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Abstract

Motivation: Many high-throughput screening studies have been carried out in cancer cell lines to identify therapeutic
agents and targets. Existing consistency assessment studies only examined two datasets at a time, with conclusions based
on a subset of carefully selected features rather than considering global consistency of all the data. However, poor concord-
ance can still be observed for a large part of the data even when selected features are highly consistent.

Results: In this study, we assembled nine compound screening datasets and three functional genomics datasets.
We derived direct measures of consistency as well as indirect measures of consistency based on association be-
tween functional data and copy number-adjusted gene expression data. These results have been integrated into a
web application—the Functional Data Consistency Explorer (FDCE), to allow users to make queries and generate
interactive visualizations so that functional data consistency can be assessed for individual features of interest.

Availability and implementation: The FDCE web tool and we have developed and the functional data consistency
measures we have generated are available at https://lccl.shinyapps.io/FDCE/.

Contact: ling.cai@utsouthwestern.edu or yang.xie@utsouthwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Personalized therapy has revolutionized clinical treatment of cancer.
Many high-throughput functional screening studies have been per-
formed in search of subtype-specific vulnerabilities—pharmacogen-
omics screenings for new agents and gene dependency screenings for
new targets. The consistency among data generated from these
screens has been a hot topic of interest with sometimes inconsistent
findings from different assessments (Cancer Cell Line Encyclopedia
and Genomics of Drug Sensitivity in Cancer, 2015; Dempster et al.,
2019; Haibe-Kains et al., 2013; Haverty et al., 2016; Morgens et al.,
2016; Safikhani et al., 2016). All of these reproducibility assess-
ments performed to-date only examined two datasets at a time and
conclusions of consistency were often based on a limited set of care-
fully selected features. It is important to realize that in the broad dis-
tribution of consistency measures, poor concordance can still be
observed for a large part of the data even when selected features are

highly consistent. Such discordance may arise from variations in ex-
perimental design or result from the lack of differential sensitivity
among the cell lines. For researchers interested in a specific com-
pound or gene, it has been a daunting task to identify relevant infor-
mation about data consistency from the existing screens. To enable
efficient re-use of these valuable datasets, we have assembled nine
pharmacogenomics screening datasets and three gene essentiality
screening datasets and have derived consistency measures on a per-
feature basis. We also developed a user-friendly web application for
result retrieval and visualization.

2 Materials and methods

2.1 Compound sensitivity data download and processing
‘NCI60’ compound sensitivity screening data was downloaded from
https://discover.nci.nih.gov/cellminer/loadDownload.do, the CellMiner
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website (Reinhold et al., 2012) as ‘DTP_NCI60_ZSCORE.xlsx’ on
August 15, 2020. Cell lines ADR-RES, MDA-N were removed due to
contamination as noted by cell line database Cellosaurus (Bairoch, 2018).
Some cell line names were manually corrected to match names used in
other datasets. For example, ‘786O’ (last character being letter ‘O’) was
changed to ‘7860’ (last character being number ‘0’). ‘CCLE’ compound
sensitivity screening (Barretina et al., 2012) data was downloaded from
the DepMap portal as ‘CCLE_NP24.2009_Drug_data_2015.02.24.csv’.
The associated annotation file was downloaded as
‘CCLE_NP24.2009_profiling_2012.02.20.csv’. ‘GDSC’ compound sensi-
tivity screening (Iorio et al., 2016; Picco et al., 2019) data ‘sanger-dose-
response.csv’ (Release 8.1, October 2019) was downloaded on
November 27, 2020 from the DepMap portal. Duplicated AUC data
from GDSC1 and GDSC2 for the same cell line and same compound
were averaged. CCLE_ID was mapped from DepMap_ID based on ‘sam-
ple_info.csv’ downloaded from 20Q2 data release. The associated annota-
tion file was downloaded as ‘screened_compounds_rel_8.0.csv’ on August
12, 2019. ‘CTRP’ compound sensitivity screening (Seashore-Ludlow
et al., 2015) data was downloaded from the DepMap portal as
‘v20.data.curves_post_qc.txt’ extracted from ‘http://ctrpv2.0_2015_ctd2_
expandeddataset.zip’, ‘v20.meta.per_compound.txt’ was used as com-
pound annotation. Replicate data for the same cell lines were averaged.
Majority of the cell line names were replaced by matching CCLE_ID. The
remaining cell lines were renamed with the CCLE_ID naming convention
in NAME_DISEASE format. PRISM compound sensitivity screening
(Corsello et al., 2020) datasets were downloaded from the DepMap por-
tal 19Q4 release. For ‘PRISM_1ST’ (the primary screen), the compound
sensitivity data was downloaded as ‘primary-screen-replicate-collapsed-
logfold-change.csv’. Compound annotation was downloaded as ‘primary-
screen-replicate-collapsed-treatment-info.csv’. For ‘PRISM_2nd’ (the sec-
ondary screen), the compound sensitivity data was downloaded as ‘sec-
ondary-screen-dose-response-curve-parameters.csv’. Compound
annotation was downloaded as ‘secondary-screen-replicate-collapsed-
treatment-info.csv’. ‘POPS’ data was previously published (McMillan
et al., 2018) as Supplementary Table ‘table6_chemical_screen_data.xlsx’.
‘ChenNSCLC’ data was previously published (Chen et al., 2019) as
Supplementary Table ‘S4_NSCLC_data’. ‘PolleySCLC’ data (Polley et al.,
2016) was downloaded as ‘data_nciSclc_act.txt’ from https://discover.nci.
nih.gov/SclcCellMinerCDB/ (Tlemsani et al., 2020). Compound annota-
tion was downloaded as ‘Table_Drugs_Synonyms_cdb.txt’.

2.2 Compound name mapping
R package ‘webchem’ was used to query PubChem (Kim et al.,
2016) for mapping compounds to PubChem IDs. For each dataset,
compound names and all associated synonyms (if available) were
used for mapping first, then SMILES strings were used for mapping
the remaining unmapped compounds. For the NCI60 compounds
that still failed to map, Substance IDs were used to query PubChem
for matching PubChemIDs. After queries were made for all com-
pound sensitivity datasets, the results were combined to identify
groups of compound annotation entries with shared compound
names or PubChemIDs. For each of these groups, the most frequent
compound name and PubChemID were chosen to represent the
other members of the group. The compound names in each dataset
were then updated with the new representative compound names.
Compound with more than one records has ‘(n)’ appended to its
name for each record. The original names used for the compound
and the associated annotations were still retained in the metadata
file for each compound sensitivity datasets.

2.3 Cell line name mapping
For datasets downloaded from DepMap, RRID provided from the
metadata table was used. For other datasets without RRIDs in the
metadata, RRIDs and disease were retrieved from the Cellosaurus
API(Bairoch, 2018) through queries and data conversion using R
packages ‘httr’ and ‘jsonlite’. Disease status annotated by
Cellosaurus were matched to cancer lineage defined by DepMap
and appended to the cell line name. Groups of cell line synonyms
matched to the same RRID were identified and replaced with a
unique cell line name.

2.4 Gene dependency data download and processing
Gene dependency data were all downloaded from the DepMap por-
tal. RNAi gene dependency data ‘demeter’ was downloaded as
‘D2_combined_gene_dep_scores.csv’ from DEMETER2 Data v6
(McFarland et al., 2018), CRISPR gene dependency data ‘achilles’
was downloaded as ‘Achilles_gene_effect.csv’ from the 20Q4 data
release (2020), ‘sanger’ was downloaded as ‘gene_effect.csv’ (2019).

2.5 Generation of consistency measure ‘r.summary’
We filtered out pairwise correlations from less than 10 cell lines. For
compound screening datasets that have within-study replicates,
when multiple pairwise inter-study correlations are available for a
specific study pair, z-score transformation is applied and only the
correlation corresponding to the largest z-score is retained. After
this filtering, if there is only one pair of correlation left, this is used
as the r.summary; otherwise meta-analysis is performed with R
package ‘metacor’ to implement the DerSimonian-Laird (DSL)
random-effect meta-analytical approach with correlation coeffi-
cients as effect sizes, as described by Schulze (2004). For indirect
consistency assessment, while a secondary correlation calculation
was performed for two sets of compound/gene feature-versus-
transcriptome correlation coefficients from the paired studies, in-
stead of using the number of genes from the transcriptome as the
sample size for meta-analysis input, we used the number of overlap-
ping cell lines from the dataset pair with transcriptomic data avail-
able as the substitute sample size so that the weight for the random
effect model would be similar to the direct assessment.

2.6 Bimodal distribution determination
To dichotomize samples into two groups, R package ‘mclust’ was
use to implement Gaussian mixture modeling with assumption of
two clusters with equal variance. Bimodal index (BI) is determined
for the same model, following the method described by Wang et al.
(2009). A higher BI value is indicative of a stronger bimodal
distribution.

2.7 Determination of drug market status
We performed literature search and found WITHDRAWN—a data-
base of withdrawn and discontinued drugs (Siramshetty et al.,
2016). We downloaded lists of 270 ‘withdrawn’ compounds and
308 ‘discontinued’ compounds from with WITHDRAWN web
page. According to WITHDRAWN, ‘withdrawn’ drugs are those
recalled from market in at least one country due to toxic/side effects
whereas ‘discontinued’ drugs are those recalled due to reasons other
than safety, such as ineffectiveness of drug. 44 of the withdrawn and
45 of the discontinued compounds could be found in our summary
consistency measure table. For all the remaining drugs, we used the
drug group annotation from DrugBank (Wishart et al., 2006). We
excluded compounds with missing annotation or with annotations
as ‘vet_approved’ or ‘nutraceutical’, and we combined ‘experimen-
tal’ and ‘investigational’ into one group.

2.8 Indirect consistency assessment
RNA-seq gene expression data and copy number data from CCLE
(Ghandi et al., 2019) was downloaded from the DepMap portal as
‘CCLE_depMap_19Q1_TPM.csv’ and ‘public_19Q1_gene_cn.csv’
on April 29, 2019. From the expression data, genes with variance of
zero were removed from the dataset. As the standard method, only
RNA-seq data was used; to apply the GRACE method as we previ-
ously described (Cai et al., 2017), for every gene we use the copy
number as the predictor variable and the RNA-seq gene expression
as the response variable to fit a linear regression model. The resid-
uals from the resulting fit were saved as copy number-adjusted gene
expression data. For each indirect assessment, we first computed the
Pearson correlation coefficients between the functional data features
and the expression data for each dataset, and then for each pair of
datasets, we performed correlation of the previously computed cor-
relation coefficients to get a single correlation coefficient for each
functional data feature.
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2.9 Determination of gene signature associated with

vorinostat sensitivity or ZEB1 dependency
To identify mechanistically relevant gene signatures for vorinostat
sensitivity or ZEB1 dependency, the top 100 genes positively or
negatively associated with the functional data of interest were used
to run hypergeometric tests with genesets collected in the curated
Chemical and Genetic Perturbations (c2cgp) library of the molecular
signatures databases (MSigDB) (Subramanian et al., 2005) collec-
tions. R package ‘fgsea’ was used for loading the geneset library.
Resulting P-values were adjusted for multiple comparison by the
Benjamini-Hochberg procedures and filtered by adjusted P-values.
‘LEE_DIFFERENTIATING_T_LYMPHOCYTE’ (Lee et al., 2004)
(P.adj ¼ 6.2e-36) was used as the T lymphocyte signature, whereas
‘AIGNER_ZEB1_TARGETS’ (Aigner et al., 2007) (P.adj ¼ 1.4e-15)
was selected as the ZEB1 target gene set.

2.10 Web application construction
The web application is a shiny app deployed at the shinyapps.io
servers and implemented through the following R packages:
‘Cairo’, ‘data.table’, ‘dplyr’, ‘DT’, ‘GGally’, ‘ggplot2’, ‘mclust’,
‘patchwork’, ‘plotly’, ‘RColorBrewer’, ‘shiny’, ‘shinycssloaders’,
‘shinydashboardPlus’, ‘shinyjs’, ‘shinythemes’, ‘shinyTree’,
‘slickR’ and ‘tidyr’.

2.11 Other R packages used for analyses
All analyses were conducted in R (version 3.6.1). Other than the
packages mentioned before, the following R packages were also
used for data wrangling: ‘openxlsx’, ‘plyr’, ‘tidyverse’, ‘reshape2’.
The following R packages were also used for statistical analyses:
‘stats’, ‘Hmisc’, ‘propagate’, ‘ffbase’. The following R packages
were used for visualization of graphs: ‘ggrastr’, ‘ggridges’, ‘ggrepel’,
‘grid’, ‘gridGraphics’, ‘gridExtra’, ‘cowplot’.

3 Results

3.1 Harmonization of datasets
A schematic diagram that summarizes the work in this study is pro-
vided as Supplementary Figure S1. To begin, we collected nine com-
pound screening datasets and three dependency datasets for
analyses. Among the compound screening datasets, ‘CCLE’
(Barretina et al., 2012), ‘CTRP’ (Basu et al., 2013), ‘GDSC’ (Iorio
et al., 2016), ‘NCI-60’ (Reinhold et al., 2012), ‘PRISM_1st’ and
‘PRISM_2nd’ (Corsello et al., 2020) are pan-cancer screens. The
remaining compound screening datasets are specific for lung cancer
cell lines: ‘POPS’ (McMillan et al., 2018) is a high-throughput
screening (HTS) dataset for non-small cell lung cancer (NSCLC) cell
lines; ‘PolleySCLC’ (Polley et al., 2016) is an HTS dataset for small
cell lung cancer (SCLC) cell lines; ‘ChenNSCLC’ (Chen et al., 2019)
is a dataset from manual screening of NSCLC cell lines. As summar-
ized in Supplementary Table S1, while multiple measures are often
available from a screen, we used the area under the dose response
curve (AUC) whenever possible. There are generally fewer missing
values with AUC data as it does not require extrapolation and can
always be estimated from the dose-response curve. It has also been
shown that better agreement is observed between datasets from
AUC-based correlation compared to that from IC50 (Haibe-Kains
et al., 2013). As indicated in Supplementary Table S1, we processed
the datasets to make the lower value in each dataset always corres-
pond to higher sensitivity. For the compound screening datasets, we
identified the corresponding PubChem IDs (see material and meth-
ods) for each compound. The map rates for the nine datasets are be-
tween 80% and 100% (Fig. 1a). For dependency datasets, unique
gene symbols were used as feature names. We also mapped the cell
lines to Research Resource Identifiers (RRID) from cell line database
Cellosaurus (Bairoch, 2018) and derived names with lineage suffix
(Supplementary Table S2). These standardization procedures allow
us to maximize the identification of overlapping compounds and
cell lines across datasets (Fig. 1).

3.2 Compound screening data consistency is stable

from intra-study and inter-study measures
Several compound screening datasets contain replicate measures for
the same drug. We identified these replicates and assessed within-
study consistency. As expected, the pairwise correlation from these
replicates are generally more positive than all other pairwise correla-
tions from the same dataset (Fig. 2a). We then assessed inter-study
consistency by pairing all possible studies and performed correlation
of functional data with the shared cell lines. Generally positive cor-
relations were observed for all pairs of studies (Fig. 2b). However,
for both intra-study and inter-study assessments, we observed that
some compounds are always more consistent than others. We high-
lighted the EGFR inhibitor ‘Erlotinib’ as a more consistent example
and c-Met inhibitor ‘PHA-665752’ as a less consistent example. For
each example compound, similar degrees of consistency were seen
across all pairwise assessments (Fig. 2c and d and Supplementary
Fig. S2a and b). Using meta-analysis of the Pearson correlation coef-
ficients, we generated ‘r.summary’ values for 1707 compounds that
were found in at least two datasets (Fig. 2e). Erlotinib has an r.sum-
mary of 0.62, at the 98th percentile ranked by consistency, whereas
PHA-665752 has an r.summary of 0.1 at the 40th percentile. We fur-
ther compared the ‘r.summary’ from inter-study assessments to that
from intra-study assessments on 384 compounds and observed good
agreement (Fig. 2f). These findings suggest the degree of consistency
is rather stable for compound screening data.

3.3 Perturbations against functionally important targets

result in more bimodally distributed data and better

consistency across studies
We next examined gene dependency data. Replicates are not avail-
able from such studies, so we only examined inter-study consistency.
We made the assessment separately for a group of cancer driver

Fig. 1. Summary of compound and dependency screening datasets. (a) Frequency of

compound overlap across datasets. The percentage of overlapping compounds were

colored differently by the number of overlapping datasets. Text above each color

bar denotes compound frequency in counts (percentage) format. b-c, The number of

overlapping compounds (b) or cell lines (c) across nine compound screening data-

sets. (d,e) The number of overlapping genes (d) or cell lines (e) across three gene de-

pendency screening datasets
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genes annotated as oncogenes by the COSMIC Cancer Gene Census
(Sondka et al., 2018) versus all other genes. Consistency for these
cancer genes is generally higher than the remaining genes (Fig. 3a).
We examined the distribution of dependency scores for the top 10
most consistent cancer genes in all three datasets and observed
skewed and bimodal distribution (Fig. 3b). In contrast, with the
same kind of assessment for 10 inconsistent genes that do not belong
to the oncogene panel, we did not observe such distribution
(Fig. 3c). We reasoned that in functionally relevant subsets of cancer
cell lines defined by a particular oncogenic driver, functional per-
turbation with drug or gene silencing against that pathway should
result in biomodally distributed data. We derived the bimodal index
(BI) as previously defined (Wang et al., 2009), for all genes in each
datasets to represent the level of bimodal distribution. The relation-
ship between inter-data consistency and bimodal distribution were
assessed and comparison was made between cancer genes and the
rest of the genes (Fig. 3d). We observed a positive correlation be-
tween the consistency measure ‘r.summary’ and bimodal indices
from each of the three datasets, and these associations are more
prominent for the cancer genes. Agreements among the bimodal in-
dices from different datasets were also stronger for cancer genes
(Fig. 3d). Similar relationships were observed for compound screen-
ing datasets as well (Supplementary Fig. S3a). In particular, in the

dataset ‘PRISM_1st’ where compound annotations by disease area
were available, we further compared the relationship in oncology
drugs and non-oncology drugs. The data for oncology drugs were
found to be more consistent with the other datasets and also more
bimodally distributed (Supplementary Fig. S3b and c). These obser-
vations suggest that in functional screens, chemical or genetic per-
turbation of functionally important targets often result in bimodally
distributed data and are more likely to be consistent across different
studies. To see if the degree of consistency also associates with suc-
cess rate of the drug, we also examined the compound consistency
by market status (Supplementary Fig. S3d). Lower ‘r.summary’ was
observed for compounds that were withdrawn or discontinued from
the market, compared to those in the ‘approved’, ‘experimental’ or
‘investigation’ status (Siramshetty et al., 2016; Wishart et al., 2006).

3.4 Transcriptomic association-based correlation pro-

vides a useful indirect assessment of functional data

consistency
Having performed direct assessments by correlating response meas-
urements from datasets, we also conducted indirect assessments by
first deriving correlation between gene expression and functional
screening data, then correlating the resulting correlation coefficients

Fig. 2. Compound screening data consistency is stable from intra-study and inter-study measures. (a) Within-study consistency of compound screening data assessed from repli-

cates. For each of the five datasets, pairwise correlations were computed for all features. Comparison was made for correlations between replicates versus all other pairwise

correlations. The number of pairwise correlations and the number of associated drugs under each type were provided on the plot as well. Density was scaled to have maximum

at 1 for each plot. (b) Inter-study consistency of compound screening data. From the nine compound screening datasets, consistency was evaluated for 32 pairs of datasets (out

of all 36 possible combinations, 4 pairs do not have enough overlapping cell lines for analysis). Distribution of pairwise correlation coefficients from all overlapping com-

pounds in each pair of inter-study assessment were shown as density plots. Values for consistent example compound Erlotinib and inconsistent example compound PHA-

665752 were marked as colored points. c-d, Forest plots showing meta-analysis of inter-study correlation for Erlotinib (c) or PHA-665752 (d). (e) Density plot showing distri-

bution of inter-study consistency summary measure ‘r.summary’ for 1707 compounds. f, Scatterplot showing relationship between intra-study and inter-study ‘r.summary’

over 384 compounds. Pearson correlation coefficient is provided on the upper left corner. *, P-value < 0.05
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for all the genes, between pairs of datasets. This was performed with
two methods, a standard approach using only the gene expression
data and a copy number-adjusted gene expression data. We previ-
ously demonstrated that this ‘genomic regression analysis of coordi-
nated expression’ (GRACE) denoising approach improves
association analyses involving cancer transcriptomic data (Cai et al.,
2017). In the analysis for the compound sensitivity screening data-
sets, we found that in some cases, indirect assessments resulted in
better agreement than direct assessments, and such improvement is
more dramatic by the GRACE method compared to the standard
method (Fig. 4a). For example, vorinostat, a histone deacetylase
(HDAC) inhibitor clinically used to treat cutaneous T-cell lymph-
oma has an r.summary of 0.37 from direct correlations, whereas
this value increases to 0.56 from GRACE indirect correlations
(Fig. 4b and c). In particular, the correlation between CTRP and
GDSC datasets increased from 0.59 to 0.97. It turns out that CTRP
and GDSC are the only two studies that have screened a large num-
ber of leukemia cell lines for sensitivity against vorinostat (Fig. 4d),
and these cell lines of hematopoietic lineage were consistently sensi-
tive in both screens (Fig. 4e). The association between vorinostat
and gene expression from CTRP and GDSC are highly consistent,

likely explained by the robust association between drug sensitivity
and to lineage-specific gene expression patterns (Fig. 4f).

We also performed comparison of direct and indirect correla-
tions for dependency screening datasets. Similar results were
observed. The improvement on consistency is especially prominent
for oncogenes (Fig. 4g). We provided a detailed example analysis
for ZEB1, a transcriptional repressor for epithelial genes (Fig 4g–
i). The r.summary from direct correlation is 0.386, and it increased
to 0.661 in the GRACE indirect correlation. In all three depend-
ency datasets, ZEB1 expression most negatively correlated with
the ZEB1 dependency scores, whereas target genes of ZEB1 are
mostly positively correlated with the ZEB1 dependency scores
(Fig. 4i).

3.5 A Functional data consistency explorer
We constructed a web application, ‘Functional Data Consistency
Explorer’ (FDCE, at https://lccl.shinyapps.io/FDCE/), to provide
tools for users to assess data consistency on a per-feature basis.
Tutorial slides are provided to introduce users to the three main
functions of the app—‘Overall Consistency’ for reviewing the

Fig. 3. Dependency inter-study consistency. (a) Density plots showing distribution of pairwise correlation coefficients from correlating gene effect scores among three depend-

ency datasets. Comparison of correlations was made between oncogenes and all other genes (coral versus turquoise). (b) Density plots showing distribution of the 10 most con-

sistent cancer genes in three dependency datasets. Samples were classified into low and high groups by Gaussian mixture modeling assuming equal variance, and the

distribution of each group was plotted as well. (c) Density plots showing distribution of the 10 least consistent non-cancer genes in three dependency datasets. In both b and c,

bimodal index (BI) was calculated and printed on the upper left corner of each plot. A higher BI value is indicative of a stronger bimodal distribution. (d) Pairwise scatterplot

matrix showing the relationship between inter-study consistency measure ‘r.summary’ and BI from each of the three dependency datasets, with comparison made between

oncogenes and all other genes (coral versus turquoise). Lower triangular panels show the actual datapoints with 2D density plots overlaid. Diagonal panels are distribution of

each measure in the form of density plots. Upper triangular panels provide statistics from Pearson correlation. ***, P-value < 0.001
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consistency measures we derived with global and feature-specific
views; ‘Pairwise Scatterplots’ for reviewing the actual pairwise rela-
tionship between datasets; and ‘Datasets’ for view and downloading
data and metadata used in this study.

In the ‘Overall Consistency’ page, users can examine and
download the overall consistency results for 1707 compounds
across 9 compound screening datasets or 17 966 genes across 3 de-
pendency screening datasets, with both the direct and indirect
assessments we described in this paper (Fig. 5). As an example to
showcase the web application, we highlight vorinostat (as exam-
ined in Fig. 4a–f). Upon submission of this feature of interest, and
specification of the type of input correlation for meta-analysis, the
density plots are updated to mark the vorinostat inter-study cor-
relation coefficients. This also generates a forest plot from meta-
analysis and pulls out a table to display all inter-study pairwise
correlations for this feature. Along with this example, we also
examined belinostat, a compound with similar mechanism of
actions (moa) (Supplementary Fig. S4a). Similar degree of consist-
ency could be found for bellinostat, and like vorinostat, between
CTRP and GDSC datasets, the indirect correlation is also much
higher than direct correlation. Similar analyses could also be
performed for dependency screening results, as shown in
Supplementary Figure S4b.

From the ‘Pairwise Scatterplots’ tab panel, users may choose a
compound or gene feature of interest and visualize the relationship
among the different measures of this feature across different datasets
in the form of a scatterplot matrix with Pearson correlation statis-
tics. In the interactive scatterplots, cell lines are colored by the can-
cer lineage type. We also visualize the distribution of each measure
with model-based dichotomization and calculate the associated bi-
modal index (Supplementary Fig. S5).

All the processed datasets used for this paper and FDCE web ap-
plication can be previewed and downloaded from the ‘Datasets’ tab
panel (Supplementary Fig. S6).

4 Discussion

In this study, we integrated multiple functional screening datasets
for assessment of consistency. Across datasets, we observed that
some features are more consistent than others and that the degree
of consistency is rather stable. There could be several underlying
reasons for consistent inconsistency. Variations in experimental
conditions, such as cell growth conditions or types of assays, are a
common concern. In the case of compound screening, drug con-
centration ranges and definition of output measures could affect
data reproducibility (Hatzis et al., 2014). In the case of depend-
ency screening, discordance could arise from differences in gene
deactivation approach (RNAi versus CRISPR-Cas9) (Lin and
Sheltzer, 2020), differences in sgRNA library and duration of the
screen (Dempster et al., 2019). But we believe a key reason is that
many targets are functionally unimportant, therefore many meas-
urements are idiosyncratic within an individual experiment rather
than true signals. This is supported by our observation that com-
pound screening data are more consistent for oncology drugs and
gene dependency screening data are more consistent for onco-
genes. Therefore, for wet lab scientists who want to pursue a
compound or gene of interest with functional studies, the degree
of data consistency could help them gauge the necessity of careful
assay optimization and the validity of the target itself in the
in vitro setting. For dry lab scientists who devise algorithms to
predict functional outcomes, the degree of data consistency could
help set the expectation for prediction accuracy.

In our compound screening dataset collection, we have three lung
cancer-specific datasets and six pan-cancer datasets. This predominance
is a result of the successful lung cancer cell line development and re-
search efforts (Gazdar et al., 2010) in confrontation with this most dead-
ly cancer. In an attempt to evaluate data consistency in a lineage-specific
manner, we found the consistency measures are inadvertently noisier for
lineage-specific subsets compared to those from complete pan-cancer
datasets, due to the much smaller sample size (Supplementary Fig. S7).
For this reason, we based our analyses on the full datasets.

Fig. 4. Comparison of direct and indirect assessment on functional screening data-

sets. (a) Density plot showing distribution of direct indirect consistency measures

on 1707 compounds for inter-study consistency assessment. For indirect assess-

ment, standard method uses RNA-seq expression data whereas GRACE method

uses copy number-adjusted RNA-seq expression data. For each distribution, dens-

ity was scaled to have maximum of 1. (b,c) Forest plots showing meta-analysis of

inter-study consistency for vorinostat by direct (b) or indirect (c) assessment.

While sample sizes for direct assessment were determined as the number of over-

lapping cell lines with non-missing functional data, the sample sizes for indirect

assessment were determined as the number of overlapping cell lines with copy

number-adjusted gene expression data. Note that pairwise correlation for CTRP

versus GDSC increased from 0.59 in (b) to 0.97 in (c). (d) Number of cell lines

belonging to hematopoetic or other cancer lineages for the nine compound

screening datasets. (e) Scatterplot showing compound screening data (area under

the dose response curve, AUC, lower value corresponds to higher sensitivity) for

vorinostat from CTRP and GDSC. Cell lines with hematopoetic lineage are plot-

ted as green dots. (f) Scatterplot showing values of correlation coefficients from

association between vorinostat AUC data (from GDSC or CTRP) and copy num-

ber-adjusted transcriptomic data. Genes mapped to a T lymphocyte gene signa-

ture from ‘LEE_DIFFERENTIATING_T_LYMPHOCYTE’ (Lee et al., 2004)

were plotted as purple dots. (g) Density plot showing distribution of direct indir-

ect consistency measures on 17 966 genes for inter-study consistency assessment.

Assessments were made separately for cosmic defined oncogenes and all other

genes. (h) Scatterplot matrix showing relationship among gene effect data (lower

value corresponds to higher lethality) for ZEB1 from all three dependency data-

sets. (i) scatterplot matrix showing values of correlation coefficients from associ-

ation between ZEB1 deactivation effect data and copy number-adjusted

transcriptomic data. Datapoints for ZEB1 and ZEB1 repressed targets were col-

ored. In both (f) and (i), negative correlations suggest higher gene expression is

associated with higher sensitivity
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We also used the correlation between functional data and
denoised gene expression data to derive indirect consistency
measures. As gene expression data are often used for chemosensi-
tivity prediction (Staunton et al., 2001); and association between
basal gene expression data and functional screening data can also
elucidate the moa (Rees et al., 2016), this indirect measure of
consistency may help infer the likelihood of establishing success-
ful predictive signatures or identification of bona fide mechanism
of action. In addition, missing values are common in functional
screening data. For certain features, this could result in a very
small overlap of cell lines with direct measures. With gene ex-
pression data available for most of the cell lines used for func-
tional screens, indirect assessment also partly alleviates this
problem.

In conclusion, assessment of data consistency should be made on
a per-feature basis. We demonstrated the importance and feasibility
of such approach and devised web tools for users to make such
assessments and develop further insights.
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Data availability

Processed data used for this paper and the web application can be down-

loaded from https://lccl.shinyapps.io/FDCE/ under the ‘Datasets’ section.

Fig. 5. Snapshot taken from the FDCE web application for assessment of compound data consistency. Under the ‘Overall Consistency’ tab panel, users may choose to assess data

consistency for compound or dependency screening data. Both distribution of direct and indirect (by GRACE method) assessment results are visualized. The top density plot panel

represents distribution of ‘r.summary’, summarized from all inter-study correlations, whereas the bottom panel with multiple subplots visualizes distribution for each study pair.

Upon submission of a feature to highlight and specification of the type of input pairwise correlation for meta-analysis, the datapoints corresponding to the inter-study correlation

coefficients associated with the feature of interest are added to the plots and a forest plot showing results from meta-analysis will be shown below. On the right side of the web

page, the top table lists the consistency summary statistics for all overlapping features across the dataset, as well as additional information about the features. Left of the table are

column options for display. In this particular table, as vorinostat is a HDAC inhibitor, we checked to display the ‘moa’ and searched ‘chromatin’ as a keyword to identify addition-

al compounds with similar moa. The bottom table contains pairwise correlation results for all study pairs specific to the feature of interest and is only rendered when user submits

a feature to highlight. Annotations for column names in overall consistency table for drug screening data: ‘target’, the drug target; ‘target.source’, the source of ‘target’ annotation;

‘moa’, mechanism of drug action; ‘moa.source’, source of ‘moa’ annotation; the ‘direct’ statistics are from direct correlations of functional screening data; the ‘indirect’ statistics

are from correlations of correlations between copy number-adjusted gene expression data and functional screening data; ‘pairs’ refer to the number of dataset pairs for which cor-

relation was calculated; ‘meta-analysis’ indicates whether the feature-specific statistics is based on meta-analysis. Annotations for column names in pairwise consistency table for a

specific drug: ‘cid’, PubChem ID; ‘unique_Drug_Name.1’ or ‘unique_Drug_Name.2’, compound name used for ‘dat1’ or ‘dat2’, note that when replicates exist for the same study,

these names will end with ‘(n)’; ‘n.cell’, number of cell lines in the pairwise correlation; ‘n.feature’, number of features overlapping for the two datasets
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Source codes for the FDCE web tool are available at https://github.com/cail

ing20/FDCE, the input data for FDCE is available at https://doi.org/10.5061/

dryad.95x69p8kq.
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