDU-FSW increases to approximately 25 %, with a bud-
get increase of 200 %. These results reflect the fact that
routine testing in high prevalence settings for MSM has a
higher yield of positive HIV diagnoses than targeted testing,
whereas the opposite is true for IDU-FSW.

If the cost ratio is greater than a switching point between
1.5 and 2.0 (depending on the budget increase), then allocat-
ing resources to targeted testing for IDU-FSW is no longer
optimal. The optimal allocation of resources becomes a
mix of routine testing in high prevalence settings for MSM
and IDU-FSW. However, minimal incidence is achieved if
most of the resources for routine testing in high prevalence
settings are dedicated to the MSM subpopulation.

As in the other scenarios, for a large enough cost ratio or
budget increase, allocating some resources to routine test-
ing in acute care becomes optimal. For example, with a 9:1
cost ratio and a 200 % increase in budget, five-year cumula-
tive incidence is minimized at 44 % of resources allocated to
routine testing in high prevalence settings for MSM, 22 % of
resources allocated to routine testing in high prevalence set-
tings for IDU-FSW, and the balance of resources allocated
to routine testing in acute care. This scenario would avert
227 new infections, which is a 25 % reduction in incidence.

5.7 Prevention of HIV infections

We consider the above scenarios from the perspective of the
potential number of HIV infections that are averted, com-
pared to the expected number of new infections with no
intervention. Infections are averted in Scenarios 2–4 both

because the testing budget is increased and the allocation of
testing resources is optimized. The expected number of new
infections over five years with neither a budget increase nor
resource allocation is 896.

Table 6 shows the number of infections that our model
predicts would be averted by an increase in the testing bud-
get: without resource reallocation; with optimal allocation
of new resources by testing program (Scenario 2); with
optimal reallocation of all resources by testing program
(Scenario 3), and with optimal reallocation of all resources
by both testing program and subpopulation (Scenario 4).
The column with no budget increase for Scenario 3 cor-
responds to Scenario 1. For the case where the budget is
increased without optimization, new resources are added
in proportion to their assumed current distribution between
testing programs and subpopulations. Without optimization,
the number of new tests added to each testing program is
independent of the cost ratio, although the distribution of
resources does depend on the cost ratio.

The additional gain from optimizing the entire budget,
as opposed to optimizing new resources alone, is strongest
for small increases to the testing budget. As the budget
increases, the new resources account for a larger proportion
of the entire budget.

The benefits of optimal resource allocation are appar-
ent from Table 6. For cost ratios greater than 5:1, the
least constrained of the optimization strategies (Scenario 4)
averts approximately as many infections with a 50 % bud-
get increase as the most constrained optimization strategy
(Scenario 2) does with a four times greater budget increase.
Furthermore, even with no budget increase the least con-
strained optimization strategy averts 15 % more infections
than a 200 % budget increase without optimization, at a 5:1
cost ratio.
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Table 6 New HIV infections averted over five years due to the following: budget increase without optimization; optimization of new resources
only (Scenario 2), optimization of the entire budget with and without a budget increase (Scenario 3 and 1, respectively), and optimization of the
entire budget without constraints on subpopulations (Scenario 4)

No optimization Optimize new resources Optimize entire budget Optimize entire budget

(Scenario 2) (Scenario 1 & 3) (Scenario 4)

Cost Increase in testing budget Increase in testing budget Increase in testing budget Increase in testing budget

Ratio 50 % 100 % 150 % 200 % 50 % 100 % 150 % 200 % 0 % 50 % 100 % 150 % 200 % 0 % 50 % 100 % 150 % 200 %

1:1 34 61 84 102 41 73 98 117 18 54 82 104 121 46 66 92 113 130

3:1 34 61 84 102 50 85 111 131 37 74 102 124 141 88 122 146 164 178

5:1 34 61 84 102 66 107 135 156 69 108 136 156 172 117 151 173 189 201

7:1 34 61 84 102 80 125 154 175 94 133 159 178 193 139 171 192 206 216

9:1 34 61 84 102 92 140 169 189 114 152 177 194 207 156 186 205 217 227

With no budget increase or optimization, the model predicts 896 new infections over five years

6 Discussion

6.1 HIV Treatment as Prevention

The ambitious HIV Treatment as Prevention targets for
expanding antiretroviral coverage announced by UNAIDS
in 2014 are intended to end the HIV epidemic in the
foreseeable future. Achieving this goal will require a vast
investment of resources. In the current climate of fiscal con-
straints, smart investments that deliver the best results for
the least cost are going to be more important than ever.
Our analysis demonstrates at the level of one municipal
jurisdiction how utilizing operations research modelling to
optimize resource allocation within an HIV testing program
could prevent a substantial number of new infections. We
showed that optimal allocation of new testing resources can
prevent infections. However, even without increasing the
budget, HIV infections could be reduced by as much as 17 %
over five years just through optimal allocation of existing
resources.

The operations research methods we employed may be
applied at the level of a single health facility or at the
scale of an entire country. They may also be extended to
optimizing not just testing programs, but other components
of the care continuum. This implies numerous potential
applications for optimizing resource allocation to improve
both the efficiency and the effectiveness of the HIV care
continuum. However, it is important that there be a much
greater awareness of these methods and their wider appli-
cation in planning for the optimal allocation of limited HIV
testing and treatment resources [3, 11, 44, 87].

6.2 Optimizing the HIV continuum of care

The term “cascade of care”, often used in the literature [42],
evokes an image of the HIV care continuum as a failing

system, with a steady outflow of patients lost to care at
every step from HIV testing to long-term retention in care.
However, the HIV care continuum is strongly interlinked
and its components interact in complex ways. We optimized
HIV testing in the context of the entire care continuum,
with our analysis limited to changing the testing program
only. HIV treatment programs responded to the increased
inflow of diagnosed patients, but were not otherwise opti-
mized or expanded. The prevented infections we predicted
originate from improved diagnosis boosting the demand for
treatment downstream in the system and not specifically
from improved treatment delivery. Improving multiple com-
ponents of the care continuum at the same time would act
synergistically to avert more infections [26]. The optimiza-
tion we performed for HIV testing could be applied to the
collection of HIV treatment and care services involved in
linking and retaining patients on HAART.

Optimally functioning testing and treatment programs
both influence epidemic dynamics through feedback loops.
Thus, optimizing separately managed and funded programs
in parallel is likely to influence the optimal resource allo-
cation within each program. For this reason, coordination
between components of the HIV care continuum is another
area where HIV service delivery could be substantially
improved. An important question to investigate in future
research is the extent to which coordinated optimization
of the HIV care continuum could improve population health
outcomes.

System-wide optimization would likely be even more
potent than single program optimization in enhancing the
overall performance of the health care system and improv-
ing the effectiveness of TasP. This would certainly require
a radical change in how the health care budget is allo-
cated, although long-term benefits could be substantial. We
have seen in Scenario 4 that relaxing all constraints on
the flow of investment to testing activities prevents the
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greatest number of infections. Similarly, optimizing the
entire health care budget across the HIV care continuum is
likely to be the most efficient way to achieve the best public
health outcomes for the least cost. Clearly, there are many
practical constraints on system optimization that would be
difficult and perhaps inadvisable to change. However, ini-
tiating planning from a system optimization stance, and
accommodating constraints as needed, may be the best way
to improve overall system performance.

6.3 The role of routine HIV testing

Routine testing in high prevalence settings prevented the
most new HIV infections in Vancouver in our model. This is
readily explained by the combination of lower routine test-
ing costs and high HIV prevalence in the target population.
At the start of our analysis, only about 20 % or less (depend-
ing on the cost ratio assumed) of the total VCH testing
budget was dedicated to routine testing in high prevalence
settings. In sharp contrast, our analysis predicts that invest-
ing at least 80 % or more of the budget in routine testing
in high prevalence settings is optimal. Thus scaling up rou-
tine testing in these settings may be an important area for
program improvement.

A less obvious finding was that routine testing in hos-
pitals, where HIV prevalence is lower, still prevents more
infections than targeted testing. In all simulation scenar-
ios, routine testing in hospitals contributed an increasing
proportion to the optimal testing mix as resources become
more abundant, either through a sizeable budget increase
or because lower relative per test costs permit more test-
ing to be carried out. The influence of testing on epidemic
dynamics can explain this observation. Intense routine test-
ing of key populations in high prevalence settings is likely
to eventually contain the spread of HIV and further invest-
ment would produce diminishing returns. Once this occurs,
it becomes more advantageous to introduce or expand rou-
tine testing in hospitals. Routine testing becomes even more
important when the testing program is optimized over ten
years. These findings show that the optimal testing strat-
egy changes over time as the epidemic evolves in response
to the intervention. Therefore, continued monitoring, eval-
uation, reassessment and adjustment of the HIV testing
program is likely to be key to maintaining optimal program
performance over time.

Our results provide strong evidence that routine testing
would prevent HIV infections and could make a posi-
tive contribution to controlling Vancouver’s concentrated
epidemic. Targeted testing was not part of the optimal test-
ing mix in most scenarios, because of its high associated
cost. However, there are important practical reasons for
retaining targeted testing within a comprehensive testing
program. For example, contact tracing is a targeted testing

activity which involves notifying partners of newly diag-
nosed cases that may have been exposed to HIV. Contact
tracing, although expensive, is the mainstay of public health
practice and there is an ethical responsibility to counsel and
offer testing to individuals who may have been exposed
to HIV infection. Also, marginalized people, especially the
homeless or those injecting drugs in parks or on the streets,
may not seek health care and, thus, have limited access
to HIV tests through routine testing offered at health care
venues. Resource-intensive targeted outreach programs may
be the only HIV testing opportunity for this group of people.
For these reasons, targeted testing remains indispensable.
One way to ensure that testing resources are used effectively
may be to review and streamline targeted testing activi-
ties, retain essential programs, and replace inefficient or
redundant targeted programs with routine testing.

6.4 HIV testing in key affected populations

In the mid-1990’s, Vancouver experienced North Amer-
ica’s worst HIV epidemic, caused by wide-spread injection
drug use in the Downtown Eastside neighbourhood. HIV
prevalence among IDU climbed to 40 %. A comprehensive
public health response that included harm reduction mea-
sures such as the introduction of needle exchange programs,
the opening of North America’s first supervised injection
site, and frequent HIV testing, succeeded over the following
decade in containing the epidemic [63]. New infections have
dropped significantly and now about 70 % of new infections
affect MSM [15]. Testing activities shifted, but have not
caught up with the extent of the change in the epidemic. The
apportionment of testing activities among the three main
affected populations in Vancouver is currently suboptimal.

We found that by optimizing testing resource allocation
between subpopulations, the greatest impact on reducing
HIV transmission in Vancouver would be achieved by
spending 50 % or more of the entire testing budget on rou-
tine testing at health care venues with an MSM clientele,
about 30 % on the IDU-FSW subpopulation and the remain-
der on routine testing in hospitals. Even in combination with
essential targeted testing, such as contact tracing and out-
reach testing in bathhouses, prioritizing routine testing for
MSM is likely to achieve significant positive public health
outcomes.

6.5 Strengths and limitations

An important strength of our analysis is that our model
draws on multiple data sources and provides a detailed
representation of the local HIV epidemic and health care
system in Vancouver. This facilitated the analysis of locally
relevant public health questions. However, the model can
also be modified and transferred to other jurisdictions in
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British Columbia by calibrating to similar epidemics. With
more extensive changes, our approach can also be applied
to other HIV epidemics in Canada or internationally.

UML activity diagrams are beginning to find applications
as communication tools in developing system dynamics
models. The UML diagram we developed greatly facilitated
the organization and model implementation of qualitative
information provided by system experts.

Our analysis also has some limitations, in addition to
the model assumptions described in Section 4.1. We used
an ordinary differential equation model, which assumes
that subpopulations are homogeneous. Additionally, we
assumed that these subpopulations were non-interacting.
The latter assumption was necessary due to lack of data on
group interactions. Agent-based or network models could
be used to address this issue.

Sensitivity analysis performed in the Appendix shows
that the model results are sensitive to the extent that infectiv-
ity is reduced after diagnosis, because of behaviour change
by the diagnosed individual. Vancouver-specific data is not
currently available for this change in risk behaviour and it
was necessary to use data from a meta-analysis for high
risk sexual behaviour [49]. However, the reduction in risk
behaviour after diagnosis is likely to depend on both post-
diagnosis counselling and the key population. Further data
on this would improve model accuracy, as well as provide
insight into the importance of post-diagnosis counselling
and followup in the HIV care continuum.

Data on the diagnostic rate for routine testing in acute
care settings were contributed by three Vancouver hospitals
that participated in the routine testing pilot study. One of
these was Saint Paul’s Hospital, which serves Vancouver’s
Downtown Eastside where injection drug use and HIV are
most prevalent in the city. For this reason, Saint Paul’s Hos-
pital is likely to have a higher rate of HIV diagnoses than
other hospitals and health care facilities serving the gen-
eral population. As the routine testing programs expands
and new testing data become available, it will be possible to
estimate diagnostic yield from a larger sample of general
health care providers.

In this paper, we focused on optimizing resource allo-
cation to prevent new HIV infections. However, preventing
HIV-related morbidity and mortality are also high prior-
ity public health goals. We explore this topic in another
study. Furthermore, we considered only optimal outcomes
to restrict the scope of the analysis. In public health practice,
near-optimal solutions often have substantial practical rele-
vance. We will present a detailed analysis of near-optimal
results separately.

As mentioned earlier, our optimization of HIV test-
ing assumed an otherwise unchanging health care system,
despite simultaneous HIV treatment expansion that has been
taking place through the STOP HIV/AIDS pilot project in

Vancouver. More accurate predictions of the optimal mix of
testing programs could be generated in the context of the
other system changes. We leave this for future research.

6.6 Implications for policy and public health practice

The contribution that routine HIV testing could make to
reducing HIV transmission in Vancouver is a key policy-
relevant finding in this study. Routine testing guidelines in
the USA have been in place since 2006 [12]. Currently, the
US Centre for Disease Control’s High Impact Prevention
campaign emphasizes routine HIV testing for populations
with high HIV prevalence [53]. France [25] and the UK [35]
also have routine HIV testing programs in place. There are
no national guidelines in place for routine HIV testing in
Canada. British Columbia was the first province in Canada
to evaluate the potential of routine testing in acute care set-
tings and to update provincial HIV testing guidelines to
explicitly recommend routine HIV testing [61]. Our analysis
was part of the evidence considered in developing the guide-
lines, as will be discussed in an upcoming evidence review,
which will be made publicly available online by Vancouver
Coastal Health.

The results of our analysis have also been included in
discussions and initiatives to improve HIV testing practices
both in Vancouver and in the province of British Columbia.
This project introduced public health partners to the value
of optimizing the allocation of testing resources. It also
provided stakeholders with multiple options for changing
programming and policy, along with generating estimates
of the potential benefit that taking a specific course of
action may bring. For example, we showed that optimiz-
ing the allocation of all available testing resources after a
budget increase could avert 3 % to 66 % more new infec-
tions (depending on budget size and relative costs of HIV
tests) than optimizing the allocation of new resources only.
We further showed that relaxing all constraints on resource
allocation and investing additional resources from a budget
increase in testing programs for men who have sex with men
could result in 11 % to 144 % more new infections averted
than optimally allocating only new resources among only
the three testing programs. Furthermore, cost ratios for tar-
geted and routine tests vary across facilities in Vancouver
and may be modified to some extent through operational or
programmatic changes. Therefore, our results showing out-
comes for various cost ratios can help stakeholders fine-tune
testing programs at the facility level.

6.7 The modelling collaboration

Proven approaches for applying modelling results to
decision-making and collaboration case studies are of keen
interest in health care operations research. There are often
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formidable barriers to integrating operations research find-
ings into the decision-making process. The way decisions
are made is therefore an important area of inquiry in the
operations research literature [2, 43]. Lasry et al. [44]
addressed this by developing the spreadsheet model Sys-
tem for HIV/AIDS Resource Allocation (S4HARA), which
combines principles of efficient resource allocation with
non-quantifiable political, social, and ethical factors influ-
encing decision-making process.

Our analysis has successfully contributed to stakeholder
discussions about programming and policy. Even with-
out formal analysis of the collaboration, we can identify
some factors that helped the project succeed. First of all,
the project was jointly subsidized by all partners through
academic grants and stakeholder funding. This created an
atmosphere of equal participation and helped our group
engage in defining shared goals for the analysis. The pub-
lic health partners and mathematical modellers in the group
held frequent face-to-face meetings, working sessions, and
presentations. This was essential in developing avenues
for effective communication, including building a common
vocabulary and shared set of working concepts that helped
frame discussions about the research problems and solu-
tions. Finally, a crucial factor in the success of the project
was the merging of two conceptual frameworks, each con-
tributed by the two groups of partners in the collabora-
tion. The operations research team contributed a conceptual
framework for a system dynamics model of the continuum
of HIV care, and the public health participants contributed
a conceptual framework for organizing testing activities in
Vancouver. Integrating the testing framework into the con-
tinuum of care model guaranteed that model results were
meaningful and had direct and specific relevance to public
health partners in the terms that they were accustomed to
thinking about their testing program.

6.8 Conclusions

With the availability of highly effective treatment to prevent
HIV-related morbidity, mortality, and transmission, the need
for efficient testing strategies to promote early diagnosis has
become paramount in recent years [13]. We used system
dynamics modelling and optimization of resource allocation
to find strategies for improving the performance of Vancou-
ver’s HIV testing program by minimizing cumulative HIV
incidence over five or ten years.

The optimal resource allocation strategy favours rou-
tine testing in high prevalence settings, even with a modest
cost advantage over targeted testing. If the cost advantage
is greater, or if the available testing budget is larger, then
a mix of routine testing in high prevalence settings and
routine testing in hospitals is most effective in averting
new HIV infections. For the HIV epidemic in Vancouver,

the greatest impact on incidence would be achieved by
allocating approximately half of the testing resources to rou-
tine testing in high prevalence settings for MSM, with the
remainder divided between routine testing in high preva-
lence settings for IDU-FSW and routine testing in hospitals.
Expensive targeted testing programs, such as contact tracing
and outreach programs, remain essential but should be spe-
cialized, streamlined, and reserved for situations when they
are most needed to ensure the best use of Vancouver’s HIV
testing resources.

The optimal mix of testing programs will change over
time as testing, treatment, and other interventions to combat
the HIV epidemic are implemented and take effect. There-
fore, constant monitoring and evaluation of testing and other
interventions should be integrated into public health pro-
gramming to allow intervention strategies to be tailored to
changing conditions in a timely manner. This will main-
tain high performance and the most efficient use of testing
resources over the long term. Operations research can play
a crucial role in supporting this process. However, to fully
realize the potential of operations research, active engage-
ment of stakeholders in a collaborative process is essential,
and addressing barriers to the use of operations research
results for informing policy must remain a top priority.
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Appendix: Sensitivity analysis

Some model parameters are not well known or are hard to
quantify. This is particular true of parameters which involve
behavioural factors, such as reduction in risk behaviour after
diagnosis, adherence to treatment, transmission mode, and
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the interaction of individuals with the health care system.
These parameters are the infectivity multiplier δd after diag-
nosis, the infectivity multiplier δv when virally suppressed,
the mean time 1/ρu to diagnosis after onset of AIDS, the
mean time 1/τd to AIDS after diagnosis, the proportion h2

of patients initiating treatment after diagnosis in acute care
or in AIDS phase, the proportion h3 of patients initiating
treatment immediately after the onset of AIDS, and the pro-
portion h4 of patients initiating treatment after discharge
from hospital. Additionally, some parameters are strongly
associated with assumptions made to simplify the model.
These are the proportion � of individuals not retained in care
and the proportion α0 of patents initiating treatment within
one month of diagnosis.

Multivariate variance-based methods of sensitivity anal-
ysis were used to study the sensitivity of model output to
changes in parameter values. The total effect sensitivity
index of a model parameter is a measure of its contribution
to model output variation, as well as all higher order effects
due to its interactions with other parameters [69]. The inclu-
sion of higher order effects in the sensitivity index accounts
for nonlinear response of the model to variation in model
parameters. Model output is defined as a random variable Y ,
which is a function Y = f (X1, X2, . . . , Xn) of the model
parameter random variables Xi . The total effect index for
parameter Xi is defined to be

Si = E
[
V [Y | X∼i]

]

V [Y ] , (23)

where E denotes expectation, V denotes variance with
respect to all parameters, and V [Y | X∼i] is the condi-
tional variance with all parameters held fixed, except Xi .
For large numbers of parameters, calculating Si may be
computationally expensive. However, we utilize an effi-
cient Monte-Carlo-based algorithm described in [68] and
[69, Section 4.6] for computing total effect indices.

Table 7 Total effect sensitivity indices for selected model parameters

Parameter Range of parameter considered Total effect index

δd [0,1] 0.8984

δv [0,0.30] 0.2509

τd [5,10] 0.0441

� ± 15 % of base value 0.0377

α0 ± 15 % of base value 0.0376

h2 ± 15 % of base value 0.0380

h3 ± 15 % of base value 0.0374

h4 ± 15 % of base value 0.0392

ρu ± 15 % of base value 0.0369

Model output was taken to be equilibrium prevalence for
the purpose of computing the total effect sensitivity indices.
The results for the above-mentioned parameters are given in
Table 7. We find that the infectivity multipliers after diagno-
sis δd and after viral suppression δv account for 81 % of all
variance caused by the set of parameters considered. There-
fore, we focus on these two parameters to determine the
sensitivity of our results to variation in model parameters.

The optimal allocation of testing resources to minimize
five-year incidence for the 5:1 cost ration is shown as a
function of δd and δv in Fig. 13. At the base values of
the parameters, 100 % of resource should be allocated to
routine testing in high prevalence settings. If the multiplier
δv is increased from its base value of 0.04 to 0.30 and
δd is increased from its base value of 0.32 to 1.00, then
approximately 80 % of resources should be allocated to rou-
tine testing in high prevalence settings and the remaining
resources to routine testing in acute care. This demon-
strates relatively little change in our conclusions, even if the
infectivities after diagnosis and being virally suppressed in
treatment are increased to the largest reasonable values. The
main impact of the infectivity being greater than estimated
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Fig. 13 Sensitivity analysis of optimal allocation of existing resources (Scenario 1) and corresponding infections averted. The cost of one targeted
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after diagnosis or treatment is that implementing routine
testing in acute care settings becomes optimal at a lower cost
ratio.

The number of five-year averted infections at the optimal
resource allocation for each value of δd , δv is calculated
and plotted in Fig. 13. All other parameters remain set to the
calibration values in Table 3. As expected, higher values for
the infectivity multipliers lead to few averted infections. For
δd between 0 and 1 and δv between 0 and 0.30, the num-
ber of averted infections varies between 49 and 79 cases.
Therefore, the number of averted infections is sensitive to
the value of the infectivity; although, the optimal resource
allocation strategy is not strongly sensitive to reasonable
variations in the infectivity.
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di Torino. http://eco83.econ.unito.it/dottorato/michele sonnessa/
sonnessa thesis.pdf

77. Canada Statistics (2012) Health profile, Vancouver HSDA, June
2012. http://www12.statcan.gc.ca/health-sante/82-228/index.
cfm?Lang=E

78. Sullivan AK, Raben D, Reekie J, Rayment M, Mocroft A, Esser
S, Leon A, Begovac J, Brinkman K, Zangerle R, Grzeszczuk
A, Vassilenko A, Hadziosmanovic V, Krasnov M, Sönnerborg
A, Clumeck N, Gatell J, Gazzard B, d’Arminio Monforte A,
Rockstroh J, Lundgren JD (2013) Feasibility and effectiveness of
indicator condition-guided testing for HIV: results from HIDES

I (HIV indicator diseases across Europe study). PLoS ONE
8(1):e52845

79. Tanser F, Bärnighausen T, Grapsa E, Zaidi J, Newell ML
(2013) High coverage of ART associated with decline in risk of
HIV acquisition in rural KwaZulu-Natal, South Africa. Science
339(6122):966–971

80. Urban Health Research Initiative of the British Columbia
Centre for Excellence in HIV/AIDS (2009) Drug situa-
tion in Vancouver. http://www.cfenet.ubc.ca/sites/default/files/
uploads/publications/dsiv2009.pdf

81. Vancouver Coastal Health and Providence Health
Care (2012) STOP HIV/AIDS quarterly monitor-
ing report. Quarter 3, 2012. http://www.vch.ca/media/
STOP HIV AIDS Quarterly Monitoring Report.pdf

82. Wein LM, Zenios SA (1996) Pooled testing for HIV screening:
capturing the dilution effect. Oper Res 44(4):543–569

83. Williams B, Wood R, Dukay V, Delva W, Ginsburg D, Hargrove J,
Stander M, Sheneberger R, Montaner J, Welte A (2011) Treatment
as prevention: preparing the way. J Int AIDS Soc 14(Suppl 1):S6

84. Wilson D, Hoare A, Regan D, Wand H, Law M (2008)
Mathematical models to investigate recent trends in HIV
notifications among men who have sex with men in Aus-
tralia. http://kirby.unsw.edu.au/sites/default/files/hiv/attachment/
Final+NCHECR+Modelling+Report.pdf

85. Wood E, Schechter MT, Tyndall MW, Montaner JSG,
O’Shaughnessy MV, Hogg RS (2000) Antiretroviral medication
use among injection drug users: two potential futures. AIDS
14(9):1229–1235

86. World Health Organization (WHO) (2007) Guidance on provider-
initiated HIV testing and counselling in health facilities. http://
www.unicef.org/aids/files/PITCGuidance2007 Eng.pdf

87. World Health Organization (WHO) (2013) Consolidated guide-
lines on the use of antiretroviral drugs for treating and preventing
HIV infection: recommendations for a public health approach.
http://www.who.int/hiv/pub/guidelines/arv2013/download/en

88. World Health Organization (WHO) (2013) The top 10 causes
of death. Fact sheet no 310. http://www.who.int/mediacentre/
factsheets/fs310/en/index.html

89. Yazdanpanah Y, Sloan CE, Charlois-Ou C, Le Vu S,
Semaille C, Costagliola D, Pillonel J, Poullié AI, Scemama,
O, Deuffic-Burban S, Losina E, Walensky RP, Freedberg
KA, Paltiel AD (2010) Routine HIV screening in France:
clinical impact and cost-effectiveness. PLoS ONE 5
(10):e13132

http://eco83.econ.unito.it/dottorato/michele_sonnessa/sonnessa_thesis.pdf
http://eco83.econ.unito.it/dottorato/michele_sonnessa/sonnessa_thesis.pdf
http://www12.statcan.gc.ca/health-sante/82-228/index.cfm?Lang=E
http://www12.statcan.gc.ca/health-sante/82-228/index.cfm?Lang=E
http://www.cfenet.ubc.ca/sites/default/files/uploads/publications/dsiv2009.pdf
http://www.cfenet.ubc.ca/sites/default/files/uploads/publications/dsiv2009.pdf
http://www.vch.ca/media/STOP_HIV_AIDS_Quarterly_Monitoring_Report.pdf
http://www.vch.ca/media/STOP_HIV_AIDS_Quarterly_Monitoring_Report.pdf
http://kirby.unsw.edu.au/sites/default/files/hiv/attachment/Final+NCHECR+Modelling+Report.pdf
http://kirby.unsw.edu.au/sites/default/files/hiv/attachment/Final+NCHECR+Modelling+Report.pdf
http://www.unicef.org/aids/files/PITCGuidance2007_Eng.pdf
http://www.unicef.org/aids/files/PITCGuidance2007_Eng.pdf
http://www.who.int/hiv/pub/guidelines/arv2013/download/en
http://www.who.int/mediacentre/factsheets/fs310/en/index.html
http://www.who.int/mediacentre/factsheets/fs310/en/index.html

	System dynamics modelling to optimize an HIV testing program
	Abstract
	Introduction
	Antiretroviral therapy and the HIV epidemic
	Challenges in treatment access
	The role of HIV testing
	Mathematical models of HIV testing programs
	Collaboration background

	System dynamics to model the HIV care continuum
	Developing a qualitative model
	System dynamics model
	Model assumptions
	Model equations
	Parameters and data sources
	Model calibration and validation
	Calibration of the MSM and IDU-FSW populations
	Calibration of the general population
	Calibration and validation results


	Resource allocation analysis
	Optimization scenarios
	HIV test costs and determining the testing budget
	Scenario 1: optimal allocation of existing resources
	Scenario 2: optimal allocation of new resources
	Scenario 3: optimal allocation of all resources with budget increase
	Scenario 4: optimal allocation of new resources over subpopulations
	Prevention of HIV infections

	Discussion
	HIV Treatment as Prevention
	Optimizing the HIV continuum of care
	The role of routine HIV testing
	HIV testing in key affected populations
	Strengths and limitations
	Implications for policy and public health practice
	The modelling collaboration
	Conclusions

	Acknowledgments
	Appendix 1 Sensitivity analysis
	References


