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Cardiovascular diseases (CVDs) are the leading cause of morbidity andmortality

worldwide. Epidemiological studies indicate that pre-menopausal women are

more protected against the development of CVDs compared to men of the

same age. This effect is attributed to the action/effects of sex steroid hormones

on the cardiovascular system. In this context, estrogen modulates

cardiovascular function in physiological and pathological conditions, being

one of the main physiological cardioprotective agents. Here we describe the

common pathways and mechanisms by which estrogens modulate the

retrograde and anterograde communication between the nucleus and

mitochondria, highlighting the role of genomic and non-genomic pathways

mediated by estrogen receptors. Additionally, we discuss the presumable role

of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial

biogenesis and function in different CVD models and how this protein could

act as a master regulator of estrogen protective activity. Altogether, this review

focuses on estrogenic control in gene expression andmolecular pathways, how

this activity governs nucleus-mitochondria communication, and its projection

for a future generation of strategies in CVDs treatment.
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1 Introduction

Cardiovascular diseases (CVDs) are the leading cause of

morbidity and mortality worldwide (Virani et al., 2021). The

most common CVDs are stroke, heart failure, coronary artery

diseases, hypertension, heart arrhythmia, peripheral artery

disease, and atherosclerosis, which are characterized by

heart and/or blood vessel dysfunction (Virani et al., 2021).

High blood pressure, high blood glucose, smoking, obesity,

lack of exercise, alcohol consumption, and dyslipidemia are

the main risk factors for the development of CVDs and they

can be modified by gender, race and ethnicity (Hu et al., 2017;

Virani et al., 2021). Interestingly, when these risk factors are

reduced, the CVDs mortality rates decrease by 50%, as well as

the use of other preventive therapies (Ford et al., 2007).

Currently, ageing is an inevitable determinant in CVDs,

leading to decreased mitochondrial functions, excessive

production of reactive oxygen species (ROS), and altered

calcium (Ca2+) levels, which are important determinants for

the progressive damage in several physiological processes and

that increase the incidence of hypertension, atherosclerosis and

cerebrovascular accidents. Moreover, there is evidence that

shows a strong relationship between the nucleus and

mitochondria function in controlling the expression of key

genes involved in CVDs (North and Sinclair, 2012; Almeida

et al., 2017).

Several studies have reported the different rates of CVDs

among men and women (O’Neil et al., 2018).

Epidemiological studies have indicated that pre-

menopausal women are more protected against the

development of CVDs compared to men of the same age

(Mosca et al., 2011). This cardioprotective effect is attributed

to the sex hormones levels in this group (Yang and

Reckelhoff, 2011). In recent years, sufficient evidence has

supported the idea that the differences in vascular biology

between men and women are related to the cardiovascular

and metabolic action/effects of sex steroid hormones (Vitale

et al., 2010). Estrogen modulates cardiovascular physiology

and function in physiological and pathological conditions,

being one of the main physiological cardioprotective agents

(Ford et al., 2007). Thus, unveiling the action mechanism

and role of estrogen in the integration of organelle function

will help elucidate new therapeutic targets to fight CVDs and

propose that the difference in its levels may play a key role in

cardiovascular pathophysiology (Vitale et al., 2010). Sex

steroid hormones exert both direct and indirect effects on

cardiovascular functions due to their metabolic and

vasoactive properties, which are mediated by genomic and

non-genomic mechanisms (Tian and Meng, 2019). All these

actions will be discussed in detail below. Thus, this article

will review the effects of estrogen at the cardiovascular level

and its role in the coordination between mitochondria and

nucleus functioning in the context of CVDs.

2 Estrogens and cardiovascular
diseases

Estrogens exert essential effects on the cardiovascular system,

and their actions depend on factors such as dose/concentration,

target tissue, gender, estrogen receptor (ER) subtype expressed in

the tissue, and the developmental period of age where the

measures were developed (Iorga et al., 2017). Moreover, as

estrogens can be generated and secreted by different types and

tissues, their effects on proliferation and mitochondrial

bioenergetics are common between different cell types, no

matter the distance to the target tissue or if the secretion is

considered endocrine, autocrine, or paracrine (Lang, 2004; Deroo

and Korach, 2006; Bustamante-Barrientos et al., 2021). The most

common and predominant form of circulating estrogen, as well

as the primary female sex hormone, is 17 β-estradiol (E2)

(Murphy, 2011). In premenopausal women, E2 is synthesized

and secreted predominantly by the ovaries and other tissue types,

such as adipose, brain, and bone tissues, as well as in the vascular

endothelium and aortic smooth muscle cells (Bayard et al., 2007).

Postmenopausal women are at higher risk of CVDs than

premenopausal women and men of the same age. Estrogen

exerts several beneficial effects on vascular function, such as

improving the lipid profile, increasing the mitochondrial

function, reducing atherosclerosis and fibrosis, decreasing

oxidative stress, attenuating cardiac hypertrophy (CH), and

stimulating angiogenesis and vasodilatation (Mendelsohn,

2002; Murphy, 2011; Iorga et al., 2017). We will discuss most

of these effects in detail in the next subsections.

2.1 Potential estrogen effects in
cardiovascular diseases

Several studies have shown that estrogen can delay the

development of CH. Thus, in a model of ovariectomized

(OVX) mice subjected to transverse aortic constriction (TAC),

E2 prevented HC due to pressure overload, reducing CH by 31%

through decreased p38-mitogen-activated protein kinase

(MAPK) phosphorylation. Thus, E2 has a direct beneficial

effect on the heart and could therefore, reduce the prevalence

of CH in postmenopausal women (Eickels et al., 2001).

In parallel, estrogen induces the expression of endothelial

nitric oxide synthase (eNOS) and inducible nitric oxide synthase

(iNOS) in neonatal and adult cardiomyocytes both in vitro and in

vivo, and is able to modulate nitric oxide synthase (NOS)

expression and nitric oxide (NO) formation in the

myocardium, protecting it against inflammation (Nuedling

et al., 1999). The induction of neoangiogenesis through

E2 therapy depends on the activation of eNOS, since mice

without eNOS do not exhibit proangiogenic effects after

E2 therapy (Cai and Harrison, 2000; Iorga et al., 2017). NO

can induce post-translational protein modifications, such as
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protein S-nitrosylation of cysteine, which may exert anti-

inflammatory effects. Estrogen protects hearts against

ischemia/reperfusion (I/R) injury by activating the estrogen

receptor beta (ERβ), NO/NOS signaling and S-nitrosylation in

the vascular endothelia (Lin et al., 2009; Chakrabarti et al., 2010).

In a study performed in female mice with angiotensin II-induced

hypertension, E2 also showed acute and chronic vasodilation

activity, decreasing arterial hypertension through a NO and

estrogen receptor alpha (ERα)-mediated pathway (Guivarc’h

et al., 2018). Additionally, E2 can also attenuate ERβ mediated

vasoconstriction in mice through iNOS expression (Zhu et al.,

2002). Therefore, E2 plays a role in modulating vasorelaxation

(White et al., 2005), vasoconstriction inhibition (Gallagher et al.,

1999) and endothelial function through eNOS-dependent

mechanisms, contributing to the direct cardioprotective effect

of E2 in reducing CH and improving cardiac function (Iorga

et al., 2017).

Another CVD where estrogen intervenes is in pulmonary

arterial hypertension (PH). Females developed a less severe PH,

compared to males. In a study with E2 pretreatment, the severity

of PH was reduced in both female and male rats (Farhat et al.,

1993), whereas another study demonstrated that estrogen

receptors (ER) are involved in the protective effect of E2 in

PH by using specific ERα agonists in rats (Frump et al., 2015). In

contrast, other studies have indicated that ERβ is a

cardiopulmonary protective receptor whose activation elicits

vasoconstrictive, antiproliferative right ventricular hypertrophy

and antifibrotic response, suggesting that both receptors are

involved in the process, as well as the G protein-coupled

estrogen receptor (GPER), which also mediates the protective

effects of E2 against PH (Umar et al., 2011; Alencar et al., 2017).

This protective effect is mainly based on studies assaying heart

and peripheral vascular system function. Reportedly, estrogen is

a risk factor for idiopathic PH in women, granting a longer life

expectancy compared to men, due to the cardiovascular

protection, a phenomenon known as “the estrogen paradox”

(Umar et al., 2012; Lahm et al., 2014).

Throughout decades of estrogen research on CVDs, several

studies have demonstrated that endothelial ERα participates in

E2-mediated effects against atherosclerosis in low-density

lipoprotein (LDL) receptor-deficient mice (Billon-Galés et al.,

2009). In hepatocytes of female mice, ERα deletion increases

serum cholesterol levels and high-density lipoprotein (HDL)

particle size, which finally leads to an increase in

atherosclerotic lesions, indicating that hepatocyte ERα
signaling is crucial for reverse cholesterol transport and

protection against arterial lipid accumulation in female mice

models (Zhu et al., 2017). However, although there is evidence to

support the atheroprotective properties of ERβ (Billon-Galés

et al., 2009), more research is still needed to conclude whether

ERα and ERβ protect against atherosclerosis.

Finally, E2 may inhibit fibroblast proliferation and collagen

synthesis. This observation is supported by several recent studies

that have demonstrated that such effects depend mainly on ERβ
activation (Iorga et al., 2016, 2017). Additionally, GPER30 exerts

an antifibrotic role through the prevention of cardiac fibroblast

proliferation and fibrosis both in vitro and in vivo

(Mahmoodzadeh et al., 2010; Mahmoodzadeh and Dworatzek,

2019).

2.2 Estrogen receptors and cardiac cell
function

E2 exerts its effects through genomic and non-genomic

pathways to regulate cardiovascular function (Marino et al.,

2006). These effects are mediated by the classical ER: ERα,
ERβ and the GPER (Figure 1); this last one has been

thoroughly investigated in the last decades (Murphy, 2011).

GPER localizes to the endoplasmic reticulum and plasma

membrane to exert rapid non-genomic events (Revankar et al.,

2005). Several studies have shown that GPER activation protects

the heart from pressure overload, ischemia, high salt diet,

estrogen loss and aging in both male and female animal

models. As described in mice, GPER knockout (KO) impairs

glucose homeostasis and blood pressure and also produces

alterations in cardiac structure and an altered systolic and

diastolic function in both sexes (Sharma and Prossnitz, 2016).

In the same line, analysis of cardiomyocyte DNA microarrays

from GPER KO and wild type (WT) mice showed differential

gene expression profiles affecting multiple transcriptional

networks between male and female mice and in turn, revealed

that mitochondrial genes were differentially enriched in male and

female mice after cardiomyocyte-specific GPER deletion (Wang

et al., 2017). In this study, the dimensions of the left ventricle in

GPER KO mice were greater in males (Wang et al., 2017). These

sex differences in male and female GPER KOmice may be due to

the endogenous estrogen effects in females. In this regard,

multiple functions of estrogens have been described in

mitochondria, such as: attenuating ROS production,

modulating mitochondrial ATP levels, and stabilizing the

mitochondrial structural assembly (Rattanasopa et al., 2015;

Wang et al., 2017). However, and despite that in recent years,

several studies have specifically evaluated the effects of GPER in

cardiac cells and described cardioprotection in different

scenarios, its exact mechanism of action has not been

determined yet.

Interestingly, a study that evaluated mice lacking the ERα
showed that there were no significant cardiac differences with the

WT, whereas the ERβ KO mice responded to the TAC with

significant alterations in functional cardiac parameters compared

to the WT. Thus, it seems that Erβ activation has a role in

attenuating the hypertrophic response to pressure overload in

women, which is significantly better than in their male

counterparts (Skavdahl et al., 2005; Lin et al., 2009). This

finding also correlates with ERβ localization in the
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mitochondria of cardiomyocytes in both humans and rodents,

also suggesting a role for this receptor in mitochondrial integrity

(Yang et al., 2004).

2.3 The complex relationship between
estrogen and mitochondria

Recent studies have suggested that mitochondria are a target

of estrogens cardioprotective signaling (Figure 2), which is

confirmed by the fact that many of the proposed estrogen

signaling pathways converge on this organelle (Murphy, 2004;

Klinge, 2017). Mitochondrial metabolism inevitably produces

ROS, which in turn trigger mitochondrial dysfunction.

E2 produces a decrease of ROS and increases antioxidant

proteins, including superoxide dismutase 1 (SOD1),

superoxide dismutase 2 (SOD2) and glutathione peroxidase

(GPx) (Lynch et al., 2020). On the other hand, in the

vasculature, GPER modulates ROS by decreasing NADPH

oxidase 4 (NOX4), prostaglandin-endoperoxide synthase 2

(PTGS2) and GPx1, and by increasing antioxidant proteins,

such as sirtuin 3 (SIRT3) and glutathione S-transferase Kappa

1 (GSTK1) (Lynch et al., 2020). Therefore, as described in several

studies, females show an antioxidant difference with males that is

established at the mitochondrial level, thus producing less free

radicals and in turn, less cardiac oxidative damage (Borras et al.,

2007; Colom et al., 2007). In this regard, some studies have

reported that female mitochondria generate half the amount of

hydrogen peroxide than males and have higher levels of

mitochondrial reduced glutathione. However, the mechanism

through which E2 performs these effects and the participation of

other organelles has not yet been fully elucidated (Iorga et al.,

2017). Another interesting feature that could be related to ROS

modulation is the participation of E2 in the regulation of Ca2+

levels. Two studies have shown that OVX females exhibit

mitochondria with a decreased Ca2+ retention capacity, which

is restored after E2 administration, thus improving the normal

processes of cardiac contraction and relaxation (Kravtsov et al.,

2007; Wei et al., 2007; Jiao et al., 2020). Similarly, several studies

have shown that regulating mitochondrial homeostasis is crucial

to mitigating the disruption of different pathological processes in

CVDs. Certain proteins, such as peroxisome proliferator-

FIGURE 1
Genomic and non-genomic estrogen signaling. In the genomic pathway, estrogens diffuse across the plasma membrane and bind to estrogen
receptors (ER). ERs heterodimerize and translocate to the nucleus, inducing the transcription of estrogen response element-associated genes. The
non-genomic pathway is characterized by a rapid response, which modulates cellular enzyme activity and thus, directly affects cell function. In this
pathway, estrogens bind to ERs associated to caveolae, mainly modulating endothelial nitric oxide synthase (eNOS) activity. They also can bind
to G-protein coupled estrogen receptor (GPER) located at the plasma membrane or endoplasmic reticulum, to regulate signaling through eNOS,
protein kinase A (PKA), and extracellular signal-regulated kinases (ERK), also known as mitogen-activated protein kinases (MAPK).
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activated receptor coactivator 1 alpha (PGC-1α), the AMP-

activated protein kinase (AMPK) and several genes involved

in the electron transport chain (ETC) are regulated by sex

hormones and more specifically, by estrogen signaling (Lynch

et al., 2020).

The activation of GPER and ERα preserves mitochondrial

function and decreases mitophagy after I/R injury through a

mitochondrial permeability transition pore (MPTP)-dependent

signaling and mitogen-activated protein kinase (MEK)/

extracellular-signal regulated kinase (ERK) activation, thus

decreasing apoptosis through the preservation of

mitochondrial integrity (Feng et al., 2017; Mahmoodzadeh

and Dworatzek, 2019). In this regard, estrogen administration

in in vivo models before I/R, reduces infarct size and improves

contractility (Luo et al., 2016; Mahmoodzadeh and Dworatzek,

2019). The possible mechanisms through which E2 generates

these protective effects have been reviewed recently (Iorga et al.,

2017). As reported, female rats are more protected against I/R

injury than males in in vivo and isolated perfused heart models.

This phenomenon could depend on mitochondria and two

mitochondrial proteins. First, mitochondria from both females

and E2-treated males showed increased levels of protein kinase C

(PKC)-dependent phosphorylation of aldehyde dehydrogenase 2

(ALDH2), resulting in increased ALDH activity. Activation of

ALDH protects the heart against ischemic damage (Chen et al.,

2008). Another study also linked increased p-ALHD2 with

decreased ROS production. Cardiomyocytes from female rats

produced less ROS than cardiomyocytes frommale rats following

I/R injury (Lagranha et al., 2010). This same study demonstrated

an increase in the phosphorylation of alpha-ketoglutarate

dehydrogenase (αKGDH) in female hearts (Lagranha et al.,

2010). αKGDH is a significant source of ROS generation,

particularly under a high NADH/NAD ratio, which occurs

during I/R. Permeabilized female mitochondria supplemented

with αKGDH substrates and NADH decrease ROS production,

suggesting that increased phosphorylation of αKGDH might

FIGURE 2
Estrogenic effects on mitochondrial function. Estrogens or activation of estrogenic pathways activate the transcription of mitochondrial genes
and the replication of mitochondrial DNA thanks to the stimulation of the transcription factors TFAM, TFB1M, and TFB2M. This activity correlates with
enhanced mitochondrial biogenesis and regulation of mitochondrial dynamics. Estrogens mostly favor mitochondrial fusion by increasing the
expression of FIS1, MFN1/2, and OPA1. Interestingly, the rise of DRP1 activity is directly related to mitochondrial fragmentation. Estrogenic
activity directly impacts ATP synthesis through oxidative phosphorylation (OXPHOS), coupled to the mitochondrial respiratory chain. This effect is
related to an increase in complex V alpha subunit, subunit 1, mitochondrial respiration, and downregulation of uncoupling protein 3 (UCP3). Estrogen
also preserves mitochondrial activity and integrity through the stimulation of the antioxidant enzymes glutathione peroxidase (GPx) and superoxide
dismutase (SOD), leading to a decrease in reactive oxygen species (ROS).
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reduce ROS generation (Lagranha et al., 2010). In accordance, in

OVX rats, E2 deprivation decreased contents and function of

respiratory complex I and IV, αKGDH, and succinate

dehydrogenase; this impairment was concomitant with a

decreased ROS-detoxifying enzyme activity and increased

lipoperoxidation (Pavón et al., 2017). Several mechanisms of

how E2 increases cardioprotection in I/R by improving

mitochondrial function and increasing antioxidant activity

have been recently reviewed by (Iorga et al., 2017).

Lastly, and in terms of senescence, E2 protects against cellular

senescence and mitochondrial dysfunction in human umbilical

vein cells, vascular smooth muscle cells (VSMC), and female

C57BL/6 mice (Sasaki et al., 2021). E2 increases mitochondrial

autophagy by maintaining mitochondrial function and slowing

down senescence, but, interestingly, E2 does not modulate the

microtubule-associated protein 1 light chain 3 (LC3); as well as

the autophagy related-7 (ATG7) deficiency does not suppress

mitochondrial autophagy in E2-treated cells. Moreover, the E2-

mediated effects on mitochondrial autophagy were abolished by

the KO of either Unc-51 like kinase-1 (Ulk1) or Ras-related

protein Rab-9 (Rab9). These results suggested that E2-mediated

mitochondrial autophagy is associated with Rab9-dependent

alternative autophagy. Additionally, E2 upregulates sirtuin 1

(SIRT1) and activates the liver kinase B1 (LKB1), AMPK, and

Ulk1, indicating that the effect of E2 on the induction of Rab9-

dependent alternative autophagy is mediated by the SIRT1/

LKB1/AMPK/Ulk1 pathway. Compared with the sham-

operated mice, OVX mice showed reduced mitochondrial

autophagy and accelerated mitochondrial dysfunction and

arterial senescence, all of which were successfully rescued by

E2 (Sasaki et al., 2021).

3 Mitochondria and their role in
cardiovascular diseases

The mitochondrion is a double membrane,

semiautonomous, dynamic, and densely packed organelle with

a bacterial ancestry and endosymbiotic origin (Vafai and

Mootha, 2012). It sustains cell life by converting carbonated

skeletons to ATP, CO2, and H2O, generating oxidative stress and

heat. Mitochondria are the principal energy source in different

tissues and allow proper functionality of organs, especially the

ones with high energy demands, such as the heart (Sun and

Finkel, 2015). Mitochondria produce ATP via oxidative

phosphorylation (OXPHOS), the citric cycle and β-oxidation
and are the primary cellular ROS source, participating in the

handling of intracellular Ca+2 levels and integrating survival and

death signals. This organelle adapts to nutritional, oxygen and

ROS conditions to maintain its function and integrity (Vásquez-

Trincado et al., 2016). Interestingly, they represent 30% of the

heart in volume. In cardiomyocytes, the main functional unit of

the heart, mitochondria have two different populations,

interfibrillar and subsarcolemmal, which are electrically

coupled to each other in electrical conduction networks (Sun

and Finkel, 2015).

Mitochondrial function is regulated by the formation of

networks via the interaction of the outer (OMM) and inner

(IMM) mitochondrial membranes of two mitochondrion, which

can enhance the energetic activity of the mitochondrial network.

This network then can transfer signaling molecules, lipids and

Ca+2 within the endoplasmic reticulum at sites called

mitochondria-associated membranes or MAMs (López-

Crisosto et al., 2015). Mitochondrial network dynamics

depend in a delicate balance between fission and fusion. In

this regard, whereas mitochondrial fusion is regulated by the

dynamin-related GTPases, termed Mitofusins (MFN1 and

MFN2) and the optical atrophy protein 1 (OPA1),

mitochondrial fission is regulated by mitochondrial fission

1 protein (FIS1) and the dynamin-related protein1 (DRP1).

Perturbations of this complex interplay, mainly by an increase

in fission, are closely related to CVD phenotypes (Amchenkova

et al., 1988; Vásquez-Trincado et al., 2016), mainly due to

increased ROS and limited energy production, which leads to

apoptotic signaling and thus, mitochondrial and cardiac tissue

damage (Forte et al., 2021).

In brief, mitochondrial quality maintenance is fundamental

to preserving the energetic mitochondrial network and cellular

homeostasis. Mitochondrial biogenesis, mitophagy, fusion,

fission, and protein turnover are the processes behind this

complex control, all of which will be briefly discussed below.

3.1 Mitochondrial dynamics in
cardiovascular diseases

Mitophagy, andmitochondrial fusion/fission are coordinated

to maintain energetic and cellular homeostasis. Dysregulation of

any of these functions results in the accumulation of damaged

mitochondria. Excessive mitochondrial fission and mitophagy

compromise cell metabolic capacity (Twig and Shirihai, 2011;

Morales et al., 2020). In general terms, mitochondrial fusion is

linked to the removal of damaged mitochondria via

autophagosomes, while fission is a requirement for

mitochondrial DNA (mtDNA) distribution during cell

division (Ong and Hausenloy, 2010; Vásquez-Trincado et al.,

2016; Morales et al., 2020).

3.1.1 Mitochondrial fusion
Mitochondrial fusion requires the coordinated action of the

MFN1 and MFN2 proteins to interact with their homologues,

which are located in the outer mitochondrial membrane of

adjacent organelles, fusing them through a mechanism that

requires GTP (Ong and Hausenloy, 2010; Vásquez-Trincado

et al., 2016). On the other side, the OPA1 protein is involved

in the fusion of the inner mitochondrial membranes and the
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remodeling of mitochondrial cristae. Moreover, OPA1 preserves

the integrity and function of the internal mitochondrial

membrane in response to energy damage or mitochondrial

stress. In this regard, OPA1 activity depends on specific

proteolytic cleavages mediated by m-AAA Protease 1

(OMA1), YME1 like 1 ATPase (YME1L1), presenilins-

associated rhomboid-like protein (PARL), paraplegin and

AFG3-like AAA ATPase 1 (AFG3L1) proteases (Morales

et al., 2020; Forte et al., 2021).

A decrease in the functionality of the fusion machinery leads

to a reduction in mitochondrial fusion, which is directly linked to

CVDs. More specifically, a lower MFN2 expression is directly

related to hypertension, CH and a failing heart (Vásquez-

Trincado et al., 2016; Forte et al., 2021). MFN2 is also

downregulated in rat models of myocardial infarction (MI),

transverse aortic banding and spontaneously hypertensive rats

(Fang et al., 2007). In adult cardiomyocytes, elimination of

MFN1 and MFN2 induce mitochondrial dysfunction and

fragmentation, leading to CH and cardiomyopathy (Chen

et al., 2011; Song et al., 2015b). Specifically, among the two,

MFN2 seems to be more important for mitochondrial

homeostasis, since its elimination leads to early CH and

cardiomyopathy (Papanicolaou et al., 2011; Chen and Dorn,

2013). On the other side, upregulation of MFN2 attenuates

the CH induced by angiotensin II (Yu et al., 2011), and

complementarily; in diabetes and obesity, which are

conditions correlated with an increased risk of CVDs,

MFN2 expression is downregulated, and can be recovered

with weight loss and exercise (Bach et al., 2005; Cartoni et al.,

2005).

On the other hand, specific deletion of OPA1 in mice did

not greatly affect cardiac homeostasis but induced the opening

of mitochondrial permeability transition pores (mPTP)

(Piquereau et al., 2012). In fact, cardiac deletion of

YME1L1 resulted in OMA1 activation, promoting

mitochondrial fragmentation, which leads to dilated

cardiomyopathy and heart failure (Wai et al., 2015).

OPA1 activity largely depends on post-translational

modifications (PTM); more specifically, its hyperacetylation

is associated with reduced activity. In fact, cardiac stress

triggers OPA1 hyperacetylation, which can be reversed by

the deacetylase SIRT3, which binds directly to OPA1,

promoting mitochondrial function and a substantial

connection of the dynamic network (Samant et al., 2014).

3.1.2 The fission mechanism
Mitochondrial fission requires the translocation of

DRP1 to the mitochondria from the cytosol, promoted by

PTMs, including dephosphorylation and sumoylation. This

translocation is facilitated by FIS1, the mitochondrial division

protein 1 (MDV1), and the mitochondrial fission factor

(MFF), which are found in the OMM and act as adapter

proteins. The interaction of DRP1 with these adapter

proteins allows its oligomerization in a GTP-dependent

process, generating a constriction ring that physically

separates the mitochondrial membranes (Vásquez-Trincado

et al., 2016; Morales et al., 2020; Forte et al., 2021).

DRP1 has emerged as a critical target in mitochondrial

fission and cardiac research. Its cardiac-specific elimination in

mice leads to a prematurely lethal phenotype associated with

defective mitochondrial respiration and incomplete and

flawed elimination of ubiquitinated proteins (Kageyama

et al., 2014; Ishihara et al., 2015). In adult cardiomyocytes,

mitophagy overactivation via Parkin upregulation induced by

DRP1 elimination develops lethal cardiomyopathy (Song

et al., 2015a). DRP1 inhibition protects from cardiac I/R

injury and MI by decreasing mitochondrial metabolism and

fragmentation (Ong et al., 2010; Disatnik et al., 2013; Zepeda

et al., 2014). DRP1 deletion in adult mice leads to death in

13 weeks due to dilated cardiomyopathy with damaged

mitochondria, decreased autophagy and increased cell

death (Ikeda et al., 2014; Song et al., 2015b). In the case of

MFF, its ablation in mouse models is lethal within 3 months.

These mice show impaired mitochondrial function and

increased mitophagy, although this lethal phenotype is

reversed by a concomitant MFN1 deletion (Chen H. et al.,

2015).

3.1.3 Mitophagy
Mitophagy is the process of eliminating irreversibly

damaged or dysfunctional mitochondria, targeting them to

the autophagosome (Song et al., 2014). This process requires a

coordinated upregulation of the mitochondrial fission

machinery to precisely removing damaged mitochondrial

portions. Mitophagy can occur through two mechanisms:

parkin-dependent or parkin-independent (Morales et al.,

2020; Forte et al., 2021). Parkin-mediated mitophagy

involves PTEN-induced putative kinase 1 (PINK1)

mediated-recruitment of Parkin to the OMM.

PINK1 phosphorylates MFN2; then Parkin recognizes

MFN2 and localizes to the mitochondria, which is an

essential signal for mitophagy to start (Chen and Dorn,

2013; Xiong et al., 2019). Later, Parkin also ubiquitinates

different proteins to promote their interaction with the rest

of the mitophagy adaptors. One of these proteins is p62/

sequestosome 1, which interacts with LC3, leading to the

entrapment of the mitochondrion in the autophagosome

and its subsequent digestion in the autolysosomes, after the

fusion between the lysosome and the autophagosome (Forte

et al., 2021). On the other hand, Parkin-independent

mechanisms have also been described in some specific

physiological and pathological contexts that are out of the

scope of this review, wherein PINK1 phosphorylates Ub-

targeted mitochondrial proteins, triggering the recruitment

of the autophagy adaptors nuclear dot protein 52 kDa

(NDP52) and optineurin (Lazarou et al., 2015; Morales
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et al., 2020). Therefore, ubiquitination of OMM proteins is a

signal that is recognized by autophagy receptors, promoting

the delivery of mitochondria to autophagosomal vesicles

(Morales et al., 2020).

As described above, DRP1 deletion induces a decrease in

mitophagy and a lethal phenotype. However, if this cardiac

deletion is combined with a concomitant Parkin deletion, it

results in improved cardiac remodeling and increased survival

(Song et al., 2015a). In the same line, cardiomyopathy is induced

by the removal of MFN2, preventing Parkin recruitment into

damaged mitochondria (Chen and Dorn, 2013). Interestingly,

Parkin-deficient mice show normal myocardial function (Kubli

et al., 2013), despite having disorganized mitochondrial networks

and significantly smaller mitochondria in their hearts. However,

these Parkin−/− mice were much more sensitive to MI than WT

mice. After the infarction, these mice showed reduced survival

and developed larger infarcts than WT mice (Kubli et al., 2013).

Similarly, Parkin knockout Drosophila flies exhibit an

accumulation of enlarged, hollow donut mitochondria with

dilated cardiomyopathy (Bhandari et al., 2014). These

mitochondria were depolarized despite presenting an

enhanced ROS production. However, suppressing

cardiomyocyte mitochondrial fusion in this model completely

prevented cardiomyopathy and corrected mitochondrial

dysfunction without normalizing mitochondrial

dysmorphology. These results demonstrate a central role of

mitochondrial fusion in cardiomyopathy provoked by

impaired mitophagy (Bhandari et al., 2014).

Pink1−/− mice develop left ventricular dysfunction and

evidence pathological CH as early as 2 months of age.

Moreover, Pink1−/− mice have greater levels of oxidative

stress and impaired mitochondrial function (Billia et al.,

2011). In cardiomyocytes, loss of PINK1 increases the

heart’s vulnerability to I/R injury due to mitochondrial

dysfunction (Siddall et al., 2013). Contrastingly,

PINK1 overexpression stabilizes ETC activity, increases

ATP production and mitochondrial membrane potential,

and inhibits mitochondrial ROS (mROS) production,

therefore ameliorating I/R mitochondrial dysfunction in

H9c2 cardiomyocytes (Li Y. et al., 2017). These results

closely correlate with the altered mitochondrial dynamics

and increased susceptibility to MI damage observed in the

Parkin-deficient models (Kubli et al., 2013), suggesting that

both PINK1 and Parkin play a critical role in adapting to stress

in the myocardium by promoting the removal of damaged

mitochondria.

Altogether, fusion, fission, and mitophagy are closely

related phenomena. Fission produces a mitochondrial

population characterized by a decreased size and

mitochondrial membrane potential and lower

OPA1 levels, thus contributing to segregating defective

mitochondria and favoring the detection and removal by

mitophagy (Vásquez-Trincado et al., 2016; Forte et al., 2021).

3.2 E2 and the regulation of mitochondrial
energetics

Mitochondrial function is also regulated at mtDNA

transcriptional level, although mtDNA is restricted to just

13 respiratory subunits. In this regard, nuclear genes play a

dominant role in the biosynthesis of the respiratory chain and

mtDNA expression. Thus, mitochondrial transcription is

directed by the nuclear-encoded mitochondrial transcription

factors (TFs) such as mitochondrial transcription factor A

(TFAM; also termed mtTFA), mitochondrial transcription

factor B1 (TFB1M) and B2 (TFB2M), and mitochondrial

transcription termination factor (mTERF) (Figure 2).

Additionally, environmental signals can induce the expression

of the PGC-1 family coactivators (PGC-1α, PGC-1β, and a more

distant relative the PGC-1-related coactivator [PRC]), which

target specific TFs, like the nuclear respiratory factor 1

(NRF1), and 2α (NRF2α; also known as GA binding protein

α: GABPα and commonly confused with NRF2) and the

estrogen-related receptor (ERR) alpha (Figure 3) to regulate

the expression of respiratory genes (Scarpulla, 2006; Svaguša

et al., 2020; Del Campo et al., 2021).

Proteins involved in mitochondrial ETC complexes and

OXPHOS are regulated by estrogens, mainly due to their

genomic effects via the ERs. NRF1 expression, a gene with a

functional estrogen response element (ERE) in its promoter

region, TFAM, cytochrome c oxidase subunit 1, and NADH

dehydrogenase subunit I are induced by estrogen in MCF-7 and

H1797 cells (Mattingly et al., 2008; Azuma and Inoue, 2012).

Estrogen also suppresses the expression of uncoupling protein 3

(UCP3). UCP3 is an OXPHOS uncoupling protein located in the

mitochondrial inner membrane. UCP proteins uncouple ATP

synthesis from the generation of the mitochondrial membrane

potential in the mitochondrial respiratory chain. Therefore, ERα
activity suppresses proton leakage and energy dissipation. This

ERα-mediated phenomenon was confirmed by overexpressing a

constitutively active receptor and treatment with ICI182,780, an

ER antagonist (Nagai et al., 2016). In MCF-7 cells, estrogen

increases ATP content and cyclooxygenase (COX) activity. The

recently described cytochrome c oxidase subunit 7a-related

polypeptide (COX7RP) functioned as a mitochondrial

respiratory chain supercomplex assembly-promoting factor

and was described in the context of breast and endometrial

cancer. COX7RP possesses a functional ERE, and its

knockdown attenuates estrogenic proliferative activity

(Watanabe et al., 1998; Ikeda et al., 2019).

Additionally, E2 upregulates the transcription of MFN1,

MFN2, OPA1, and DRP1 (Figure 2), induces mitochondrial

fusion, and increases ATP levels; it also decreases the

expression of FIS1 and OXPHOS complex proteins via ERs in

MCF-7 cells (Sastre-Serra et al., 2012). Specifically, E2-activation

of ERα in MCF-7 cells is required for DRP1 phosphorylation at

serine (Ser) 616 via a non-genomic mechanism, increasing
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mitochondrial fission (Oo et al., 2018). A recent review by Lynch

et al., delves into the role of estrogens in mitochondrial dynamics

and biogenesis, mitochondrial-reticulum cross-communication

and induction of cell death in CVDs (Lynch et al., 2020).

4 Estrogens as second messengers
connecting the nucleus and
mitochondria: Beyond the genomic
and non-genomic pathway

Estrogens can bind to nuclear and membrane ERs, with

different affinities for each receptor and strengths of the

associated response (Watson et al., 2007). These receptors are

widely expressed and differ in their structural and domain

composition, which gives differential functions to the ERα and

the Erβ (Pfaffl et al., 2001; Yaşar et al., 2017). In this regard,

estrogens participate in different physiological functions, such as

bone density, cholesterol mobilization, sexual tissues, and breast

development, sexual maturation, control of inflammation, and

brain function (Liang and Shang, 2013). Estrogens are also

relevant in different pathological conditions. For example, in

the cardiac system, a significant number of CVDs are caused by a

loss of estrogenic protection, whereas pulmonary arterial

hypertension is characterized by elevated plasma estrogen

levels in patients (Iorga et al., 2017; Lynch et al., 2020).

Historically, the cellular action of estrogens occurs through

genomic (classical) and non-genomic (non-classical) pathways

(Figure 1). These pathways and the recent advances in their

description will be discussed in the following sections of this

review, specifically in the context of CVDs.

4.1 The genomic pathway

In the genomic pathway, estrogen diffuses across the plasma

membrane, binding to the ERα or ERβ (Figure 1). These

receptors are TFs and share a high DNA-binding domain

(95%) and ligand-binding domain homology (55%). In the

human and animal cardiovascular systems, these receptors are

widely expressed and have demonstrated functional activity in

cardiomyocytes, endothelial cells, and vascular smooth muscle

cells (Ueda et al., 2019). ERs are mainly localized in the cytoplasm

and nucleus of the cell; however, a fraction of ERs are localized in

the plasma membrane. When the ligands bind to ERs, they

change their structural conformation, releasing heat shock

FIGURE 3
Integrated mechanisms of estrogenic and ERs activity in nucleus-mitochondria communication. PGC-1α activity, a master regulator of
mitochondrial biogenesis and activity, can be regulated by SIRT1-mediated deacetylation, mtUPR associated SIRT3-mediated deacetylation via Erα/
ERR, or directly through phosphorylation by adenosin monophosphate activated-kinase (AMPK). Interestingly, ERα can bind to the catalytic subunit
alpha of AMPK, regulating its activity in a non-genomic manner. PGC-1α, NRF1/2α, and PPARα transcription is mediated by ERs in the nucleus.
Once translated to functional proteins, these transcription factors directly regulate mitochondria, stimulating the expression of proteins, enzymes
and transporters involved in mitochondrial replication and transcription, such as TFAM, OXPHOS, ETC, TCA cycle, and FAO.
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“chaperone” proteins (HSP) 90, 70, and 56, dimerizing and

exposing binding sites for the direct interaction with

chromatin at estrogen response elements (EREs). They

translocate to the nucleus and, in conjunction with several

other cofactors, regulate gene expression (Acconcia and

Kumar, 2006). ERs have two transcriptional activation

functions (AFs), as coactivators or co-repressors. AF-1, a

ligand-independent region within the N-terminal region, can

be phosphorylated. In particular, the ERα Ser 118, and ERβ Ser

106 and Ser 124 are critical for ligand-independent receptor

activation and become phosphorylated in response to ERK/

MAPK signaling. On the other hand, the C-terminal AF-2

allows ligand-dependent transcriptional activation by E2

(Acconcia and Kumar, 2006).

Based on gene expression activation analysis, ERs do not bind

directly to DNA, and 35% of estrogen-regulated genes do not

have EREs, thus describing an “indirect genomic pathway” or “a

transcriptional cross-talk” (Fuentes and Silveyra, 2019). E2-ER

complexes can modify transcription without binding directly to

DNA by modulating other TFs through direct protein-protein

interactions (Mendelsohn and Karas, 2005; Fuentes and Silveyra,

2019). Thus, estrogen indirect signaling influences activation or

suppression of target gene expression. Specific proteins and

mechanisms of this “indirect genomic pathway” have been

reviewed recently by (Fuentes and Silveyra, 2019).

4.2 The non-genomic pathway

In the non-genomic pathway, estrogens can bind to ERα,
ERβ, or the G-protein-coupled estrogen receptor (GPER)

(Figure 1). This pathway modulates intracellular enzyme

signaling, exerting a faster response than the genomic

pathway via membrane-bound ERs. These effects are

refractory to transcription and translation inhibitors (Puglisi

et al., 2019).

The ER non-genomic signaling begins at ERs located at

caveolae, activating kinases or phosphatases able to modulate

cell physiology, e.g., the rapid stimulation of eNOS activity by the

phosphoinositide 3-kinase (PI3K) pathwaymediated by the ERα-
caveolin 1 complex (Mineo and Shaul, 2012). Moreover, ERs in

caveolae activate MAPK, PI3K and protein kinase B (AKT)

kinases, enhancing Ser-1177 phosphorylation of eNOS.

However, this is a complex process. First, ERα binds the

p85 regulatory subunit of PI3K (Simoncini et al., 2000), while

PI3K activation requires the proto-oncogene tyrosine-protein

kinase Src (c-Src), whose SH2 domain interacts with the

phosphorylated tyrosine residue (Tyr)-537 of ERα (Haynes

et al., 2003; Li et al., 2007). Further, Gαi is also involved in

this ERα complex at the caveolae, and the physical association of

ERα with Gαi is required for eNOS activation (Wyckoff et al.,

2001; Kumar et al., 2007; Ueda et al., 2019). On the other hand,

striatin serves as a scaffold protein of the ERα complex at

caveolae (Figure 1) (Ueda et al., 2019). In E2 responsive cells,

the E2-ER interaction usually activates several signal

transduction pathways, such as: Phospholipase C (PLC)/PKC;

p38/MAPK; janus kinase and signal transducer and activator of

transcription (JAK/STAT); p21-activated kinase 1 (PAK1);

casein kinase I-g2 and sphingosine kinase (Acconcia and

Marino, 2011).

As a classical G protein-coupled receptor (GPCR), the GPER

can be activated by estrogen, displaying a non-genomic activity.

The GPER activates the Gα subunit, and then adenylate cyclase

increases 3′,5′-cyclic adenosine monophosphate (cAMP), which

activates protein kinase A (PKA), with a concomitant

deactivation of Raf-1 (Ciullo et al., 2001; Thomas et al., 2005).

GPER also stimulates intracellular Ca2+ mobilization (Revankar

et al., 2005; Xu et al., 2019), which is blocked by inhibition of the

epidermal growth factor receptor (EGFR), thus suggesting the

transactivation of the EGFR via GPER. In this pathway, the

activation of GPER dissociates the G-βγ complex and activates

the downstream Src-related tyrosine kinase family, as well as

phosphorylation of a Shc adapter protein, enhancing matrix

metalloproteinases (MMPs) expression (Filardo et al., 2000;

Filardo, 2002; Revankar et al., 2005). Further in this pathway,

GPER leads to the indirect activation by transactivation of

MAPK/PI3K and AKT. Moreover, it also activates the c-Myc,

c-fos, and c-jun TFs (McCubrey et al., 2007; Fujiwara et al., 2012;

Xu et al., 2019).

4.3 Genomic and non-genomic activity in
the heart

In cardiomyocytes, estrogen regulates the expression of

connexin 43, β-myosin heavy chain, and several ion channels

(Grohé et al., 1997; Stice et al., 2011). Moreover, estrogens also

regulate calcineurin abundance and the activity of cGMP-

dependent protein kinase (PKG) and AKT, and together with

different microRNAs (miRNAs), inhibit cell hypertrophy and

confer protection against apoptosis, where both nuclear and non-

nuclear pathways might be involved (Patten et al., 2004;

Donaldson et al., 2009; Sasaki et al., 2014; Wang et al., 2015).

Furthermore, AKT activation by E2 inhibits apoptosis and

activates the antioxidant machinery (Patten et al., 2004;

Donaldson et al., 2009; Wang et al., 2015; Ueda et al., 2019).

In the heart, and in terms of its mitogenic activity,

E2 enhances the proliferation of cardiac fibroblasts via MAPK

(Wang et al., 2015; Ueda et al., 2019). In parallel, estrogenic

activity stimulates endothelial cell proliferation andmigration via

ERα, Gi, and eNOS activation (Chambliss et al., 2010; Ueda et al.,

2019). However, among 60 genes reported to be regulated by

E2 in endothelial cells via ERα, 10 were also regulated by E2 in a

KRR mutant model (a mice harboring a triple point mutation in

ERα, preventing the binding with striatin), thus lacking non-

nuclear signaling pathways (Lu et al., 2016). In contrast, E2 exerts
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anti-proliferative effects in VSMC. The primary mechanism

involves the inhibition growth-related kinases

phosphorylation, such as ERK1/2, c Jun N-terminal kinase

(JNK), p38, and AKT, which are phosphorylated and activated

by growth factor stimulation (Li et al., 2011; Ortmann et al.,

2011). This effect is maintained via the expression and activity of

several phosphatases, including mitogen-activated protein kinase

phosphatase 1 (MKP1), Src homology region 2 domain-

containing phosphatase 1 (SHP1), phosphatase and TENsin

homolog (PTEN) and protein phosphatase 2 (PP2), which

prevents the activation-mediated by phosphorylation of the

growth-related kinases (Takeda-Matsubara et al., 2002; Lu

et al., 2003; Yang et al., 2011). It seems that these anti-

proliferative effects of E2 in VSMC occur via nuclear-

independent ER signaling (Ueda et al., 2019), as evaluated in

a transgenic mouse model (Disrupting Peptide Mouse; DPM), in

which non-nuclear ER-mediated signaling was abolished by

overexpressing a peptide representing the amino acids

176–253 of ERα, thus preventing ER from forming a signaling

complex with striatin. In this mouse model, estrogen inhibition

of VSMC proliferation was lost (Moens et al., 2012; Ueda et al.,

2019).

Also, in terms of the vasculature, data suggest that GPER

activation is protective in the vascular injury of ERα and ERβ KO
mice, and that it also regulates mitochondrial function and

biogenesis in OVX mice (Sbert-Roig et al., 2016; Bowling

et al., 2018; Mahmoodzadeh and Dworatzek, 2019; Lynch

et al., 2020). Moreover, GPER activation produces

vasorelaxation through a rise of cAMP, in a dual mechanism

involving endothelial NO release and inhibition of prostanoid

vasoconstrictor activity (Meyer et al., 2012; Silva et al., 2021). In

VSMC, GPER seems to be involved in extracellular signal-

regulated kinase (ERK) phosphorylation (Haas et al., 2009)

and activation of c-Fos by either the ERK or PI3K pathways

(Blesson and Sahlin, 2012; Silva et al., 2021). Finally, GPER also

exerts anti-inflammatory effects by downregulating interleukin

(IL)-6 expression in macrophages through the suppression of

nuclear factor-κB (NF-κB) activity (Okamoto et al., 2017; Silva

et al., 2021).

4.4 Estrogens, transcriptional activity, and
mitochondrial pathways

ERs upregulate the expression of PGC-1α and its

downstream targets (Hsieh et al., 2005; Witt et al., 2008;

Wickramasekera and Das, 2014). PGC-1α, defined as the

master regulator of energy substrate metabolism and

mitochondrial biogenesis, belongs to a small family of

transcriptional coactivators that includes the closely related

PGC-1β and a more distant relative, the PGC-1-related

coactivator or PRC (Scarpulla, 2011). The effects of PGC-1a

on promoting mitochondrial biogenesis and function are

mediated through direct interaction and coactivation of

several transcription factors, such as PPARs, ERRs, YY1, and

NRF-1/2α, among others (Huss and Kelly, 2005; Scarpulla, 2011;

Scarpulla et al., 2012). This explains how PGC-1α signaling is

diversified into several metabolic pathways. Therefore, PGC-1α
primary target genes depend on which transcription factors

PGC-1α interacts with. For example, some PPARs, namely

PPARδ, stimulate the expression of enzymes involved in

mitochondrial fatty acid oxidation (FAO), especially in tissues

and organs that require a high energy input, like the heart and

skeletal muscle (Cheng et al., 2004; Wang et al., 2004; Burkart

et al., 2007). ERRα, β, and γ also regulate nuclear genes encoding
mitochondrial proteins involved in the tricarboxylic acid (TCA)

cycle, OXPHOS, and FAO (Eichner and Giguère, 2011; Sakamoto

et al., 2020). ERRα and ERRγ are highly expressed in the heart

(Bookout et al., 2006). ERRα knockout downregulates the

expression of mitochondrial oxidative metabolism genes.

Contrastingly, this downregulation appears to have a

compensatory mechanism via upregulation of ERRγ and

PGC-1α. ERRα null hearts show a more severe heart failure

and dilated hypertrophy, suggesting the requirement of ERRα in

the energetic stress response (Dufour et al., 2007; Huss et al.,

2007; Sakamoto et al., 2020). Deletion of the ERRγ also has a

similar effect in reprogramming the ERRα and PGC-1α, but most

of the ERRγ-null mice die within the first 7 days of life due to

heart failure (Dufour et al., 2007; Fan and Evans, 2015). Hence,

PGC-1α interaction with these nuclear receptors promotes

mitochondrial oxidative metabolism.

ERRs are estrogen-related receptors lacking the ligand union

domain. This suggests a probable estrogenic effect by direct

interaction of estrogens and ERs in the transcription of ERRs

and related genes, or non-genomic signaling via PTM in ERRs. In

addition, PGC-1α promotes mitochondrial biogenesis by

stimulating the expression of NRF-1/2; and directly

coactivating NRF-1 on its target gene promoters (Wu et al.,

1999; Gleyzer et al., 2005). Interestingly, E2 also promotes the

expression of NRFs through ERα; this is mediated by the

presence of an ERE in the promoter of the NRFs, which can

bind both ERα and ERβ in an estrogen-dependent manner

(Mattingly et al., 2008). This creates a feed-forward loop in

which ER regulates PGC-1α expression, and finally, both

elements regulate NRF-1 transcription, as shown in Figure 3.

NRF-1/2α controls the expression of all cytochrome c nuclear

genes, the vast majority of nuclear-encoded subunits involved in

OXPHOS, and proteins implicated in mtDNA replication,

transcription, and translation (Kelly and Scarpulla, 2004; Dhar

et al., 2008). NRF-1/2α promotes the expression of three key

factors involved in mtDNA transcription, TFAM, TFB1M, and

TFB2M. Once synthesized, this specific machinery translocates

into the mitochondria to promote the expression of

mitochondrial genes, such as the ETC proteins (Virbasius and

Scarpulla, 1994; Kelly and Scarpulla, 2004; Gleyzer et al., 2005).

Hence, NRF1/2α promotes mitochondrial biosynthesis by
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inducing TFAM, resulting in both mtRNA transcription and

mtDNA replication.

Of note, several of the previously mentioned effectors have

been described in the cardiovascular system in both physiological

and pathological contexts. Therefore, it is not surprising that

specific cardiac deletions within the PCG-1α signaling pathway

can impair cardiovascular functions, and that overexpression of

its components can ameliorate phenotypic dysfunction. For

example, a cardiac-specific KO (cKO) of PGC-1α/β in

postnatal mice caused mitochondrial fragmentation and

altered expression of mitochondrial fusion (MFN1, OPA1)

and fission (DRP1, FIS1) genes, and a decrease in

mitochondrial respiration, finally culminating in lethality due

to cardiomyopathy (Martin et al., 2014). A longevity study

showed that cardiac-specific PGC-1α overexpression enhanced

mitochondrial function and cardiac contractility, but accelerated

cardiac aging and significantly shortened life span in 12-month-

old mice because of increased mitochondrial damage and ROS

(Zhu et al., 2019). Thus, maintaining adequate levels of PGC-1α
is crucial for sustaining cardiometabolic homeostasis (Russell

et al., 2004).

On the opposite side, PGC-1α also participates in

pathological remodeling and dysfunction, as recently reviewed

by (Oka et al., 2020). Most in vivo models of heart failure have

shown downregulation of PGC-1α (Arany et al., 2006; Watanabe

et al., 2014; Piquereau et al., 2017). However, some studies have

not found significant changes (Oka et al., 2011; Bhat et al., 2019).

Furthermore, global PGC-1α KO mice have also shown

discrepancies. One study showed a normal cardiac and

mitochondrial function at baseline conditions, with a mild

increase in fetal gene markers (ANP, BNP, and β-MHC), and

a pronounced decrease in TFAM (Arany et al., 2005, 2006). In

comparison, another study indicated that mice exhibited systolic

dysfunction at baseline (Leone et al., 2005). Despite this

phenotypic disparity in both studies, PGC-1α KO mice

exhibited a worsened response to hemodynamic stress

(increased heart weight and decreased cardiac function),

compared to control mice (Leone et al., 2005; Arany et al.,

2006). More consistent results were reported with a cKO of

PGC-1α achieved by three independent groups who

implemented the same methodology to achieve the cKO. Two

of them observed a mild cardiac dysfunction in cKO-PGC-1α
mice at baseline conditions (Bhat et al., 2019; Kärkkäinen et al.,

2019), and the other reported normal cardiac function, with

females showing dilated cardiomyopathy (Patten et al., 2012).

Hence, the cKO, rather than the general PGC-1α KO mice, is

more prone to develop heart failure. More importantly, studies

aimed at sustaining PGC-1α expression levels during pressure

overload failed to report protective effects on contractile function

(Karamanlidis et al., 2014; Pereira et al., 2014; Zhu et al., 2019).

Despite the unsolved questions regarding the beneficial role

of PGC-1α, the modulation of TFAM has shown interesting

results in heart failure models. For example, transgenic

overexpression of TFAM protects mice from left ventricular

remodeling and ameliorates the decrease in mtDNA copy

number and mitochondrial complex enzyme activities (ETC

complexes I, III, and IV) in post-MI hearts (Ikeuchi et al.,

2005). More importantly, transgenic mice exhibited a higher

survival rate (4 weeks) than WT, accompanied by decreased left

ventricular dilatation, cardiomyocyte hypertrophy/apoptosis,

and interstitial fibrosis (Ikeuchi et al., 2005). Of note, these

results are consistent with similar studies of independent

groups (Ikeda et al., 2015; Kunkel et al., 2019). In addition,

TFAM overexpression in overload-induced heart failure models

ameliorates mitochondrial ROS, decreases the expression and

activity of the metalloproteinases MMP-2 and MMP9, and

upregulates the expression of sarcoplasmic/endoplasmic

reticulum Ca2+ ATPase 2a (SERCA2a) (Kunkel et al., 2019).

Consistently, embryonic cKO of TFAM induced mitochondrial

dysfunction and ROS production, ultimately resulting in lethal

cardiomyopathy.

NRF-1 has been less described in the CVDs studies than

TFAM or PGC-1α. NRF-1 expression initially increases during

adaptative CH, and decreases in hypertrophic cardiomyopathy

models and end-stage heart failure (Pisano et al., 2016; Nomura

et al., 2018). NRF-1 regulates miR-4458 transcription in

H9c2 myocytes. Interestingly, angiotensin II increases miR-

4458 (and NRF-1), which in turn promotes TFAM expression

by liberating TFAMmRNA from tristetraprolin (TTP), a protein

involved in post-transcriptional mRNA degradation through

poly-A tail removal (Yang et al., 2020). Thus, NRF-1

promotes TFAM expression through a novel mechanism

mediated by miR-4458. Additionally, antioxidant

supplementation with alpha-lipoic acid (α-LA) protects mice

from TAC-induced left ventricular hypertrophy through the

upregulation of FUN14 domain-containing protein 1

(FUNDC1), a mitochondrial membrane receptor that

promotes mitophagy. Moreover, α-LA also restores

ALDH2 activity, which in turn regulates FUNDC1 increase

through NRF1-dependent transcription (Li et al., 2020).

In summary, we have reviewed the transcriptional cascades

induced by estrogen through genomic pathways dependent on

the ER. There are plenty of unanswered questions regarding

PGC-1α-NRF1/2 α -TFAM axis function and regulation in failing

hearts. Therefore, more studies are needed to define whether

PGC-1α or TFAM are suitable therapeutic targets in CVDs.

4.5 Epigenetic regulation and the nucleus
to mitochondria communication

Epigenetic regulation is also crucial in estrogen-dependent

communication between the nucleus and mitochondria (Kim

et al., 2016; Garbern and Lee, 2021). Bromodomain-containing

protein 4 (BRD4), the most studied Bromodomain and

Extraterminal (BET) family member of acetyl-lysine reader
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proteins, has become a highly pursued target in cancer and

several CVDs (Lovén et al., 2013; Gillette and Hill, 2015; Lin

and Du, 2020). Briefly, BRD4 recognizes and directly associates

with acetylated chromatin at active enhancers and promoters,

where it cooperates with a wide variety of TFs, to promote

transcription elongation (Itzen et al., 2014; Stratton et al.,

2016). Furthermore, as described in Figure 4, BRD4 can act as

a coregulator of ER-dependent gene transcription (Nagarajan

et al., 2014; Murakami et al., 2019). JQ1 (a pan-BET inhibitor)

simultaneously inhibits E2-dependent gene transcription and

proliferation in ER-positive breast cancer cells (Nagarajan

et al., 2014).

Initial reports in the CVDs context suggested that BET family

proteins and BRD4 were crucial participants in pathological

cardiac remodeling and heart failure pathogenesis. For

example, JQ1 was found to block agonist-induced in vitro CH,

and to prevent the development of pressure overload-induced

CH in mice (Anand et al., 2013; Spiltoir et al., 2013). Moreover,

siRNA knockdown of BRD4 in neonatal cardiomyocytes

inhibited the hypertrophic response triggered by

phenylephrine and diminished the expression of fetal gene

program markers (ANP and BNP) associated with CH

(Anand et al., 2013). In addition to these effects, recent

transcriptomics studies suggest that inhibition of BET proteins

FIGURE 4
Proposed estrogenic bridge in nucleus-mitochondria communication. Estrogenic activity enhances mitochondrial biogenesis and function via
upregulation of the TCA cycle, FAO, and ETC/OXPHOS activity. It also stimulates mitochondrial replication and transcription. This activity, mainly due
to the function of transcription factors such as PGC1-α, NRF1/2 α, TFAM, and PPARs is initiated in the nucleus through the activation of different
transcriptional complexes induced by estrogens, thereby highlighting the proposed role of BRD4 associated with GATA4, ERs or ERRs. This
novel proposed mechanism would directly govern all the beneficial effects of estrogens in mitochondria. Question marks indicate effects to be yet
demonstrated, and approval marks indicate what has been described.
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involves non-cardiomyocyte pathways, such as fibrosis and

inflammation (Zhu et al., 2020). As reported,

JQ1 administration in mice subjected to TAC or MI blocks

the transactivation of a pathological gene program

preferentially enriched in NF-κB and transforming growth

factor β (TGF-β) signaling networks (Duan et al., 2017;

Antolic et al., 2020). Similar results were reported in vitro

with human-induced pluripotent stem cell-derived-

cardiomyocytes (iPSC-CM) treated with endothelin-1 (Duan

et al., 2017). Increased levels of BRD4 were also reported in a

mouse model of high-fat diet (HFD)-induced diabetic

cardiomyopathy. Upregulation of BRD4 blocked mitophagy

through PINK1/Parkin modulation, resulting in the

accumulation of damaged mitochondria and subsequent

impairment of cardiac structure and function. BDR4 represses

PINK1 transcription, and further administration of JQ1 restored

mitochondrial function via PINK1/Parkin-mediated mitophagy

(Mu et al., 2020).

Despite the confirmed therapeutic potential, the precise

mechanism through which BET protein inhibition ameliorates

cardiac remodeling has yet to be defined. Moreover, the

mentioned paradigm of BET inhibition has been the subject

of debate since most recent studies have suggested that, unlike

pharmacological inhibition, genetic loss of BRD4 triggers a

progressive decline in cardiac function (Kim et al., 2020;

Padmanabhan et al., 2020). As demonstrated by two

independent groups (Kim et al., 2020; Padmanabhan et al.,

2020), cardiomyocyte-specific deletion of BRD4 in developing

and adult hearts leads to acute deterioration of cardiac contractile

function and culminates in lethality. Consistently, transcriptional

profiling by RNA sequencing (RNA-Seq) experiments revealed

that mitochondrial bioenergetics gene signature was

preferentially downregulated in Brd4-cKO, characterized by a

decrease of the master regulators PGC-1α/β and disrupted

mitochondria show mild swelling (Padmanabhan et al., 2020).

Functional analysis of isolated mitochondria exhibited a

reduction of the electron transport chain and TCA cycle

activity and protein expression (Kim et al., 2020). Moreover,

genome-wide occupancy data showed that BRD4 preferentially

co-localizes with GATA binding protein 4 (GATA4, a widely

described TF in CVDs) at regulatory regions controlling

mitochondrial bioenergetics. Furthermore, BRD4 and

GATA4 directly interact in cardiomyocytes, forming an

endogenous complex capable of commanding mitochondrial

homeostasis through PGC-1α expression (Padmanabhan et al.,

2020).

Considering the detrimental outcomes of BRD4 KO on

cardiac function, JQ1 protective effects could be exerted by

other BET members expressed in the heart, such as

bromodomain-containing proteins 2 (BRD2), and 3 (BRD3).

However, genetic approaches to delete those proteins are needed

to assign specific roles. Finally, whether ERs are involved in

BRD4-dependent mitochondrial cardiac homeostasis is yet to be

defined. As mentioned before, ER-E2 can induce PGC-1α
expression; in addition, BRD4 participates in ER-dependent

transcription and further regulates PGC-1α through GATA4

(Nagarajan et al., 2014; Padmanabhan et al., 2020). These

facts raise several questions about whether ERs control

mitochondrial function through BRD4 coactivation, and the

same query is valid for other TFs mentioned earlier. As

reported, BRD4 interacts with several TFs involved in

mitochondrial gene networks and cardiac physiology (Kim

et al., 2020; Padmanabhan et al., 2020).

5 Non-classical pathways and
mitochondrial to nucleus
communication

So far, we have discussed how estrogens control

mitochondrial function through nucleus anterograde signals

and non-genomic mechanisms. However, mitochondria

themselves can generate a broad range of retrograde signals

towards the nucleus in order to activate the expression of

nuclear-encoded genes implicated in metabolic

reprogramming to protect against mitochondrial dysfunction

and metabolic stress (Kotiadis et al., 2014; Quirós et al., 2016;

Yong and Tang, 2018). Retrograde signals originating in the

mitochondria are commonly classified as energetic deprivation

and imbalance responses, ROS stress responses, Ca2+-dependent

responses, and mitochondrial unfolded protein response

(mtUPR)-dependent responses (Kotiadis et al., 2014; Quirós

et al., 2016). Covering all the signaling pathways initiated by

mitochondria is beyond the scope of this review, so we will focus

on the four most important ones, with a special focus on

energetic deprivation.

5.1 Energy deficit and decreased
mitochondrial ATP production: The AMPK
and mitochondria-dependent
anterograde communication

Alterations in OXPHOS or the ETC directly impair

mitochondrial ATP production, thus increasing the adenosine

diphosphate (ADP)/ATP ratio, and directly stimulating AMPK.

AMPK can in turn, activate the PGC-1α/NRF1/2/TFAM axis,

which stimulates mitochondrial energy metabolism and

biogenesis, as described in the previous sections (Jäger et al.,

2007; Garcia-Roves et al., 2008; Preobrazenski et al., 2021).

Interestingly, enhanced AMPK activity promotes PGC-1α
transcription through phosphorylation of Forkhead box O3

(FOXO3) and cAMP response element-binding (CREB)

proteins (Wright et al., 2007; Brenmoehl and Hoeflich, 2013;

Vaughan et al., 2014). Additionally, AMPK triggers the

mitochondrial quality control program, which regulates
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mitochondrial dynamics and stimulates mitophagy through

inhibition of the mechanistic target of rapamycin complex 1

(mTORC1) signaling (direct phosphorylation of RAPTOR

subunit and upstream regulator, tuberous sclerosis complex

2 [TSC2]) and by activating the ULK complex (Inoki et al.,

2003; Gwinn et al., 2008; Kim et al., 2011; Reis et al., 2021).

Hence, AMPK can potentially enhance the biogenesis of new

mitochondria and energy production through induction of PGC-

1α, and, concomitantly, promote the clearance of defective

organelles.

Metabolic imbalance and energy deprivation not only

involves intracellular ATP levels. It is well known that

cellular NAD+/NADH levels are key regulators of

metabolism and bioenergetics (Klinge, 2020; Maissan

et al., 2021). Electrons derived from substrate catabolism

are carried out by NADH and used for OXPHOS and

biosynthetic reactions. These redox reactions are not only

necessary for mitochondrial function and cell metabolism,

but also for the modulation of cell signaling (Klinge, 2020).

For example, SIRT1 is a NAD+-dependent deacetylase that

senses energetic stress as an increase in the NAD+/NADH

ratio (Li P. et al., 2017; Maissan et al., 2021). SIRT1 activates

PGC-1α through deacetylation, which promotes PGC-1α
translocation into the nucleus (Gerhart-Hines et al., 2007).

Interestingly, SIRT1 can be further regulated by AMPK.

AMPK enhances SIRT1 activity by increasing cellular

NAD+ in C2C12 myocytes, thus resulting in deacetylation

of downstream SIRT1 targets, including the PGC-1α,
forkhead box O1 (FOXO1), and FOXO3a TFs (Cantó

et al., 2009, 2010).

AMPK activity can be directly modulated by the E2 and ER

activity (Figure 3). E2 targets AMPK through activation of

ERα and direct binding with the α-catalytic subunit of AMPK,

within the βγ-subunit-binding domain (Lipovka et al., 2015).

Silencing of AMPKα2 downregulates ERRα. In the contrary,

overexpression of ERRα in AMPKα2 knockout neonatal

cardiac myocytes partially rescued the expression of energy

metabolism-related genes (Hu et al., 2011). These data suggest

a loop of estrogenic activation in metabolic reprogramming

via the ERs-AMPK-ERRs pathway.

5.2 ROS-dependent responses

Approximately 90% of physiologically generated ROS are

mROS. mROS are generated through aerobic metabolism as

secondary products of ETC at complexes I and III. They

function directly by regulating redox biology and as signaling

molecules under physiological and pathologic conditions

(Panth et al., 2016). Physiological increases in ROS levels

induce a retrograde signal that initiates an antioxidant

response program designed to activate detoxification

enzymes and scavenger proteins (Tan et al., 2008; Nguyen

et al., 2009; Lu et al., 2012; Yong and Tang, 2018). This

activation is mediated by the binding of TFs to antioxidant

response elements. For example, ROS impairs the kelch-like

ECH-associated protein 1 (KEAP1)-mediated proteasomal

degradation of nuclear factor erythroid 2-related factor 2

(NFE2L2; also known as NRF2, but not to be confused with

NRF2α mentioned above), thus facilitating the translocation

of NFE2L2 to the nucleus and the subsequent activation of

the antioxidant program (Nguyen et al., 2009).

ROS can also induce mitochondrial biogenesis and

metabolic reprogramming through AMPK-mediated PGC-

1α activation and further upregulation of PGC1α
expression and protein levels (Ren and Shen, 2019).

Additionally, in order to regulate mitochondrial biogenesis,

PGC1α can also mediate antioxidant responses (Klinge, 2020).

PGC1-α coactivates the expression of SIRT3 through ERRα,
which binds to the SIRT3 proximal promoter (Giralt et al.,

2011; Klinge, 2020). SIRT3 localizes within mitochondria to

modulate several key enzymatic activities (acyl-CoA

dehydrogenase, succinate dehydrogenase, and isocitrate

dehydrogenase 2, among others) and optimize metabolic

function (Verdin et al., 2010). Importantly, SIRT3 is also

required for the PGC-1α-mediated induction of ROS-

detoxifying machinery components, such as SOD2 and

GPx1, and components of the respiratory chain, such as

ATP synthase 5c and cytochrome c (Kong et al., 2010).

5.3 Ca2+-dependent responses

Mitochondria are the second most important Ca2+ storage

within cells, and a key regulator of intracellular Ca2+ levels

(Rizzuto et al., 2012; Williams et al., 2013). Different

mitochondrial stressors, such as mtDNA or leakage,

disruption of ETC complexes and OXPHOS, trigger the

loss of the mitochondrial membrane potential and

subsequent release of Ca2+ into the cytoplasm (Contreras

et al., 2010; Quirós et al., 2016; Srinivasan et al., 2016).

Increased levels of free cytosolic Ca2+ can induce a complex

transcriptional cascade involving several TFs and signaling

effectors. For example, Ca2+ activates calcineurin, a

phosphatase that activates the nuclear factor of activated

T cells (NFAT) and NF-κB p105, which is also directly

activated by mROS (Quirós et al., 2016; Chowdhury et al.,

2020). NFAT and NFκB have been widely described as cardiac

TF involved in pathological cardiac remodeling (Tham et al.,

2015; Fiordelisi et al., 2019). Dephosphorylated NFAT

translocates towards the nucleus, interacting with

GATA4 and the myocyte enhancer factor-2 (MEF2) (Suzuki

et al., 2002; Tham et al., 2015; Stansfield et al., 2014). Activated

NFAT promotes the transcription of hypertrophy-associated

genes (also known as the fetal gene program), including α-
actin, endothelin-1, ANP, and β-MHC (Heineke and
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Molkentin, 2006; Luo et al., 2021). Furthermore, NFAT

inhibition (throughout FOXO overexpression or

knockdown) ameliorates hypertrophy in vitro (Ni et al.,

2006; Li et al., 2018; Coleman et al., 2021). Interestingly,

NFAT and NFκB directly interact to command and

coordinate two independent signaling pathways that

promote CH (Liu et al., 2012).

In addition, elevated intracellular Ca2+ levels also activate

a variety of Ca2+-dependent kinases, namely Ca2+/calmodulin-

dependent protein kinase type IV (CAMKIV), PKC, JNK,

p38 MAPK, among others (Quirós et al., 2016; Stansfield

et al., 2014). These, in turn, activate other TFs, such as

early growth response protein 1 (EGR1), CREB, and CEBP

homologous protein (CHOP), among others (Arnould et al.,

2002; Woods et al., 2005; Heineke and Molkentin, 2006).

Activation of these TFs and their downstream targets

involves mitochondrial adaptation and leads to several

responses regarding Ca2+ metabolism, insulin signaling, and

cell proliferation. In fact, these TFs have also been reported in

both physiological and pathological CH. In this regard,

calcineurin directly regulates ERα stability and activity in

breast cancer and estrogen upregulates calcineurin

expression via overexpression of ER in systemic lupus

erythematosus (Rider et al., 2000; Lin et al., 2011; Masaki

et al., 2021). Similarly, in the heart, estrogen inhibits

isoproterenol-induced CH via suppression of Ca2+-

calcineurin signaling, preventing NFATc3 translocation

(Tsai et al., 2017). Moreover, in a rat vascular

responsiveness model, estrogen increases vascular reactivity

via activation of GPER-Rho kinase and PKC pathway

activation, but not exclusively due to the genomic and non-

genomic responses (Li et al., 2014). This estrogenic protection

mechanism also appears in I/R models via a mechanism

dependent on PKCε and ERα (Novotny et al., 2009).

Interestingly, it has been shown that mitochondrial calcium

uniporter (MCU), the main responsible for mitochondrial

Ca2+ uptake, is strongly regulated by agonists and

antagonists of ERs. In particular, the specific alpha-ER

agonist 4,4′,4’’-(4-propyl-[1H]-pyrazole-1,3,5-trial)

trisphenol was the most potent activator, increasing the

rate of mitochondrial Ca2+ uptake (Lobatón et al., 2005),

thus suggesting that a nongenomic mechanism regulates

MCU activity. Available literature shows that estrogen

deficiency deregulates L-type Ca2+ channel, ryanodine

receptor, SERCA and the Na+-Ca2+ exchanger, causing

impaired Ca2+ homeostasis, thus leading to CVDs, as

recently reviewed by (Jiao et al., 2020).

Considering the foregoing and the evidence for Ca2+

overload and calcineurin inhibition as a central hub in the

protective estrogenic activity in CH (Pedram et al., 2008), a

future projection in the field is the elucidation of the

transcriptional program mediated by Ca2+-estrogen–Ca2+

phosphatases and the related TFs, as well as their role in

the estrogenic CVDs protective programming.

5.4 Mitochondrial UPR-dependent
responses

The mtUPR is an evolutionarily conserved mechanism

activated in response to a compromised mitochondrial protein

folding environment and misfolded protein accumulation

(Haynes and Ron, 2010; Muñoz-Carvajal and Sanhueza,

2020). Further, mtUPR orchestrates several responses,

including the antioxidant machinery, the OXPHOS

functioning, mitophagy, the process of mitochondrial protein

quality control, and mitochondrial biogenesis (Haynes and Ron,

2010). Consistent with the endoplasmic reticulum UPR, mtUPR

initiates a nuclear anterograde signaling including the activating

transcription factor 5 (ATF5) and CHOP as key TFs that enhance

the transcription of several mitochondrial protective genes

(including several chaperones, proteases, antioxidant enzymes,

and the glycolytic machinery) that operate to restore

mitochondrial protein homeostasis and ensure cell survival

(Haynes and Ron, 2010; Melber and Haynes, 2018; Muñoz-

Carvajal and Sanhueza, 2020). The precise molecular

mechanisms and mediators of the mtUPR have been widely

described in C. elegans (please refer to Quirós et al., 2016 and

Haynes and Ron, 2010 for a more comprehensive review of this

description). Comparatively, little is known about the

mammalian mtUPR, especially in cardiovascular physiology

(Zhou et al., 2020).

Interestingly, recent studies have begun to describe the

potential cardioprotective effects of mtUPR on CVDs models.

Neonatal rat cardiomyocytes treated with complex I inhibitor

paraquat, or the β-adrenoreceptor agonist isoproterenol, showed
an increase in mRNA levels of ATF5, CHOP, mitochondrial pre-

sequence translocase-associated motor complex protein

(mtDNAj), ATP-dependent Clp protease proteolytic subunit

(ClpP), mitochondrial Lon protease homolog (LonP),

HSP10 and HSP60. Additionally, left ventricular tissue of

mice subjected to pressure overload also displayed an increase

in the mtUPR effectors ATF5, ClpP, and LonP (Smyrnias et al.,

2019). Furthermore, pharmacological enhancement of mtUPR

improved cardiomyocyte survival, contractile function, and

mitochondrial oxygen consumption (complex I and II) in

mice subjected to chronic pressure overload. Consistently,

mice pretreated with oligomycin or doxycycline (mtUPR

inducers) displayed an enhanced functional recovery and

decreased infarct size against ex vivo post-I/R injury.

Interestingly, this protection was abolished upon

ATF5 depletion, demonstrating the essential role of this TF in

mediating the mtUPR cardioprotective effects (Smyrnias et al.,

2019; Wang et al., 2019).
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This review shows that estrogenic mechanisms are a master

controller of anterograde and retrograde nucleus-mitochondria

responses and regulation. However, in terms of mtUPR, this

communication network has not been adequately described yet

in CVDs, although we can find information on cancer mtUPR

mechanisms (Jenkins et al., 2021a; 2021b) that can be used as

references for CVDs. Estrogen-dependent mtUPR mechanisms

in CVDs are still not described. Still, some works have shown

ERα activity and sirtuins-mediated post-translational

modifications (Jenkins et al., 2021b) which can be interpreted

in this context, as we discuss next.

Sirtuins are a family composed of seven proteins regulating

longevity, metabolism, and response to stress. The NAD-

dependent deacetylase SIRT3 is specifically found in the

mitochondria, where is related to proteotoxic matrix stress

and directly regulated by estrogenic pathways (Papa and

Germain, 2014; Germain, 2016; Zhang et al., 2020). These

pathways are controlled by both estrogen-dependent and

estrogen-independent ERα activation mechanisms (Jenkins

et al., 2021a). In the estrogen-independent mechanisms, ERα
is activated by AKT-mediated phosphorylation (Bhat-Nakshatri

et al., 2008). In the estrogen-dependent mechanisms, estrogen

binds and activates ERα (Ruff et al., 2000). ERα controls the

cytoprotective ERα-NRF1-proteasome axis of the mtUPR

(Figure 3) and enables the maintenance of the mitochondrial

integrity (Papa and Germain, 2011); otherwise, SIRT3 controls

SOD2 induction via FOXO3a during mtUPR in a CHOP-

independent manner (Papa and Germain, 2014), enabling

antioxidant activity.

We can ask ourselves, how is this pathway related to a

protective estrogenic modulation of CVDs? SIRT3 is

considered a new key actor in CVDs, due to its

cardioprotective effects which are reflected mainly in the fact

that a loss of SIRT3 expression increases the susceptibility to

suffer or worsens the pathological phenotype in cardiac

ischemia-reperfusion injury and coronary microvascular

dysfunction, thus impairing cardiac recovery (Sun et al.,

2018). Moreover, drugs that inhibit the renin-angiotensin-

aldosterone system improve cardiac function and increase

SIRT3 levels (Parodi-Rullan et al., 2012) in animal models of

heart failure. Similarly, a trimethylamine-N-oxide (TMAO)

vascular inflammation model inhibits SIRT3 expression and

SOD2 activation. SIRT3 overexpression protected from

TMAO injury (Chen et al., 2017). Sirt3-KO mice showed

lower palmitate oxidation, lower respiratory capacity, lower

ATP synthesis, and abnormal lipid accumulation, with

impaired mitochondrial and contractile cardiac function

(Chen T. et al., 2015; Koentges et al., 2015). Finally, low

SIRT-3 levels are also correlated with a down-regulation of

PGC1-α (Yu et al., 2017), suggesting the conservation of the

reported PGC-1α/SIRT3 protective axis (Son et al., 2021) due to

SIRT3 enhanced activity (Figure 3). Thus, all the listed findings

highlight the importance of elucidate the hypothetical ERα or

ERRs-SIRT3-mtUPR mitochondrial cardioprotective pathway in

different CVDs as a new important axis in the cardioprotection

triggered by estrogens.

6 Conclusion and future perspectives

The general cardiovascular protective effect of estrogens, the

activation of ERs and ERRs, has been reported from preclinical

models to clinical models by studying the loss of estrogenic

activity and subsequent replacement. Additionally, the favorable

effect on the maintenance of mitochondrial dynamics and

function exerted by the estrogenic-associated activity that has

been highlighted in this review, allows us to propose a central

protective pathway focused in energetic and mitochondrial

functionality. This is due mainly to the communication

between the nucleus and mitochondria, governed by

upregulation or activation of transcriptional factors, which

mediate the expression of mitochondrial dynamics and

energetic genes in mtDNA and nuclear DNA. This protective

pathway is shown in Figure 4.

The pleiotropic action of estrogens has led to the findings of

various side effects in its implementation as CVDs related therapy in

men and women. Several clinical trials have been carried out using

estrogens as hormone replacement therapy. These trials have

analyzed the dose of estrogens, their origin, the timing of their

application depending on the reproductive cycle, and the routes of

administration and delivery (Shufelt and Manson, 2021; Ueda et al.,

2021; Anagnostis et al., 2022). Although we have indicated the

existence of sex differences in the effects of hormonal therapies

associated with CVDs, this review is not focused on discussing the

specific benefits or possible side effects of its pharmacological use (for

a more comprehensive review in this topic, please refer to Yang and

Reckelhoff, 2011; Maas, 2021 and Shufelt and Manson, 2021).

Nonetheless, we have to mention the relationship between

estrogen usage and the increased risk of reproductive cancers

(Simin et al., 2017; D’Alonzo et al., 2019; Vinogradova et al.,

2020). Under this perspective, we must highlight the efforts to

implement and develop new generations of drugs, such as

selective estrogen receptor modulators (SERMs). This group of

molecules exerts estrogenic or anti-estrogenic effects depending on

target tissue or cell type, and are currently used in the treatment of

reproductive cancers (Alsina and Martín, 2013). As discussed, a

supposed new pharmacological therapy should exert its specific

tissue effects, modulating estrogen’s positive effects on

mitochondrial to nucleus communication and restoring/keeping

mitochondrial function. However, to achieve successful specific

therapeutic results, it is necessary to continue researching and

deciphering how to emulate the estrogenic effects in the contexts

of the retrograde and anterograde communication between the

nucleus and mitochondria. Therefore, it is necessary to generate

specific pharmacological targets for the activation of BRD4, ERRs,

AMPK, SIRTs, and PGC-1α in CVDs, thus emulating the estrogenic
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protection without the detrimental side effects reported for the

classical drugs.

Finally, it is urgent to find the transcriptional program

stimulated in conjunction by BRD4 and ERs or ERRs in CVDs

to confirm this pathway as a master regulator of the E2 protective

effects and to clarify whether it is directly activated by genomic

pathways or indirectly via the non-genomic actions of estrogens.
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Glossary

ADP Adenosine diphosphate

AFG3L1 AFG3-like AAA ATPase 1

AFs Activator functions

ALDH2 Aldehyde dehydrogenase 2

AMPK Adenosine monophosphate-activated protein kinase

ANP Atrial natriuretic peptide

ATF5 Activating transcription factor 5

ATG7 Autophagy related gene-7

ATP Adenosine triphosphate

BET Bromodomain and extra-terminal

BNP Brain natriuretic peptide

BRD4 Bromodomain-containing protein 4

Ca2+ Calcium

CAMKIV Ca2+/calmodulin-dependent protein kinase type IV

cAMP 3′,5′-cyclic adenosine monophosphate

CH Cardiac hypertrophy

CHOP CEBP homologous protein

cKO Cardiac-specific knockout

ClpP ATP-dependent Clp protease proteolytic subunit

COX Cyclooxygenase

COX7RP Cytochrome c oxidase subunit 7a-related polypeptide

CREB cAMP response element-binding protein

c-Src Proto-oncogene tyrosine-protein kinase Src

CVDs Cardiovascular diseases

DPM Disrupting peptide mouse

DRP1: Dynamin-related protein1

E2 17 β-estradiol
EGFR Epidermal growth factor receptor

EGR1 Early growth response protein 1

eNOS Endothelial nitric oxide synthase

ER Estrogen receptor

ERE Estrogen response element

ERK Extracellular-signal regulated kinase

ERR Estrogen related receptor

ERα Estrogen receptor alpha

ERβ Estrogen receptor beta

ETC Electron transport chain

FAO Fatty acid oxidation

FIS1 Mitochondrial fission 1 protein

FOXO1 ForkHead box O1

FOXO3 Forkhead box O3

FUNDC1 FUN14 domain-containing protein 1

GATA4 GATA binding protein 4

GPCR G protein-coupled receptor

GPER G protein-coupled estrogen receptor

GPx Glutathione peroxidase

GSTK1 Glutathione S- transferase kappa 1

GTP Guanosine triphosphate

HFD High-fat diet

I/R Ischemia-reperfusion

IL Interleukin

IMM Inner mitochondrial membrane

iNOS Inducible nitric oxide synthase

IPSC-CM Induced pluripotent stem cell derived-cardiomyocytes

JAK/STAT Janus kinase and signal transducer and activator of

transcription

JNK c-Jun N-terminal kinase

KD Knockdown

KEAP1 Kelch-like ECH-associated protein 1

KO Knockout

LC3 Microtubule-associated protein 1 light chain 3

LDL Low-density lipoprotein

LKB1 Liver kinase B1

LonP Mitochondrial Lon protease homolog

MAMs Mitochondria associated membranes

MAPK: Mitogen-activated protein kinase

MCU Mitochondrial Ca2+ uniporter

MDV1 Mitochondrial division protein 1

MEF2 Myocyte enhancer factor 2

MEK Mitogen-activated protein kinase kinase

MFF Mitochondrial fission factor

MFN1 Mitofusin 1

MFN2: Mitofusin 2

MI Myocardial infarction

miRNAs MicroRNAs

mtUPR mitochondrial unfolded protein response

MKP1 Mitogen-activated protein kinase phosphatase 1

MPPs Metalloproteinases

MPTP Mitochondrial permeability transition pore

mROS Mitochondrial ROS

mtDNA Mitochondrial DNA

mtDNAj Mitochondrial pre-sequence translocase-associated

motor complex protein

mTERF Mitochondrial transcription termination factor
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mTORC1 Mechanistic target of rapamycin complex 1

NFAT Nuclear factor of activated T cells

NFE2L2 Nuclear factor erythroid 2-related factor 2

NF-κB Nuclear factor-κB
NO Nitric oxide

NOS Nitric oxide synthase

NOX4 NADPH oxidase 4

NPD52 Nuclear dot protein 52 kDa

NRF1 Nuclear respiratory factor 1

NRF2α Nuclear respiratory factor 2α
OMA1 m-AAA Protease 1

OMM Outer mitochondrial membrane

OPA1 Optic atrophy protein 1

OVX Ovariectomized

OXPHOS Oxidative phosphorylation system

PAK1 p21-activated kinase 1

PARL Presenilins-associated rhomboid-like protein

PGC-1 Peroxisome proliferator-activated receptor coactivator 1

PH Pulmonary hypertension

PI3K Phosphoinositide 3-kinase

PINK1 PTEN-induced putative kinase 1

PKA Protein kinase A

PKC Protein kinase C

PKG cGMP-dependent protein kinase

PP2 Protein phosphatase 2 (PP2)

PPARs Peroxisome proliferator-activated receptors

PTEN Phosphatase and TENsin homolog

PTGS2 Prostaglandin-endoperoxide synthase 2

PTMs Post-translational modifications

RAB9 Ras-related protein Rab-9

RNA-Seq RNA sequencing

ROS Reactive oxygen species

Ser Serine residue

SERCA2a Sarcoplasmic/Endoplasmic reticulum Ca2+ATPase 2a

SHP1 Src homology region 2 domain-containing phosphatase 1

SIRT1 Sirtuin 1

SIRT3 Sirtuin 3

SOD1 Superoxide dismutase 1

SOD2 Superoxide dismutase 2

TAC Transverse aortic constriction

TCA Tricarboxylic acid

TFB1M Mitochondrial transcription factor B1

TFB2M Mitochondrial transcription factor B2

TFs Transcription factors

TGF-β Transforming growth factor β
TMAO Trimethylamine-N-oxide

TSC2 Tuberous sclerosis complex 2

TTP Tristetraprolin

Tyr Tyrosine residue

UCP3 Uncoupling protein 3

ULK1 Unc-51 like kinase 1

VSMC Vascular smooth muscle cells

WT Wild type

YME1L1 YME1 like 1 ATPase

α-LA α-lipoic acid

αKGDH α-ketoglutarate dehydrogenase

β-MHC Myosin heavy chain, cardiac muscle β-isoform
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