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Abstract: Development of drug resistance is the main reason for low chemotherapy effectiveness
in treating ovarian cancer. Paclitaxel (PAC) is a chemotherapeutic drug used in the treatment
of this cancer. We analysed the development of PAC resistance in two ovarian cancer cell lines.
Exposure of drug-sensitive cell lines (A2780 and W1) to PAC was used to determine the primary
response. An established response was determined in PAC-resistant sublines of the A2780 and W1
cell lines. qRT-PCR was performed to measure the expression levels of specific genes. We observed
decreased expression of the PCDH9, NSBP1, MCTP1 and SEMA3A genes in the PAC-resistant cell
lines. Short-term exposure to PAC led to increased expression of the MDR1 and BCRP genes in the
A2780 and W1 cell lines. In the A2780 cell line, we also observed increased expression of the C4orf18
gene and decreased expression of the PCDH9 and SEMA3A genes after PAC treatment. In the W1 cell
line, short-term treatment with PAC upregulated the expression of the ALDH1A1 gene, a marker of
Cancer stem cells (CSCs). Our results suggest that downregulation of the PCDH9, NSBP1, MCTP1
and SEMA3A genes and upregulation of the MDR1, BCRP, C4orf18 and ALDH1A1 genes may be
related to PAC resistance.

Keywords: ovarian cancer; paclitaxel resistance; new genes

1. Introduction

Epithelial ovarian cancer (EOC) is one of the most aggressive tumours of all gynaecological
malignancies and is the fifth leading cause of death from gynaecological malignancies. At the time
of diagnosis, the majority of patients have advanced intraperitoneal metastatic disease [1]. Although
most cases of EOC are chemosensitive at the beginning of chemotherapy, most patients develop drug
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resistance during treatment [2]. The first line of chemotherapy always includes taxane (paclitaxel)
and platinum compounds [3]. Unfortunately, most of the patients with an initially good response
to chemotherapy develop drug resistance and require further treatment with other cytotoxic agents.
Recently a new anticancer therapy like immune check point inhibitors, use of CAR T cells or bispecific
antibodies are extensively investigated [4].

Paclitaxel (PAC) is a chemotherapeutic agent originally isolated from Taxus brevifolia. It belongs
to the family of antimitotic anticancer agents and blocks mitosis through stabilizing microtubules by
binding to β-tubulin subunits. Consequently, PAC blocks cell division and leads to apoptotic cell
death [5]. Clinically, the drug is used in the treatment of many cancers, including ovarian cancer [6],
breast cancer [7] and lung cancer [8]. Unfortunately, many cancers develop PAC resistance. Some
cancer cells express different β-tubulin isotypes with lower sensitivity to PAC action [9]. Others express
mutated β-tubulin with lower PAC affinity [10]. However, the most important mechanism of PAC
resistance is overexpression of drug transporters from the ABC family. Among these mechanisms, the
most important role is played by expression of glycoprotein P (P-gp, ABCB1), encoded by the MDR1
gene [11], although expression of the ABCB4 protein encoded by the MDR3 gene seems to also be
involved in this phenomenon [12]. Previously, we also described the increased expression of several
collagens in PAC-resistant cell lines, suggesting their role in resistance to this drug [13].

However, in some cases, drug resistance is difficult to explain on the basis of the expression profile
of known genes involved in this process, which indicates that new genes can also be involved in this
phenomenon. Recently, using microarray data, we identified new genes that can also be associated
with PAC resistance, such as PCDH9, NSBP1, MCTP1, SEMA3A [14] and C4orf18.

PCDH9 (protocadherin 9) is a member of the protocadherin protein family, which consists of
approximately 80 members [15]. These proteins are calcium-dependent adhesion proteins implicated
in neural cell–cell interactions. In contrast to classical cadherins, PCDHs appear to have more varied
physiological functions [16]. PCDH9 has been reported to be a candidate tumour suppressor gene.
Decreased expression of PCDH9 has been reported in glioma [17,18], gastric cancer [19], hepatocellular
carcinoma [20], prostate cancer [21] and ovarian cancer [22], among other neoplasms. Downregulation
of PCDH9 expression usually correlates with disease progression and shorter survival of patients [17–19,21].

Nucleosomal Binding Protein 1 (NSBP1) belongs to the high-mobility group nucleosome-binding
protein (HMGN) family. These proteins modulate the structure and function of chromatin, which
facilitates and enhances transcription, histone modifications, replication and DNA repair [23]. It has
been reported that NSBP1 binds to nucleosomes via a nucleosomal binding domain (NBD), unfolds
chromatin, and modulates gene transcription [24]. Increased expression of NSBP1 has been observed in
many human cancers, including clear cell renal carcinoma (ccRC) [25], prostate cancer [26], gliomas [27]
and meningiomas [28], suggesting its oncogenic role. In meningiomas, knockdown of NSBP1 resulted
in P-gp downregulation and increased sensitivity to temozolomide [28]. It has also been reported that
knockdown of NSBP1 increased the sensitivity of oesophageal squamous cell carcinoma (ESCC) cells
towards cisplatin (CIS) and regulated MDR1 gene expression [29].

Multiple C2 transmembrane domain-containing protein 1 (MCTP1) contains two transmembrane
regions and three C2 domains with high Ca2+ activity [30]. The C2 domain is a Ca2+-binding motif
prevalent in proteins involved in membrane trafficking/exchange processes that are important for
vesicle formation, receptor trafficking, neurotransmitter release and cell migration [31]. Varied expression
of MCTP1 has been observed in colorectal cancer specimens [32].

SEMA3A is a member of the semaphorin family, which comprises soluble and membrane
bound proteins that play a role in neuronal development, organogenesis, angiogenesis and cancer
progression [33]. SEMAs are classified into eight classes. Class 3 SEMAs (SEMA3) are the only
secreted SEMAs in vertebrates. Several members of class 3 SEMAs, including SEMA3A, have been
characterized as anti-angiogenic agents [34]. The SEMA3 class consists of seven soluble proteins of
~100 kDa (designated by the letters A–G), which are secreted by different cells, including neurons,
epithelial cells and tumour cells. SEMA3s act in a paracrine fashion by binding to neuropilins via
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a highly conserved amino-terminal 500-amino acid region in the SEMA3 protein called the Sema
domain [35]. SEMA3A is a putative tumour suppressor and is often downregulated in different types
of cancer, including gastric cancer [36], ovarian cancer [37] and tongue cancer [38]. In gastric and
ovarian cancer, downregulation of SEMA3A expression is correlated with disease progression and
poor prognosis [36,37].

According to various databases expression of C4orf18 (FAM198B) was observed in nerves and
epithelium during development however the detailed role of this protein was not described. Previously,
we described its expression in CIS- and topotecan (TOP)-resistant ovarian cancer cell lines [39]. To our
knowledge, its expression has not been described in the PubMed database by other authors.

Most of the research involving the development of resistance to cytotoxic drugs is conducted
with pairs of drug-sensitive and drug-resistant cell lines that have been exposed to a drug for at least a
few months. Knowledge about the response to cytotoxic drugs after first contact with the drugs at the
beginning of treatment is poor. The goals of our study were as follows: (1) to investigate the expression
level of new and old genes involved in PAC resistance in PAC-resistant ovarian cancer cell lines and
(2) to analyse the expression of these genes during the first days of exposure to PAC.

2. Results

2.1. Gene Expression Analysis in PAC-Resistant Cell Lines

Our microarray data suggest that the PCDH9, NSBP1, MCTP1, SEMA3A [14] and C4orf18 (not
shown) genes may be involved in PAC resistance. The gene expression levels of PCDH9, NSBP1,
MCTP1, SEMA3A and C4orf18 were examined to determine whether the PAC resistance in our cell
lines was associated with changed expression of these genes. We observed a statistically significant
decrease in PCDH9 transcript levels in the A2780PR2 cell line (p < 0.001) (Figure 1A) and in both W1
PAC-resistant cell lines (p < 0.001 in the W1PR1 cell line and p < 0.01 in the W1PR2 cell line) (Figure 1B).

Figure 1. Expression analysis (Q-PCR) of the PCDH9 gene in the A2780 (A) and W1 (B) PAC-resistant
cell sublines. The figure presents the relative gene expression in the resistant cell lines (grey bars) with
respect to that in the sensitive cell line (white bars), which was assigned a value of 1. The values were
considered significant at * p < 0.05 and *** p < 0.001.

Similar results were observed in the case of the NSBP1 transcript. Decreased expression of
NSBP1 was seen in both A2780 PAC-resistant cell lines (p < 0.01) (Figure 2A) as well as in both W1
PAC-resistant cell lines (p < 0.05) (Figure 2B).



Molecules 2018, 23, 891 4 of 16

Figure 2. Expression analysis (Q-PCR) of the NSBP1 gene in the A2780 (A) and W1 (B) PAC-resistant
cell lines. The figure presents the relative gene expression in the resistant cell lines (grey bars) with
respect to that in the sensitive cell line (white bars), which was assigned a value of 1. The values were
considered significant at * p < 0.05 and ** p < 0.01.

However, one should keep in mind that in the W1PR1 cell line, downregulation of the NSBP1
transcript level was much lower than that in other PAC-resistant cell lines [approximately 1200-fold
vs. 3-fold (W1PR2), 4-fold (A2780PR1) and 8-fold (A2780PR2)]. Downregulation of the MCTP1 gene
was observed in all PAC-resistant cell lines, although in the A2780PR1 cell line, downregulation of this
gene was not statistically significant. In the A2780PR2 cell line, we observed approximately 120-fold
downregulation of the MCTP1 gene (p < 0.001) (Figure 3A). W1PR1 and W1PR2 were characterized by
60-fold (p < 0.001) and 20-fold (p < 0.01) downregulation of the MCTP1 gene (Figure 3B).

Figure 3. Expression analysis (Q-PCR) of the MCTP1 gene in the A2780 (A) and W1 (B) PAC-resistant
cell lines. The figure presents the relative gene expression in the resistant cell lines (grey bars) with
respect to that of the sensitive cell line (white bars), which was assigned a value of 1. The values were
considered significant at ** p < 0.01 and *** p < 0.001.

A different pattern of SEMA3A gene expression was observed in PAC-resistant cell lines. A 4-fold
decrease in the SEMA3A transcript level was observed in the A2780PR1 cell line (p < 0.05) vs. 223-fold
in the A2780PR2 cell line (p < 0.01) (Figure 4A). Even larger differences were observed in the W1
PAC-resistant cell lines. In the W1PR1 cell line, we observed very high downregulation of the SEMA3A
transcript level—approximately 850-fold (p < 0.001) (Figure 4B). In contrast, in the W1PR2 cell line,
we observed a 6-fold increase in the SEMA3A transcript level (p < 0.05) (Figure 4A).
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Figure 4. Expression analysis (Q-PCR) of the SEMA3A gene in the A2780 (A) and W1 (B) PAC-resistant
cell lines. The figure presents the relative gene expression in the resistant cell lines (grey bars) with
respect to that of the sensitive cell line (white bars), which was assigned a value of 1. The values were
considered significant at * p < 0.05, ** p < 0.01 and *** p < 0.001.

2.2. Early Response to PAC Treatment in Ovarian Cancer Cell Lines

The second part of our study focused on the early response to PAC treatment. In these experiments,
drug-sensitive cell lines A2780 and W1 were treated with low concentrations of PAC (20 ng/mL and
25 ng/mL for A2780) and (15 ng/mL and 20 ng/mL for W1) for 24, 48 and 72 h. Then, changes in gene
expression were investigated.

We were interested in whether MDR1 and BCRP genes encoding the most important drug
transporters can also be expressed during the first days of PAC treatment. In the A2780 cell line, we
observed a dose- and time-dependent increase in the MDR1 transcript level (p < 0.05 or p < 0.01)
(Figure 5A). In the W1 cell line, we also observed a time-dependent increase in the MDR1 transcript
level after PAC treatment, although the increase was always higher at the 15 ng/mL concentration
than at the 20 ng/mL concentration (p < 0.05, p < 0.01 or p < 0.001) (Figure 5B).

Figure 5. Expression analysis of the MDR1 gene in the A2780 (A) and W1 (B) cell lines. The figure
presents the relative gene expression in the PAC-treated cells (grey and black bars) with respect to that
in the untreated control (white bars), which was assigned a value of 1. The values were considered
significant at * p < 0.05, ** p < 0.01 and *** p < 0.001.

In the A2780 cell line, a statistically significant increase in the BCRP transcript level was observed
at all time points and concentrations (p < 0.05 or p < 0.01) (Figure 6A). Similar results were observed in
the W1 cell line (p < 0.05 or p < 0.01), with the exception of PAC 15 ng/mL after 72 h, for which the
increase was close to significant (p = 0.07) (Figure 6B).
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Figure 6. Expression analysis of the BCRP gene in the A2780 (A) and W1 (B) cell lines. The figure
presents the relative gene expression in the PAC-treated cells (grey and black bars) with respect to that
in the untreated control (white bars), which was assigned a value of 1. The values were considered
significant at * p < 0.05 and ** p < 0.01.

In both cell lines, the highest transcript level was observed after 48 h of treatment. The expression
levels of PCDH9 and SEMA3A genes were investigated to determine if PAC could induce changes
in the expression of these genes during the first days of treatment. We did not observe any changes
in the expression of these genes in the W1 cell line (not shown). In the A2780 cell line, we observed
statistically significant downregulation of the PCDH9 gene after 48 and 72 h of PAC treatment (p < 0.05)
(Figure 7A). Downregulation of the SEMA3A transcript level was statistically significant (p < 0.05)
only after 48 h of treatment and was close to significant (p = 0.09) after 72 h of treatment at a PAC
concentration of 25 ng/mL (Figure 7B).

Figure 7. Expression analysis of the PCDH9 gene (A) and SEMA3A gene (B) in the A2780 cell line.
The figure presents the relative gene expression in the PAC-treated cells (grey and black bars) with
respect to that of the untreated control (white bars), which was assigned a value of 1. The values were
considered significant at * p < 0.05.

Increased expression of the C4orf18 gene after PAC treatment was observed in only the A2780 cell
line. At all time and concentration points, we observed statistically significant expression, with the
highest C4orf18 transcript levels after 72 h of treatment (p < 0.05 and p < 0.01) (Figure 8).
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Figure 8. Expression analysis of the C4orf18 gene in the A2780 cell line. The figure presents the relative
gene expression in the PAC-treated cells (grey and black bars) with respect to that of the untreated
control (white bars), which was assigned a value of 1. The values were considered significant at
* p < 0.05 and ** p < 0.01.

ALDH1A1 is the most popular marker of cancer stem cells (CSCs), and its expression was
previously observed by us in PAC- and TOP-resistant cell lines [40]. Therefore, we were interested in
whether the expression of this gene can increase after short-term PAC treatment. We did not observe
any changes in ALDH1A1 transcript in the A2780 cell line (not shown). In contrast, we observed
an increase in ALDH1A1 mRNA after PAC treatment in W1 cell line. The increase was statistically
significant after 24 and 48 h at a PAC concentration of 20 ng/mL and after 48 h at a concentration of
15 ng/mL (p < 0.05 or p < 0.01). After 72 h, the increase was close to significant (p = 0.13 for 15 ng/mL
and p = 0.07 for 20 ng/mL) (Figure 9).

Figure 9. Expression analysis of the ALDH1A1 gene in the W1 cell line. The figure presents the relative
gene expression in the PAC-treated cells (grey and black bars) with respect to that of the untreated
control (white bars), which was assigned a value of 1. The values were considered significant at
* p < 0.05 and ** p < 0.01.

3. Discussion

Ovarian cancer is a good model for studying drug resistance development. Although in most
cases ovarian cancer responds well to chemotherapy at the beginning of treatment, development
of drug resistance during chemotherapy leads to high mortality among ovarian cancer patients [2].
In this study, we investigated the response to PAC treatment and the development of PAC resistance in
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ovarian cancer cell lines. PAC is used in combination with platinum compounds (CIS or carboplatin)
as a first line of ovarian cancer chemotherapy [3]. From published data, it is known that resistance
to PAC is mainly associated with expression of P-gp [11] and/or expression of different β-tubulin
isotypes [9] or mutation of β-tubulin genes [10]. Previously, we also described increased expression of
MDR1 and MDR3 genes [12] and several collagen genes [13] in investigated PAC-resistant cell lines.
Here, we describe the expression of five new genes that may be involved in PAC resistance.

We observed statistically significant downregulation of the PCDH9 gene in three of four
PAC-resistant cell lines. This finding suggests that decreased expression of this gene may be related
to PAC resistance in ovarian cancer. While searching published data, we did not find any report
concerning the role of PCDH9 in drug resistance. However, there are many reports describing PCDH9
as a tumour suppressor gene in many cancers. Downregulation of PCDH9 expression in glioma
has been reported by Wang. Expression of PCDH9 was downregulated in glioma in comparison to
normal brain tissue, and loss of PCDH9 expression was associated with a higher histological grade
and shorter survival time of patients [17,18]. Reduced expression of PCDH9 was also observed during
the progression of gastric cancer. Chen et al. observed a reduction in the PCDH9 level from normal
gastric mucosa to primary tumour and from nodal metastasis to liver metastasis. PCDH9 expression is
inversely correlated with tumour size, tumour differentiation, tumour invasion, lymph node metastasis,
histological grade and patient survival [19]. In hepatocellular carcinoma, downregulation of PCDH9
expression is correlated with portal vein invasion, increased tumour cell migration and increased
EMT [20]. Downregulation of PDH9 expression has also been reported in prostate cancer and is
correlated with disease progression, elevated levels of prostate-specific antigen and a high clinical stage
of prostate tumours [21]. Decreased level of PCDH9 transcript was also observed in ovarian cancer
tumours in comparison to normal ovarian epithelium [22]. Restoration of PCDH9 expression leads to a
significant reduction in cell viability [18] proliferation [21], migration [20,21], and invasion [21]; blocks
EMT [20]; and leads to increased apoptosis [18]. An in vivo study showed markedly reduced tumour
growth with the expression of PCDH9 in comparison to the control [21]. All these results indicate that
decreased/loss of PCDH9 expression correlates with different features of cancer disease progression.
None of these studies addressed the effect of the loss of PCDH9 expression on cytotoxic drug sensitivity.
However, because the expression of PCDH9 is decreased in poorly differentiated cancer tissues and
metastases, and metastases are usually more resistant to chemotherapy, and PCDH9 expression was
decreased in PAC-resistant cell lines, it is possible that decreased expression of PCDH9 in different
cancers and cancer cell lines also leads to chemotherapy resistance. According to model presented by
Zhu et al. [20] PCDH9 inhibit the activity of Akt and ERK kinases. Wang et al. observed that expression
of PCDH9 arrest cells at the G0/G1 phase and reduce the number of cells in S phase by inhibiting
cyclin D1 and Bcl-2 expression [17]. In result downregulation of PCDH9 observed in our cell lines can
lead to higher kinases activity, resulting in higher signal transduction, higher drug resistance and cell
cycle genes expression leading to increased cells proliferation and tumor progression. This possibility,
however, requires additional study.

Downregulation of NSBP1 expression was observed in all PAC-resistant cell lines, although very
high downregulation (over 1000-fold) was observed in only the W1PR1 cell line. Downregulation
in all PAC-resistant cell lines suggests that NSBP1 may indeed be responsible for PAC resistance.
Loss of NSBP1 expression was also associated with higher gemcitabine resistance in prostate
cancer [41]. In contrast to these and our results, it was previously observed that inhibition of NSBP1
expression sensitized meningioma cell lines to temozolomide and decreases the expression of P-gp [28].
Knockdown of NSBP1 also resulted in significantly decreased expression of P-gp in ESCC cells, whereas
overexpression of NSBP1 significantly increased the expression of P-gp [30]. NSBP1 seems to also
be associated with CIS resistance in ESCC because knockdown of NSBP1 markedly decreased CIS
sensitivity and overexpression of NSBP1 markedly increased CIS resistance [30]. In summary, we
observed two opposite effects. Low NSBP1 expression is associated with higher resistance to PAC in
ovarian cancer and higher resistance to gemcitabine in prostate cancer [41]. In contrast, in meningioma
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and ESCC, a high expression level of NSBP1 is associated with resistance to temozolomide or CIS,
respectively [28,29]. In meningioma and ESCC, NSBP1 seems to be a positive regulator of the MDR1
gene encoding P-gp [28,29]. In contrast to these studies, we observed downregulation of NSBP1 in all
PAC-resistant cell lines, although expression of the MDR1 gene was upregulated in investigated cell
lines, as we reported previously [12]. Thus, the role of NSBP1 in cancer drug resistance seems to be
cancer type specific. In a clinical study, increased expression of NSBP1 was associated with histological
grade in meningioma [28] and ccRCC [25] and was upregulated in ESCC [29] bladder cancer [42] and
NSCLC [43]. Knockdown of NSBP1 was associated with reduced cell proliferation and growth in vivo
in prostate cancer [44], inhibition of invasion in ccRCC [25], inhibition of EMT in bladder cancer [42]
and reduced proliferation and invasion in NSCLC [43]. Molecularly downregulation of NSBP1 resulted
in decreased growth of cells and G2/M cell cycle arrest in prostate cancer [44], downregulation of
Bcl-2 in ESCC [29] and downregulation of B1 cyclin in ESCC [29] and NSCLC [43]. Thus, expression of
NSBP1 plays an important role in the progression of many cancers. The relationship between NSBP1
expression and cancer drug resistance development requires further investigation.

In three of four PAC-resistant cell lines, we observed statistically significant decreased expression
of the MCTP1 gene. These results suggest that downregulation of this gene is specific to resistance to
PAC. MCTP1 is poorly described in the literature. It belongs to proteins containing a C2 Ca++-binding
motif involved in membrane trafficking/exchange processes, such as cell migration, receptor trafficking
and vesicle formation [30,31]. Previously, we described the downregulation of this gene in CIS- and
TOP-resistant ovarian cancer cell lines [39]. Here, we observed downregulation in PAC-resistant cell
lines. Thus, downregulation of MCTP1 expression can be an unspecific marker of drug resistance
development. So far, expression of MCTP1 has been investigated in only colorectal cancer with
differential expression but without any clinical correlation [32]. Thus, the significance of MCTP1
expression in cancer progression and drug resistance requires further investigation.

Downregulation of the SEMA3A gene was observed in three of four PAC-resistant cell lines,
suggesting the importance of SEMA3A gene downregulation in PAC resistance development. To the
best of our knowledge, changes in SEMA3A gene expression have not been correlated with cancer
drug resistance so far. However, downregulation of SEMA3A has been observed in many cancers and
correlates with clinicopathological features. Decreased expression of SEMA3A was observed in gastric
tumour tissue in comparison to a control. Furthermore, low expression of SEMA3A was significantly
correlated with poor differentiation, vascular invasion, depth of invasion, lymph node and distant
metastasis and advanced TNM stage. Low SEMA3A expression was also significantly correlated with
poor patient prognosis. Overexpression of SEMA3A in the gastric cancer cell line SGC-7901 inhibited
cell proliferation and migration in vitro [36]. Significant downregulation of SEMA3A expression
was also observed in epithelial ovarian cancer in comparison to normal epithelium. A low level of
SEMA3A was correlated with higher clinical advancement (FIGO), poor histological grade, lymph node
and distinct metastasis and poor patient prognosis [37]. SEMA3A expression was also significantly
downregulated in tongue cancer and correlated with nodal metastasis. Lower SEMA3A expression
strongly predicted shorter patient survival [38]. Thus, downregulation of SEMA3A expression was
correlated with metastasis [36–38] and poor tumour tissue differentiation [36,37]. Poorly differentiated
and tumours and metastases are usually more resistant to chemotherapy. It seems possible that lower
SEMA3A expression in poorly differentiated tumours and metastatic tumour tissue may be associated
with drug resistance; this possibility, however, requires further investigation. Mechanistically reduced
SEMA3A expression can result in higher proteins phosphorylation and enhanced signal transduction.
It has been observed that overexpression of SEMA3A in the tongue squamous cell carcinoma cell
line SSC-9 result in suppressed tumor growth in mice and inhibition of VEGFR2, Src and FAK
phosphorylation [45]. The other question is regarding the very large difference in SEMA3A expression
between W1 PAC-resistant sublines W1PR1 and W1PR2. Both cell lines were developed in identical
conditions from the same parental cell line. In the W1PR1 subline, we observed a strong decrease
in the SEMA3A transcript level (approximately 900-fold). In contrast, in the W1PR2 cell line, we
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observed an increase in the SEMA3A transcript. Both cell lines are very resistant to PAC, and both
express the MDR1 gene, encoding P-gp, at very high levels [12]. Similar differences between two
cell lines resistant to the same drug were observed by our group previously. Although two cell lines
developed under the same conditions from the same parental cell line, they presented different profiles
of gene expression and different drug cross-resistance [11]. This finding indicates the complexities of
cancer development. From hundreds of genes that may be important in drug resistance, cells choose
some. The main mechanisms of resistance are usually the same (P-gp expression in the case of PAC
resistance), and less-important (complementary) mechanisms of drug resistance can be different. In
the second part of our study, we wanted to determine if the same genes are expressed after the first
exposure to PAC treatment at the beginning of PAC resistance development. The most important gene
in PAC resistance is MDR1, encoding P-gp [46]. We also previously described the expression of this
gene in PAC-resistant ovarian cancer cell lines [11,12]. Here, we observed that expression of the MDR1
gene started after 24 h of PAC exposure and increased in a time-dependent manner in the A2780 and
W1 cell lines. Upregulation of the MDR1 gene after the first contact with PAC confirms the significance
of this gene expression in PAC resistance. The second most important drug transporter is BCRP.
Its expression is related to TOP resistance in many cancers, including ovarian cancer [47], and was
described by our group in TOP-resistant ovarian cancer cell lines [11,48] and after short-term exposure
to TOP treatment [49]. Here, we observed increased expression of BCRP after short-term exposure to
PAC, with a maximum level after 48 h of treatment. To our knowledge, PAC is not a substrate of the
BCRP drug transporter [46], and we did not observe increased expression of BCRP in PAC-resistant
cell lines [11,48]. On the other hand, drug transporters from the ABC family are characterized by
low substrate specificity [46]. It is possible that after the first contact with PAC, cells increase the
expression of both transporters (BCRP and P-gp) to increase their chance to survive. Then, when the
expression of P-gp increases to a level that protects the cells, the expression of the less-effective BCRP
declines, as we observed. Next, we were interested in determining if the expression of “new” genes
can also be changed after short-term exposure to PAC. We did not observe any changes in NSBP1 gene
expression after short-term PAC exposure, suggesting that NSBP1 is not important at the beginning
of drug resistance development. We observed statistically significant downregulation of the PCDH9
gene after 48 and 72 h of PAC treatment in the A2780 cell line. No changes were observed in the W1
cell line. Downregulation of SEMA3A gene expression was also observed in only the A2780 cell line
after 48 and 72 h of treatment, with no changes observed in the W1 cell line. This finding suggests that
downregulation of PCDH9 and SEMA3A expression after short-term PAC exposure is important only
in the A2780 cell line. Downregulation after short-term exposure in PAC-resistant cell lines indicates
the significance of downregulation of these genes in PAC resistance development. C4orf18 is a poorly
described gene. Previously, we observed increased expression of this gene in CIS- and TOP-resistant
sublines of the A2780 cell line. Expression of this gene was also observed after short-term CIS or TOP
exposure [39]. Here, we observed increased expression after short-term PAC exposure, but in only the
A2780 cell line. However, we did not observe any changes in C4orf18 gene expression in PAC-resistant
cell lines (not shown). Therefore, we can conclude that expression of the C4orf18 gene is specific to
only the A2780 cell line and is important at the beginning of MDR development. Furthermore, C4orf18
expression may be drug type specific. Development of drug resistance can be explained by different
models. One of the most popular is the cancer stem cell model [50]. According to the CSC model
of drug resistance development, a small population of cells is resistant to chemotherapy, and after
exposure to drugs, these cells survive. The most popular marker of CSCs is expression of aldehyde
dehydrogenase 1A1 (ALDH1A1). According to this model, increased expression of ALDH1A1 after
PAC exposure can result not only from increased expression but also from changes in the proportion
between CSCs and other cell populations. The second alternative is even more probable because
previously we observed a very high population of ALDH+ cells in a W1PR1 cell line resistant to PAC
in comparison to a PAC-sensitive W1 cell line [40]. An ALDH+ population was also observed in
the A2780PR1 cell line (under review). Thus, increased drug resistance can result from an increased
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number of CSCs in PAC-resistant cell lines. Increased expression of ALDH1A1 can also result from
downregulation of PCDH9. It has been observed that overexpression of PCDH9 downregulates the
expression of ALDH1A1 in prostate cancer cell lines [21].

Here we discussed the expression of six genes that can be involved in PAC-resistance development
in ovarian cancer cell lines. The significance of these genes in primary and established PAC resistance
can be clearer in the correlation with another genes expression. Thus, in the future we are going to
perform the RNA microarray analysis to determine changes in gene expression pattern in primary and
established response to PAC-treatment. Because our study is a cell line study it has some limitations.
These limitations can be resolved by animal study [51,52]. In next step we are going to perform
in vivo experiments using mouse to determine the significance of investigated genes in drug resistance.
Animal study using cell lines with overexpression or knock down of investigated genes should offer
important information about the significance of their expression in drug resistance. In standard cell
culture condition cells develop mainly cell specific mechanism of drug resistance. In animal study
cells form tumor tissue like structure. In such structure another mechanism of drug resistance like
limited drug diffusion or cell adhesion mediated drug resistance (CAM-DR) can be important [53].
Thus, in vivo experiments should increase our knowledge about the role of investigated genes in
drug resistance.

During the last decade a big progress in cancer immunotherapy has been made [4]. Immunotherapy
can be also effective in case of drug resistance cancers. In immunomodulation strategy antibody
can restore and increase response against chemotherapy resistant cancers [54]. The chimeric antigen
receptor T (CAR-T) cells can eliminate tumor cells by binding of tumor-associated antigens [55].

Our drug resistant cell lines can be also used as a model to test a new anticancer compound in
in vitro and in vivo study using patient derived xenografts [52]. NT1014 is a new chemical compound
that was used in study using ovarian cancer cell lines. It inhibited cell proliferation and lead to
apoptosis in vitro and in vivo [56]. It would be interesting to test if our PAC-resistant cell lines are
sensitive or resistant to this agent. In conclusion, different anticancer therapies should be use together
to increase effectives and make cancer a treatable disease in most cases.

4. Materials and Methods

4.1. Reagents

PAC, RPMI-1640 and MEM media, foetal bovine serum, antibiotic-antimycotic solution,
and L-glutamine were purchased from Sigma (St. Louis, MO, USA).

4.2. Cell Lines and Cell Culture

In our study, we used two ovarian cancer cell lines: the established ovarian cancer cell line
A2780 and the primary ovarian cancer cell line W1. The human ovarian carcinoma A2780 cell line was
purchased from ATCC (Manassas, VA, USA). A2780 sublines that were resistant to PAC [A2780PR1 and
A2780PR2 (A2780 paclitaxel resistant)] were generated by exposing A2780 cells to PAC at incrementally
increasing concentrations. The human primary ovarian cancer cell line W1 was established using
ovarian cancer tissue obtained from an untreated patient. The W1 sublines resistant to PAC [W1PR1
and W1PR2 (W1 paclitaxel resistant)] were obtained by exposing W1 cells to PAC at incrementally
increasing concentrations. The final concentrations used for selecting the resistant cells was 1100 ng/mL
of PAC and was two-fold higher than the plasma concentrations of PAC two hours after intravenous
administration. The increase in resistance according to parental drug-sensitive cell lines were as
follows: 146-fold for A2780PR1 vs. A2780; 1202-fold for A2780PR2 vs. A2780; 743-fold for W1PR1 vs.
W1 and 967-fold for W1PR2 vs. W1 as described previously [12,48]. All the cell lines were maintained
as monolayers in complete medium [MEM (A2780) and RPMI-1640 medium (W1) supplemented
with 10% (v/v) foetal bovine serum, 2 pM L-glutamine, penicillin (100 units/mL), streptomycin
(100 units/mL) and amphotericin B (25 µg/mL)] at 37 ◦C in a 5% CO2 atmosphere.
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4.3. Incubation of Cells with PAC

In time course experiments, the A2780 and W1 cell lines were treated with PAC at concentrations of
20 ng/mL and 25 ng/mL for A2780 or 15 ng/mL and 20 ng/mL for W1. The starting cell concentration
was 0.4 × 106 (A2780 and W1) in 1 mL of medium per well of a 6-well plate. Cell count and viability
were determined before the cells were used in the different assays. Viability was determined by the
trypan blue exclusion criteria. Cells were harvested and used for RNA isolation 24, 48 and 72 h
after treatment.

4.4. Examination of Gene Expression by Q-PCR

Changes in PCDH9, MCTP1, NSBP1, SEMA3A, C4orf18, ALDH1A1, MDR1 and BCRP gene
expression in A2780 and W1 cell lines as well as in the PAC-resistant cell lines were examined. RNA
was isolated using a Gene Matrix Universal RNA Purification Kit (EURx, Ltd., Gdańsk, Poland) as
described by the manufacturer’s protocol. Reverse transcription was performed using M-MLV reverse
transcriptase (Invitrogen by Thermo Fisher, Waltham, MA, USA) as described in the manufacturer’s
protocol using a thermal cycler (Veriti 96-well Thermal Cycler, Applied Biosystems, 850 Lincoln Centre
Drive, Foster City, CA, USA); 2 µg of RNA was used for cDNA synthesis. Real-time PCR was performed
using a 7900HT Fast Real-Time PCR System (Applied Biosystems, 850 Lincoln Centre Drive, Foster
City, CA, USA), Maxima SYBR Green/ROX qPCR Master Mix (Thermo Fisher Scientific, Waltham,
MA, USA) and sequence-specific primers, as indicated in Table 1. Glyceraldehyde-3-phosphate
dehydrogenase (GADPH), β-actin, hypoxanthine-guanine phosphoribosyltransferase 1 (HRPT1) and
beta-2-microglobulin (β2M) served as the normalizing genes (geometric mean) against which changes
in the expression of examined genes were compared. Gene expression was analysed using the relative
quantification (RQ) method. RQ estimates the differences in the level of gene expression against
a calibrator (RQ of the calibrator = 1). The drug-sensitive cell lines (A2780 and W1) were used as
the calibrators. The analysis was conducted by employing the standard formula: RQ = [sample
(drug-resistant line) calibrator (drug-sensitive line)]. The graphs were made using SigmaPlot (Systat
Software GmbH Schimmelbuschstrasse 25 D-40699, Erkrath, Germany).

Table 1. Oligonucleotide sequences used for Q-PCR analysis.

Transcript Sequence (5′–3′ Direction) ENST Number Product Size

MCTP1
F AGAACCTCAACCCTGTGTGG

00000312216 123 bp
R AGGCTGAGCCCATAAAGTCA

PCDH9
F CTCTCCGGACAAGAGGACTG

00000544246 125 bp
R AGTGACCCAAAACCAAGCAC

NSBP1
F TGTGCCAGTTACACCAGAGG

00000358130 124 bp
R TTGCTTGGTTTCAGCAACTG

C4orf18
F GAGTACCCAAGCCTGAATCG

00000393807 137 bp
R ATCTTCCTTGCGAGGTCTGA

SEMA3A
F TGTTGGAGCAAAGGATCACA

00000265362 109 bp
R AGCCCACTTGCATTCATCTC

ALDH1A1
F GTTGTCAAACCAGCAGAGCA

00000165092 115 bp
R CTGTAGGCCCATAACCAGGA

MDR1
F TGACAGCTACAGCACGGAAG

00000265724 131 bp
R TCTTCACCTCCAGGCTCAGT

BCRP
F TTCGGCTTGCAACAACTATG

00000237612 128 bp
R TCCAGACACACCACGGATAA

GAPDH
F GAAGGTGAAGGTCGGAGTCA

00000229239 199 bp
R GACAAGCTTCCCGTTCTCAG

β-actin
F TCTGGCACCACACCTTCTAC

00000331789 169 bp
R GATAGCACAGCCTGGATAGC

HPRT1
F CTGAGGATTTGGAAAGGGTG

00000298556 156 bp
R AATCCAGCAGGTCAGCAAAG

B2M
F CGCTACTCTCTCTTTCTGGC

00000558401 133 bp
R ATGTCGGATGGATGAAACCC
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For amplification, 12.5 µL of Maxima SYBR Green/ROX qPCR Master Mix (Fermentas by Thermo
Fisher, Waltham, MA, USA), 1 µL of each primer (Oligo, Warsaw, Poland, Table 1), 9.5 µL of water,
and 1 µL of cDNA solution were mixed together.

One RNA sample from each preparation was processed without the RT-reaction to serve as a
negative control in the subsequent PCR. Sample amplification included a hot start (95 ◦C, 15 min)
followed by 45 cycles of denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 30 s, and extension at 72 ◦C
for 30 s. After amplification, melting curve analysis was performed to analyse the melting temperature
of the product. The amplification products were also resolved by 3% agarose gel electrophoresis and
visualized by ethidium bromide staining.

4.5. Statistical Analysis

The statistical analysis was performed using Excel software (Microsoft, Redmont, WA, USA).
The statistical significance of the differences was determined by applying Student’s t-test.

5. Conclusions

In summary, our results show the changes in the expression of new genes in response to
PAC treatment in ovarian cancer cell lines. The decreased expression of PCDH9, NSBP1, MCTP1
and SEMA3A genes suggests that downregulation of these genes is important in PAC resistance.
Upregulation of the BCRP and C4orf18 genes was characteristic of only the primary response to PAC.
The significance of these genes in the resistance to PAC has not been described previously and should
be further investigated. We also confirmed the significance of the MDR1 gene in the PAC response.
Upregulation of the ALDH1A1 gene suggests the role of CSCs in PAC resistance development in the
W1 cell line.
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