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Abstract: The enantioselective 5-exo-fluorocyclization of ene-oxime compounds was demonstrated
under phase-transfer catalysis. Although deprotonative fluorinations competed, the chemical yields
and the ee values of the desired isoxazoline products were generally moderate to good. The absolute
stereochemistry of the major isomer was determined to be S by comparison with the literature after
transformation of the product to the corresponding iodinated isoxazoline.
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1. Introduction

Isoxazoline framework has been recognized as a significant substructure of natural and
unnatural compounds [1,2], which possess various biological activities including anticancer
activity [3,4], FXa inhibitory activity [5], and antiparasitic activity [6–9]. Therefore, the construction
of isoxazoline has been actively studied [10–13]. Among various methods for isoxazoline synthesis,
a difunctionalization-type cyclization of ene-oxime is one of the major strategies. Cyclization reactions
with concomitant introduction of a fluoroalkyl group [14–17], a hydroxyl group [18,19], a thiocyanate
group [20], and an iodine group [21] have been reported so far.

Fluorine chemistry has contributed to pharmaceutical and agrochemical sciences, because an
introduction of fluorine atom(s) at an appropriate position often improves the property of the parent
compounds in terms of metabolic stability, lipophilicity, and so on [22–27]. Thus, a tremendous
amount of fluorination reactions, including the asymmetric versions have been investigated [28–30].
Reflecting that alkene is a useful feedstock in organic chemistry and easy to prepare, asymmetric
fluoro-functionalizations of alkenes have attracted increasing attention [31–37]. However, there is
no report of the asymmetric fluorocyclization of ene-oximes, while its racemic version was recently
reported in 2017 [38].

Our recent research interests include the asymmetric fluorofunctionalization of alkenes
by phase-transfer catalysis. In 2015, we reported the first successful example of asymmetric
fluorolactonization of ene-carboxylic acids using a hydroxymethyl carboxylate phase-transfer
catalyst [39]. Based on this study, we recently developed a linked-binaphthyl dicarboxylic acid
precatalyst 1, which was proven to be highly effective for the asymmetric fluorocyclization and the
deprotonative fluorination of allylic amides (Scheme 1a) [40,41]. In these reactions, hydrogen bonding
between the catalyst and the substrate was considered to be crucial for high asymmetric induction.
Considering pKa values of amide and oxime, we anticipated that oxime could interact with our anionic
phase-transfer catalyst through hydrogen bonds, which would define the conformation of the substrate
and/or a fluorinated carbocation intermediate. Our previous study suggested that the fluorocyclization
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of alkenes proceeds via the formation of a fluoro-carbocation intermediate [40,41]. If this is the case,
hydrogen bond interaction of the cationic intermediate with the catalyst seems essential, because
the intramolecular cyclization step is an enantio-determining step. Herein, we report our effort to
develop the enantioselective 5-exo-fluorocyclization of ene-oximes to provide fluorinated isoxazolines
(Scheme 1b).
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conditions (entry 12), albeit in only 4% yield. It should be noted that phosphoric acid 7, which is a 
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Scheme 1. Fluorofunctionalizations of alkenes with linked-binaphthyl dicarboxylic acid 1 and
Selectfluor: (a) Asymmetric 6-endo-type fluorocyclization of allylic amides; (b) Asymmetric
5-exo-fluorocyclization of ene-oximes.

2. Results and Discussion

Ene-oxime 2a [21] was chosen as a test substrate to optimize the reaction conditions (Table 1).
At first, the reaction was carried out with 1 under the previous cyclization conditions [40] and the
desired product, 3a, was obtained with 58% ee (entry 1). In this reaction, undesired byproducts were
simultaneously observed by 1H NMR analysis of the crude mixture. Although these byproducts
could not be purified at this point, 1H and 19F NMR analyses suggested that the byproducts were
deprotonative fluorination products 4a–6a. The enantioselectivity observed in chlorobenzene and
benzene was almost the same with that in toluene, but the reaction rate became somewhat slower
(entries 1–3). Use of CH2Cl2 and THF resulted in low chemical yield (entries 4 and 5). While Na2SO4

had a positive effect in improving the chemical yield in our previous case [40,41], it did not affect
the reaction efficiency in the present reaction (entries 1 and 6). Among bases tested, Na3PO4 was
found to be the base of choice in terms of the chemical yield of the desired product 3a (entries 6–11).
The enantioselectivity was almost similar (59%–61%), irrespective of the basicity and counter cation.
Proton sponge provided a low yield and a low enantioselectivity under the described conditions (entry
11). As seen in entry 12, the reaction rate became slower at 15 ◦C, but a better enantioselectivity was
observed (69% ee). In all cases, the yields based on the recovered starting material were around 65%.
Interestingly, the ee of 6a was as high as 77% under the optimized conditions (entry 12), albeit in only
4% yield. It should be noted that phosphoric acid 7, which is a commonly used precursor of anionic
phase transfer catalysts [33], did not promote the present reaction (entry 14), confirming the better
performance of our dicarboxylate catalyst.
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Table 1. Optimization of the reaction conditions. 1
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10 1 toluene K2CO3 3 -
11 1 toluene proton sponge 17 7

12 5 1 toluene Na3PO4 63 (58) 6 69
13 5 1 toluene Na2CO3 62 (58) 6 65
14 5 7 toluene Na3PO4 2 -

1 The reactions were carried out with 2a (0.1 mmol), precatalyst (10 mol %), Selectfluor (1.5 equiv), and base
(1.5 equiv) at 25 ◦C, unless otherwise mentioned. 2 The yields were determined by 1H NMR analysis using
1,1,2,2-tetrabromoethane as an internal standard. 3 The ee values were determined by HPLC analysis using a chiral
stationary column. 4 Run with Na2SO4. 5 Run at 15 ◦C for 72 h. 6 Isolated yield.

To determine the absolute stereochemistry of the major isomer, the fluorinated isoxazoline 3a was
transformed to the corresponding iodinated isoxazoline 8a with MgI2 using a sealed tube at 80 ◦C [42]
(Scheme 2). Although the conversion was modest, 8a could be obtained without erosion of the ee value.
The stereochemistry of the major isomer was determined to be S by comparing the retention time of
HPLC analysis with that reported in the literature [21]. This result indicates that the major isomer of
the present fluorocyclization is S.
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Scheme 2. Conversion of 3a to 8a to determine the stereochemistry of the major product.

Having optimized the reaction conditions, other ene-oximes were transformed to the corresponding
fluorinated isoxazolines (Figure 1). Reactions of para- and meta-methylated substrates proceeded to
give the corresponding isoxazoline products with good ee values (3b, 3c). However, ortho-substituent
retarded the reaction completely, probably due to the steric repulsion (3d). meta-Chlorinated
and para-fluorinated isoxazolines were formed with 77% ee and 73% ee, respectively (3e and 3f).
An ene-oxime bearing a cyclohexyl group was less reactive for the fluorocyclization and 3g was
obtained in only 12% yield, even at room temperature. The chemical structure on the oxime side
did not have a significant impact on the enantioselectivity (3h and 3i). To our delight, a substrate
having a thiophen group provided 3j in 69% with 84% ee. We additionally performed the SDE
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(self-disproportionation of enantiomer) test by achiral column chromatography [43]. The difference
between the first and the last fractions was less than 1% ee, suggesting that SDE did not occur. As
usual, all fractions were collected after the chromatographic purification.
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Figure 1. Fluorocyclization of ene-oximes.

To confirm the importance of hydrogen bond interaction between the oxime and the dianionic
catalyst 1, the following control experiment was carried out. Thus, when O-methylated compound 9
was subjected to the described reaction conditions, no reaction occurred at all and the starting material
9 was just recovered (Scheme 3). Since even deprotonated products were not formed, it is likely that
the hydrogen bond interaction has an important role in accelerating the fluorination step, in addition
to the enantioselectivity control.
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3. Materials and Methods

3.1. General Information

1H and 19F NMR spectra were measured on a JEOL ECX-500 spectrometer at 500 and 470 MHz,
respectively. 13C NMR spectra were recorded on a JEOL JNM-ECX-500 spectrometer at 125 MHz.
Chemical shifts were reported in parts per million (ppm) downfield from TMS (δ = 0) for 1H NMR.
For 13C NMR, chemical shifts were reported in the scale relative to CDCl3. For 19F NMR, chemical shifts
were reported in a scale relative to CFCl3 external standard (δ = 0 ppm). Column chromatography was
performed with silica gel N-60 (40–100 µm) purchased from Kanto Chemical Co., Inc. TLC analysis was
performed on Silica gel 60 F254-coated glass plates (Merck). Visualization was accomplished by means of
ultraviolet (UV) irradiation at 254 nm or by spraying an ethanol solution of 12-molybdo(VI)phosphoric
acid as a developing agent.

Dehydrated dichloromethane (CH2Cl2) and toluene were purchased from Wako Pure Chemical
Industries, Ltd. Dehydrated tetrahydrofuran (THF), diethyl ether (Et2O), and benzene were purchased
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from Kanto Chemical Co., Inc. Selectfluor was purchased from Aldrich. Other reagents were purified
by usual methods.

The substrates were synthesized according to the literature [21]. The catalysts were synthesized
according to the literature [40]. The 1H, 13C and 19F NMR spectra and HPLC data of compounds 3 are
available in the Supplementary Material.

3.2. Asymmetric Fluorocyclization of Ene-Oximes

To a solution of 2a (23.7 mg, 0.1 mmol), 1 (9.7 mg, 10 mol %), and Na3PO4 (24.6 mg, 1.5 equiv)
in toluene (1 mL), was added Selectfluor (53.1 mg, 1.5 equiv) at 15 ◦C under Ar atmosphere. After
stirring for 72 h at 15 ◦C, the reaction mixture was diluted with EtOAc and filtrated through a pad of
Celite. The filtrate was concentrated under reduced pressure. The resulting residue was purified by
column chromatography on silica gel (n-hexane/ethyl acetate = 20/1→ 15/1→ 10/1) to provide 3a as a
colorless solid (14.8 mg, 58%). The ee value was determined by chiral HPLC analysis.

5-(Fluoromethyl)-3,5-diphenylisoxazoline (3a). Colorless solid (58%, 14.8 mg). [α]27
D = 29.7

(c = 0.47, CHCl3). The ee value (69% ee) was determined by HPLC analysis using a chiralpack IG-3
(n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 11.4 min, t(major) = 20.6 min). 1H NMR
(500 MHz, CDCl3) δ = 7.69–7.67 (m, 2H), 7.53–7.51 (m, 2H), 7.43–7.38 (m, 5H), 7.36–7.33 (m, 1H), 4.64
(dd, J = 9.7, 47.5 Hz, 1H), 4.60 (dd, J = 9.7, 47.5 Hz, 1H), 3.89 (d, J = 16.6 Hz, 1H), 3.53 (dd, J = 2.3, 16.6
Hz, 1H). 13C NMR (125 MHz, CDCl3) δ = 156.2, 140.1 (d, J = 3.6 Hz), 130.3, 129.3, 128.7, 128.7, 128.4,
126.7, 125.5, 88.9 (d, J = 18.0 Hz), 85.5 (d, J = 183.5 Hz), 42.9 (d, J = 3.6 Hz). 19F NMR (470 MHz, CDCl3)
δ = −221.3 (t, J = 47.5 Hz, 1F). IR (neat): 2941, 1599, 1447, 1362, 1020, 980, 912 cm−1. HRMS (ESI) m/z
calcd. for C16H15FNO [M + H+]: 256.1132, found: 256.1131.

5-(Fluoromethyl)-3-phenyl-5-(p-tolyl)isoxazoline (3b). Colorless solid (46%, 12.7 mg). [α]29
D =

31.8 (c = 0.38, CHCl3). The ee value (47% ee) was determined by HPLC analysis using a chiralpack IG-3
(n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 13.4 min, t(major) = 23.5 min). 1H NMR
(500 MHz, CDCl3) δ = 7.67–7.66 (m, 2H), 7.42–7.37 (m, 5H), 7.21 (d, J = 8.0 Hz, 2H), 4.61 (dd, J = 10.0,
47.4 Hz, 1H), 4.57 (dd, J = 10.0, 47.4 Hz, 1H) 3.86 (d, J = 16.6 Hz, 1H), 3.51 (dd, J = 1.7, 16.6 Hz, 1H),
2.35 (s, 3H). 13C NMR (125 MHz, CDCl3) δ = 156.2, 138.2, 137.1 (d, J = 3.6 Hz), 130.2, 129.4, 129.3, 128.7,
126.6, 125.4, 88.9 (d, J = 18.0 Hz), 85.5 (d, J = 183.5 Hz), 42.8 (d, J = 3.6 Hz), 21.0. 19F NMR (470 MHz,
CDCl3) δ = −220.9 (t, J = 47.4 Hz, 1F). IR (neat): 2922, 1570, 1514, 1447, 1358, 978, 906 cm−1. HRMS
(ESI) m/z calcd. for C17H17FNO [M + H+]: 270.1289, found: 270.1287.

5-(Fluoromethyl)-3-phenyl-5-(m-tolyl)isoxazoline (3c). Colorless solid (48%, 12.9 mg). [α]28
D =

21.4 (c = 0.50, CHCl3). The ee value (54% ee) was determined by HPLC analysis using a chiralpack IG-3
(n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 8.7 min, t(major) = 12.4 min). 1H NMR
(500 MHz, CDCl3) δ = 7.69–7.68 (m, 2H), 7.41–7.39 (m, 3H), 7.35 (s, 1H), 7.30–7.29 (m, 2H), 7.17–7.15 (m,
1H), 4.63 (dd, J = 10.0, 47.6 Hz, 1H), 4.60 (dd, J = 10.0, 47.6 Hz, 1H), 3.88 (d, J = 16.6 Hz, 1H), 3.53 (dd,
J = 2.3, 16.6 Hz, 1H), 2.39 (s, 3H). 13C NMR (125 MHz, CDCl3) δ = 156.2, 140.0 (d, J = 3.6 Hz), 138.5,
130.2, 129.3, 129.1, 128.7, 128.6, 126.6, 126.1, 122.5, 88.9 (d, J = 18.0 Hz), 85.6 (d, J = 183.5 Hz), 42.8 (d,
J = 3.6 Hz), 21.5. 19F NMR (470 MHz, CDCl3) δ = −221.1 (t, J = 47.6 Hz, 1F). IR (neat): 2955, 1600,
1487, 1447, 1364, 1011, 922 cm−1. HRMS (ESI) m/z calcd. for C17H17FNO [M + H+]: 270.1289, found:
270.1286.

5-(3-Chlorophenyl)-5-(fluoromethyl)-3-phenylisoxazoline (3e). Colorless oil (54%, 15.6 mg). [α]27
D

= 33.3 (c = 0.19, CHCl3). The ee value (77% ee) was determined by HPLC analysis using a chiralpack
IG-3 (n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 8.8 min, t(major) = 10.2 min).
1H NMR (500 MHz, CDCl3) δ = 7.68–7.66 (m, 2H), 7.53 (s, 1H), 7.41–7.39 (m, 4H), 7.36–7.31 (m, 2H),
4.62 (dd, J = 10.0, 47.0 Hz, 1H), 4.56 (dd, J = 10.0, 47.0 Hz, 1H), 3.88 (d, J = 16.6 Hz, 1H), 3.50 (dd, J = 2.3,
16.6 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ = 156.2, 142.3 (d, J = 2.4 Hz), 134.8, 130.4, 130.1, 128.9,
128.8, 128.6, 126.7, 125.9, 123.7, 88.3 (d, J = 19.2 Hz), 85.1 (d, J = 183.5 Hz), 43.1 (d, J = 3.6 Hz). 19F NMR
(470 MHz, CDCl3) δ = −221.6 (t, J = 47.0 Hz, 1F). IR (neat): 2940, 1597, 1572, 1447, 1358, 1034, 995,
910 cm−1. HRMS (ESI) m/z calcd. for C16H14ClFNO [M + H+]: 290.0742, found: 290.0743.
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5-(Fluoromethyl)-5-(4-fluorophenyl)-3-phenylisoxazoline (3f). Colorless solid (54%, 14.8 mg).
[α]28

D = 27.6 (c = 0.40, CHCl3). The ee value (73% ee) was determined by HPLC analysis using a
chiralpack IG-3 (n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 10.1 min, t(major) = 17.1
min). 1H NMR (500 MHz, CDCl3) δ = 7.68–7.66 (m, 2H), 7.51–7.48 (m, 2H), 7.42–7.38 (m, 3H), 7.11–7.08
(m, 2H), 4.61 (dd, J = 9.7, 47.5 Hz, 1H), 4.57 (dd, J = 9.7, 47.5 Hz, 1H), 3.88 (d, J = 16.6 Hz, 1H), 3.49 (dd,
J = 2.3, 16.6 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ = 162.6 (d, J = 247.1 Hz), 156.2, 136.0 (t, J = 3.6
Hz), 130.4, 129.1, 128.8, 127.4 (d, J = 8.4 Hz), 126.7, 115.7 (d, J = 21.6 Hz), 88.4 (d, J = 19.2 Hz), 85.3 (d,
J = 183.5 Hz), 43.1 (d, J = 3.6 Hz). 19F NMR (470 MHz, CDCl3) δ = −113.5–−113.6 (m, 1F), −221.1 (t,
J = 47.5 Hz, 1F). IR (neat): 1601, 1508, 1447, 1360, 1221, 1159, 1028, 918 cm−1. HRMS (ESI) m/z calcd.
for C16H14F2NO [M + H+]: 274.1038, found: 274.1034.

5-Cyclohexyl-5-(fluoromethyl)-3-phenylisoxazoline (3g). Colorless oil (12%, 3.1 mg). [α]29
D =

45.8 (c = 0.34, CHCl3). The ee value (65% ee) was determined by HPLC analysis using a chiralpack
IG-3 (n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 8.2 min, t(minor) = 9.2 min). 1H
NMR (500 MHz, CDCl3) δ = 7.68–7.66 (m, 2H), 7.41–7.39 (m, 3H), 4.53 (dd, J = 9.7, 47.0 Hz, 1H), 4.49
(dd, J = 9.7, 47.0 Hz, 1H), 3.22 (d, J = 1.7 Hz, 2H), 1.82–1.78 (m, 5H), 1.71–1.69 (m, 1H), 1.32–1.05 (m,
5H). 13C NMR (125 MHz, CDCl3) δ = 155.7, 130.0, 129.6, 128.7, 126.5, 90.2 (d, J = 16.8 Hz), 84.2 (d,
J = 177.5 Hz), 42.6 (d, J = 2.4 Hz), 37.9 (d, J = 6.0 Hz), 27.2, 26.5, 26.2, 26.1, 26.1. 19F NMR (470 MHz,
CDCl3) δ = −229.6 (t, J = 47.0 Hz, 1F). IR (neat): 2922, 1595, 1447, 1360, 1009, 926 cm−1. HRMS (ESI)
m/z calcd. for C16H21FNO [M + H+]: 262.1602, found: 262.1609.

3-(4-Bromophenyl)-5-(fluoromethyl)-5-phenylisoxazoline (3h). Colorless solid (37%, 12.4 mg).
[α]28

D = 22.5 (c = 0.39, CHCl3). The ee value (56% ee) was determined by HPLC analysis using a
chiralpack IG-3 (n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 12.9 min, t(major) = 20.4
min). 1H NMR (500 MHz, CDCl3) δ = 7.55–7.49 (m, 6H), 7.43–7.40 (m, 2H), 7.36–7.33 (m, 1H), 4.63 (dd,
J = 10.3, 47.1 Hz, 1H), 4.59 (dd, J = 10.3, 47.1 Hz, 1H), 3.86 (d, J = 16.6 Hz, 1H), 3.50 (dd, J = 2.3, 16.6 Hz,
1H). 13C NMR (125 MHz, CDCl3) δ = 155.3, 139.8 (d, J = 4.8 Hz), 131.9, 128.8, 128.5, 128.2, 128.1, 125.4,
124.5, 89.3 (d, J = 18.0 Hz), 85.5 (d, J = 184.7 Hz), 42.6 (d, J = 3.6 Hz). 19F NMR (470 MHz, CDCl3) δ =

−221.2 (t, J = 47.1 Hz, 1F). IR (neat): 2951, 1589, 1489, 1447, 1396, 1356, 1246, 989 cm−1. HRMS (ESI) m/z
calcd. for C16H14BrFNO [M + H+]: 334.0237, found: 334.0237.

3-(3-Chlorophenyl)-5-(fluoromethyl)-5-phenylisoxazoline (3i). Colorless oil (58%, 16.8 mg). [α]28
D

= 43.5 (c = 0.30, CHCl3). The ee value (79% ee) was determined by HPLC analysis using a chiralpack
IG-3 (n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 8.1 min, t(major) =9.7 min). 1H
NMR (500 MHz, CDCl3) δ = 7.66 (s, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.43–7.40 (m,
2H), 7.38–7.31 (m, 3H), 4.64 (dd, J = 10.3, 47.1 Hz, 1H), 4.60 (dd, J = 10.3, 47.1 Hz, 1H), 3.87 (d, J = 16.6
Hz, 1H), 3.51 (dd, J = 2.3, 16.6 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ = 155.2, 139.7 (d, J = 3.6 Hz),
134.7, 131.0, 130.2, 130.0, 128.8, 128.5, 126.7, 125.4, 124.7, 89.4 (d, J = 18.0 Hz), 85.5 (d, J = 184.7 Hz),
42.5 (d, J = 3.6 Hz). 19F NMR (470 MHz, CDCl3) δ = −221.2 (t, J = 47.1 Hz). IR (neat): 3063, 2947, 1595,
1560, 1429, 1344, 1028, 918 cm−1. HRMS (ESI) m/z calcd. for C16H14ClFNO [M + H+]: 290.0742, found:
290.0724.

5-(fluoromethyl)-5-phenyl-3-(3-thiophen-2-yl)isoxazoline (3j). Colorless solid (69%, 18.0 mg).
[α]28

D = 14.3 (c = 0.25, CHCl3). The ee value (84% ee) was determined by HPLC analysis using a
chiralpack IG-3 (n-hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, t(minor) = 11.8 min, t(major) = 21.6
min). 1H NMR (500 MHz, CDCl3) δ = 7.52–7.50 (m, 2H), 7.43–7.38 (m, 3H), 7.36–7.33 (m, 1H), 7.21–7.20
(m, 1H), 7.06–7.04 (m, 1H), 4.63 (dd, J = 10.3, 47.5 Hz, 1H), 4.59 (dd, J = 10.3, 47.5 Hz, 1H), 3.90 (d,
J = 16.2 Hz, 1H), 3.53 (dd, J = 2.6, 16.2 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ = 152.0, 139.8 (d, J =

3.6 Hz), 131.7, 128.8, 128.5, 128.5, 128.4, 127.3, 125.5, 89.1 (d, J = 18.1 Hz), 85.3 (d, J = 183.5 Hz), 43.6
(d, J = 3.6 Hz). 19F NMR (470 MHz, CDCl3) δ = −221.1 (t, J = 47.5 Hz). IR (neat): 3084, 2943, 1600,
1491, 1437, 1024, 982, 907 cm−1. HRMS (ESI) m/z calcd. for C14H13FNOS [M + H+]: 262.0696, found:
262.0695.
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4. Conclusions

In this paper, we have demonstrated the enantioselective 5-exo-fluorocyclization of ene-oximes
using the linked-binaphthyl dicarboxylic acid precatalyst 1. The corresponding fluorinated isoxazolines
were obtained with up to 84% ee, and the stereochemistry of the major isomers were determined to
be S after transformation to known isoxazoline 8a with an iodomethyl unit. A control experiment
revealed that hydrogen bond interaction of the oxime group is extremely important for the reaction
acceleration and the enantioselectivity control. Further applications of the present fluorinating system
are underway in our laboratory.

Supplementary Materials: The following are available online, 1H, 13C, and 19F NMR spectra of compounds 3
and HPLC data of compounds 3.
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