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Abstract: Selenoprotein P (SELENOP) is an established biomarker of selenium (Se) status. Serum
SELENOP becomes saturated with increasing Se intake, reaching maximal concentrations of 5–7 mg
SELENOP/L at intakes of ca. 100–150µg Se/d. A biomarker for higher Se intake is missing. We hypothesized
that SELENOP may also reflect Se status in clinical applications of therapeutic dosages of selenite. To this
end, blood samples from two supplementation studies employing intravenous application of selenite at
dosages >1 mg/d were analyzed. Total Se was quantified by spectroscopy, and SELENOP by a validated
ELISA. The high dosage selenite infusions increased SELENOP in parallel to elevated Se concentrations
relatively fast to final values partly exceeding 10 mg SELENOP/L. Age or sex were not related to
the SELENOP increase. Western blot analyses of SELENOP verified the results obtained by ELISA,
and indicated an unchanged pattern of immunoreactive protein isoforms. We conclude that the saturation
of SELENOP concentrations observed in prior studies with moderate Se dosages (<400 µg/d) may reflect
an intermediate plateau of expression, rather than an absolute upper limit. Circulating SELENOP seems
to be a suitable biomarker for therapeutic applications of selenite exceeding the recommended upper
intake levels. Whether SELENOP is also capable of reflecting other supplemental selenocompounds in
high dosage therapeutic applications remains to be investigated.

Keywords: supplementation; trace element; monitoring; chemotherapy; adjuvant treatment

1. Introduction

The essential trace element selenium (Se) is needed for the biosynthesis of selenoproteins and,
therefore, is of fundamental importance for human health [1]. An insufficient daily intake causes
a low Se status, characterized by a marginal expression of selenoproteins [2]. Certain tissue- and
gene-specific mechanisms ensure that the most essential organs like the brain and endocrine tissues
remain preferentially supplied in times of low intake, and that the most essential selenoproteins are
preferentially biosynthesized [3]. Population-wide Se deficiencies are observed in certain areas of
Africa and Asia and have been associated with three endemic and Se-responsive diseases, that is,
myxedematous cretinism [4], Kashin–Beck disease [5], and Keshan disease [6]. European populations
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are considered as only moderately supplied, and low Se status has been described as a risk factor
for certain diseases, for example, cancer at several sites, autoimmune thyroid, or cardiovascular
disease [7–9]. More than one biomarker has been determined in a subset of these studies, where low Se
status was related to disease risk, disease severity, or odds of convalescence, for example, in studies
of hepatocellular [10], colorectal [11], or prostate cancer [12]; traumatic brain injury [13]; neonatal
infection [14]; or genetically impaired selenoprotein expression [15]. In most of these analyses, the three
Se status biomarkers—total serum Se concentration, plasma glutathione peroxidase (GPX3) activity,
and level of the transport protein selenoprotein P (SELENOP)—accorded well and displayed a high
correlation, particularly in studies with marginally supplied subjects. For reasons of stability, response
range, and standardization, total serum or plasma Se and SELENOP concentrations, respectively,
appear as the most reliable and meaningful Se status parameters [2,16,17].

In Se supplementation studies, SELENOP constitutes a particular suitable biomarker of Se status,
and its concentration increases over a wider range of Se intakes than GPX3 [16,18,19]. However,
similar to GPX3, circulating SELENOP shows saturable kinetics in time-resolved analyses or dosage
escalation trials, reaching maximal expression levels of 5–7 mg SELENOP/L [2,16,20]. The Se dosages
applied in these kinetic or dose escalation studies were typically below the tolerable upper intake
level (UL), that is, below 400 µg Se/day [21]. Yet, some populations are at a constant supply exceeding
this recommended threshold [22], and clinical trials using Se for therapeutic purposes sometimes
apply higher dosages, especially in the intensive care unit (ICU), when trying to support patients with
systemic inflammatory response syndrome or sepsis [23–26]. A reliable biomarker of Se status for such
therapeutic intakes exceeding the UL is missing, and no suitable candidate has been suggested [2].
We speculated that therapeutic selenite administrations exceeding the UL may nonetheless be mirrored
in increasing circulating SELENOP concentrations, and that 5–7 mg SELENOP/L do not yet constitute
the absolute maximum. In order to test this hypothesis, samples from two separate high dosage trials
with i.v. applications of selenite were analyzed. Our data support the notion of circulating SELENOP
as the long sought biomarker for therapeutic Se applications in a clinical setting.

2. Materials and Methods

2.1. Clinical Samples

Samples from two clinical trials employing high dosage selenite treatment were analyzed in this
study, that is, from the Selenite in the Treatment of Patients with Carcinoma (SECAR) phase I trial in cancer
patients [27], and from the High-dose Sodium Selenium Supplementation in Patients With Left Ventricular
Assist Device (SOS-LVAD) study of cardiac patients with end-stage heart failure undergoing surgery for
implementation of a ventricular assist device (ClinicalTrials.gov, Identifier: NCT02530788). The trials
obtained ethical approval by the respective Ethical Committees of Stockholm (ethic vote 2006/429-31/3)
and RWTH Aachen University (ethic vote EK 249/13), respectively. All patients provided informed
written consent prior to enrollment, and the studies were conducted in accordance with the principles
of Helsinki.

2.2. SECAR Study Design

The SECAR phase I trial is an open-label dose-escalation study with sodium selenite (Intro-Selen i.v.,
Pharma Nord ApS, Vojens, Denmark) as single agent [27]. In total, 34 patients with different malignancies
were enrolled [27]. Plasma samples of a subset (n = 9 males and n = 12 females, age range (median
(interquartile range, IQR); 62 (59.0, 65.5) y) were analyzed in this study. Each treatment group consisted
of three to six patients receiving the same daily dosage starting with 0.5 mg Se/m2 (i.e., 1.1 mg of sodium
selenite per square meter per day). If intolerable toxicity was not observed, the next patient received
a higher dosage according to a prefixed dose escalation schedule with the following amounts: 1, 1.5, 2, 3,
4.5, 6.8, 10.2, 12.8, and 15.3 mg Se/m2. If 1/3 of the patients had intolerable toxicity, three more patients
were included, as described [27]. If 2/3 or 2/6 of the patients had intolerable toxicity, this dosage level
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was considered too high and the former dose level was considered the maximal tolerated dose (MTD).
Unfortunately, not all blood drawings were conducted as scheduled for different reasons, for example,
treatment break for the occurrence of intolerable toxicity, on behalf of the patient’s own will, because of
HIV infection, or because of unsuccessful attempts to get a blood sample. The treatment groups received
10 treatments during two weeks (no treatment during weekends) (Figure 1A). Blood was collected 5 min
prior and post infusion, and plasma was isolated and stored at −80 ◦C until analyses.
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The SOS-LVAD study enrolled cardiac surgery patients scheduled to undergo implantation of a 
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samples covering different time points of this intervention study from almost half of the patients (n 
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selenite (SelenaseTM i.v., Biosyn GmbH, Fellbach, Germany) the evening before surgery, followed by 
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(baseline) and during surgery, and thereafter. 

2.4. Selenium Measurement and SELENOP Quantification by ELISA and Western Blot Analysis 

Plasma Se concentrations were quantified by total reflection X-ray fluorescence (TXRF), as 
described previously [11,17]. SELENOP concentrations were measured by a validated commercial 
SELENOP-specific ELISA (selenOtestTM, selenOmed GmbH, Berlin, Germany) as described [28]. For 
Western blot (WB) analysis, standard curves were generated using diluted NIST 1950 reference 
plasma (National Institute of Standards and Technology, Gaithersburg, MD 20899, USA) with known 
SELENOP values [28,29]. A commercial mouse monoclonal antibody (Selenoprotein P, B-9, Catalog 
# sc-376858, dilution; 1:500) and an in-house antibody (dilution 1:2000 [28]) were used for SELENOP 
detection, in combination with horseradish peroxidase-conjugated secondary antibody (Dako rabbit 
anti-mouse, 1:3000). Samples (0.1 µL of NIST 1950 plasma or patient sample) were separated by 12% 
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Figure 1. Clinical studies involving intravenous selenite treatment. (A) In the Selenite in the Treatment of
Patients with Carcinoma (SECAR) phase 1 clinical study, cancer patients received an infusion of different
dosages of sodium selenite once per weekday, with a break at the weekend, for two or four cycles.
Plasma samples were taken before infusion and at day 5. (B) In the SOS-LVAD study, patients received
placebo or 300 µg of selenite the day before surgery, placebo or 3 mg of selenite after induction of
anesthesia before surgery, and placebo or 1 mg of selenite (*) directly after completion of surgery and
daily during the stay on the intensive care unit (ICU) for a maximum of 14 days. Plasma samples were
collected at each time point prior to infusion with placebo or selenite.

2.3. SOS-LVAD Study Design

The SOS-LVAD study enrolled cardiac surgery patients scheduled to undergo implantation of
a ventricular assist device for the hemodynamic support of a failing heart. In total, 21 patients were
assessed for eligibility and randomly assigned to one of the treatment groups. One patient was lost
for follow-up, so that 10 versus 10 patients were treated with Se and placebo, respectively. A set of
samples covering different time points of this intervention study from almost half of the patients (n = 9)
was available for this analysis. Patients in the intervention group received 300 µg of sodium selenite
(SelenaseTM i.v., Biosyn GmbH, Fellbach, Germany) the evening before surgery, followed by a high
dose of intravenous selenite supplementation (3.0 mg after induction of anesthesia, 1.0 mg after surgery,
and 1.0 mg daily during their ICU stay for a maximum of 14 days) or placebo (Figure 1B). Plasma samples
were collected at each time point, that is, prior to the supplementation, before (baseline) and during
surgery, and thereafter.

2.4. Selenium Measurement and SELENOP Quantification by ELISA and Western Blot Analysis

Plasma Se concentrations were quantified by total reflection X-ray fluorescence (TXRF),
as described previously [11,17]. SELENOP concentrations were measured by a validated commercial
SELENOP-specific ELISA (selenOtestTM, selenOmed GmbH, Berlin, Germany) as described [28].
For Western blot (WB) analysis, standard curves were generated using diluted NIST 1950 reference
plasma (National Institute of Standards and Technology, Gaithersburg, MD 20899, USA) with known
SELENOP values [28,29]. A commercial mouse monoclonal antibody (Selenoprotein P, B-9, Catalog #
sc-376858, dilution; 1:500) and an in-house antibody (dilution 1:2000 [28]) were used for SELENOP
detection, in combination with horseradish peroxidase-conjugated secondary antibody (Dako rabbit
anti-mouse, 1:3000). Samples (0.1 µL of NIST 1950 plasma or patient sample) were separated by 12%
SDS-PAGE (Bio-Rad, Stockholm, Sweden), and transferred to a 0.20 µm pore-sized PVDF membrane
(Bio-Rad). Membranes were incubated with primary antibodies diluted in 5% milk overnight at
4 ◦C, washed three times with TBST (20 mM Tris, 150 mM NaCl, 0.1% Tween-20), incubated with
secondary antibody diluted in 5% milk for 1 h at room temperature (RT), and developed with enhanced
chemiluminescence (WesternBright Sirius HRP substrate, Advansta, San Jose, CA, USA). Digital images
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were acquired using LiCor Odyssey Fc imaging system, and quantification of immunoreactive bands
was carried out by Image Studio Lite (version 5.2).

2.5. Statistical Analysis

Statistical analysis was performed with the Statistical Package for the Social Sciences (SPSS Statistics 21®,
IBM, Chicago, IL, USA) and GraphPad Prism software (Version 7, GraphPad Software Inc., San Diego, CA,
USA), respectively. Normal distribution of values was assessed by the Shapiro–Wilk test. Paired two-tailed
t-tests were applied to compare subjects before and after treatment. The relationship between parameters
was tested by Pearson’s correlation analysis. For not-normally distributed variables, the Mann–Whitney
U-test, the Wilcoxon-test, and the Spearman’s correlation test were used. The quantified Western blot
signals were analyzed using nonparametric tests. Linear regression analysis was conducted to specify
associations of variables. The results were considered as statistically significant when the p-value was less
than 0.05, and differences are marked as follows: p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). Parametric data
are represented as means ± standard deviation (SD), and nonparametric data by medians and interquartile
range (IQR).

3. Results

3.1. Correlation of Plasma Selenium and SELENOP Levels Before and After Supplementation

The median Se status of the subjects enrolled into the SECAR study at baseline was 3.4 mg
SELENOP/L (IQR; 2.0–4.5 mg/L), and 58.8 µg Se/L (IQR; 43.8–77.5 µg/L), respectively. These values are
lower than the average Se status of healthy Europeans, who displayed concentration of 84.8 µg Se/L
and 4.4 mg SELENOP/L, respectively, in a large cross-sectional analysis of almost 2000 subjects [11].
The plasma SELENOP and Se concentrations showed a linear positive association (Pearson r = 0.7839,
95% confidence interval (CI) (0.5323, 0.9083), p < 0.0001) at baseline (Figure 2A), but not after four days
of intravenous selenite infusion, that is, after high dosage Se intake (Figure 2B).
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elevated upon supplemental Se in clinical trials, allowing a tight monitoring of compliance [30]. 
Following the i.v. administration of therapeutic dosages of selenite in severely sick cancer patients of 
the SECAR trial, SELENOP levels increased strongly to values exceeding the expected maximal level 
reported in prior studies, that is, to concentrations of >7 mg SELENOP/L (Figure 3A). The incremental 
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Figure 2. Se status at baseline and after four days of selenite infusion in the SECAR study. (A) Plasma
Se and selenoprotein P (SELENOP) levels were linearly correlated at baseline, that is, at day 1 before
supplementation. (B) The two biomarkers of Se status showed no correlation after four daily selenite
infusions on day 5. Pearson’s correlation analysis; n = 21 data pairs (left) and 20 data pairs (right),
respectively. CI, confidence interval.

3.2. SELENOP Increases in Cancer Patients in Relation to Time, Selenite Dosage, Age, and Sex

SELENOP constitutes an established biomarker of Se status, and circulating SELENOP levels
are elevated upon supplemental Se in clinical trials, allowing a tight monitoring of compliance [30].
Following the i.v. administration of therapeutic dosages of selenite in severely sick cancer patients of
the SECAR trial, SELENOP levels increased strongly to values exceeding the expected maximal level
reported in prior studies, that is, to concentrations of >7 mg SELENOP/L (Figure 3A). The incremental
increase in SELENOP (difference of SELENOP before and after selenite infusion) was on average in
the range of 4 mg/L, and independent of the selenite dosage infused (Figure 3B), age (Figure 3C),
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or sex (Figure 3D) of the patients. Individual responses are provided as supplement (Supplementary
Figure S1).
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Figure 3. Increase of Se status biomarkers after four days of selenite infusions in the SECAR trial in
relation to time, dosage, age, and sex. Cancer patients received different amounts of Se (i.v.) daily,
ranging from 1 to 33.4 mg selenite/m2. (A) SELENOP concentrations increased strongly from baseline
on day 1 (before) to day 5 (after) daily infusions. Incremental SELENOP increase was independent of
(B) Se dosage infused, (C) age, or (D) sex of the patient. Analysis of SELENOP levels before and after
supplementation were done by paired two-tailed t-test; ***, p < 0.0001.

3.3. Validation of ELISA-Based SELENOP Quantification Results by Western Blot Analysis

The SELENOP concentrations determined by ELISA in the Se-treated cancer patients were
unexpected, and some were exceptionally high. In order to validate the data and test for potential
SELENOP isoforms that may have affected the quantification by ELISA, a commercially available and
an in-house SELENOP-specific monoclonal antibody were used in Western blot analyses of patient
samples and the NIST1540 reference plasma with defined SELENOP content. The intensities of the
Western blot signals increased in proportion to the SELENOP amounts applied, irrespective of the
antibody used (Figure 4A,B). The typical pattern of two adjacent SELENOP bands at around 55 kD was
detected in both analyses, consistent with the predicted molecular weight of SELENOP [31]. Testing
a set of representative plasma samples from the Se-treated patients, correctly sized and distinct bands of
SELENOP were detected by both antibodies, and the signal strengths correlated positively and linearly
to the results determined by ELISA (Figure 4C,D).Nutrients 2020, 12, x FOR PEER REVIEW 6 of 11 
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Plasma samples from the NIST1540 reference sample were used for optimizing and standardizing
SELENOP quantification by Western blot with (A) an in-house and (B) a commercial antibody.
(C) Western blot-based analysis detected the typical SELENOP band pattern. (D) Western blot results
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3.4. Response of SELENOP Levels to High Dosages of Intravenous Selenite in Cardiac Surgery Patients

The second cohort of samples was derived from patients undergoing elective cardiac surgery
scheduled to undergo implantation of a ventricular assist device, which participated in a randomized
controlled clinical trial of selenite supplementation. Plasma samples were taken before surgery (day 0),
and at 1, 3, 5, and 7 days after the administration of the blinded investigational product. Total Se
concentrations increased in the majority of patients during the time-period of analysis, partly reaching
values exceeding 100 µg Se/L (Figure 5A). In parallel, SELENOP concentrations increased, and after five
and seven days, three out of eleven samples displayed concentrations exceeding 10 mg SELENOP/L
(Figure 5B). Under normal circumstances, similarly high SELENOP concentrations are not observed,
and only 1 out of almost 2000 samples displayed a level of >10 mg SELENOP/L in a cross-sectional
analysis of healthy European subjects, that is, with a frequency of less than 1 permille [11].Nutrients 2020, 12, x FOR PEER REVIEW 7 of 11 
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Figure 5. Time-resolved analysis of Se and SELENOP increase upon selenite infusion in cardiac surgery
patients enrolled into the SOS-LVAD study. (A) Se concentrations increase in most of the cardiac
patients undergoing elective heart surgery and selenite infusions (left); patient characteristics not yet
de-blinded. (B) SELENOP concentrations increase in most of the patients in parallel to Se, partly
reaching values of >7 or even >10 mg SELENOP/L after 5 or 7 d of selenite infusion (right).

4. Discussion

Our analyses were conducted in order to investigate whether circulating SELENOP concentrations
may constitute a suitable biomarker of Se status in therapeutic application of high dosages of selenite in
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the clinical setting. We expected to observe maximal concentrations in the range of 5–7 mg SELENOP/L,
as reported earlier from analytical supplementation studies [16,18,32]. To our surprise, SELENOP
concentration increased beyond the presumed maximal value and even exceeded 10 mg/L in several
patients receiving high dosages of selenite by i.v. administration. This result indicates that the maximal
plasma levels of SELENOP described in prior studies may indicate a plateau of expression in response
to intakes up to or around the UL (400 µg Se/d), but do not yet reflect the upper possible protein levels
under an exceedingly high therapeutic Se supply. Our findings thus challenge the current concept
on “saturation of SELENOP biosynthesis” at a maximal level upon a replete Se intake. Notably, our
results are not in disagreement with the earlier studies, as no SELENOP analyses were ever conducted
on samples from patients receiving selenite in dosages of >1 mg Se/d by i.v. application. We conclude
that circulating SELENOP constitutes a biomarker for monitoring clinical trials with therapeutic
dosages of supplemental selenite. Moreover, this notion may offer a new molecular explanation for
the development of selenosis, that is, clinical signs of Se-related toxicity, by taking supraphysiological
biosynthesis of SELENOP and SELENOP-dependent Se transport into target tissues into account that
may develop upon excessive Se intakes, overcoming the plateau observed in prior studies of oral Se
supplementation with lower dosages (Figure 6).
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Figure 6. Circulating SELENOP concentrations as biomarkers of Se intake and Se status. Optimal
supply with the essential trace element Se can be defined by reaching a plateau concentration of
SELENOP in the range of 6–7 mg/L. This is not achieved by the current recommended dietary
allowance (RDA), but requires higher intake in the range of 100–150 µg/day, depending on personal and
environmental parameters (genotype, age, sex, health). Intervention studies regularly use supplemental
Se in the dosage of up to 200 µg/day, that is, below the tolerable upper intake level (UL), resulting in
concentrations still in the range of the saturated plateau of SELENOP expression. Current studies using
therapeutic selenite concentrations in the range of several mg/day via i.v. application result in elevated
SELENOP concentrations beyond the plateau, not observed before in clinical trials.

Two sets of clinical samples from independent supplementation trials formed the basis for this
analysis. Both trials applied dosages of or exceeding 1 mg selenite/d, thereby exceeding the UL
considerably. The rationale for applying these therapeutic dosages was based on several pre-clinical
and analytical findings and considerations. In cancer, an Se deficit constitutes a risk factor for poor
survival [33–35]. Cancer cells are in need of certain selenoproteins for their survival and proliferation,
for example, certain GPX and thioredoxin reductase (TXNRD) isoenzymes [36]. Accordingly, tumors
display the tendency of accumulating selenocompounds, causing increased intracellular Se concentrations
that may act as cytotoxic agents [37,38]. It is thus conceivable to try to poison tumors by applying
therapeutic amounts of Se that are within the window of the maximal tolerated dose [39]. Such a phase I
study in terminally ill cancer patients was the Selenite in the Treatment of Patients with Carcinoma (SECAR)
trial [27]. The dosages causing the first adverse effects amounted to several mg of selenite per square
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meter of body surface per day, and were much higher than anticipated. In comparison, the rationale for
applying selenite in heart patients is different, as a severe Se deficit develops during cardiac surgery,
resulting from myocardial ischemia/reperfusion and the following inflammatory response [40]. Under
these conditions, a low Se status constitutes a risk factor for post-surgical complications and organ
dysfunction [41]. Accordingly, intravenous therapeutic selenite supplementation prior to and during
surgery is tested in an ongoing randomized clinical trial as a promising adjuvant measure for avoiding
severe Se deficits aimed at improving surgical success and post-surgery course [9]. Both studies are in
need of a Se-responsive biomarker for monitoring fate and anabolic effects of supplemental selenite.
A measurement of total plasma Se concentrations would reflect successful i.v. application of selenite,
that is, determine the drug applied, but would not be suitable to indicate metabolic fate or physiological
effects of the supplemental trace element.

Circulating SELENOP seems to fulfill the requirements for a biomarker under these conditions.
In both studies, the patients displayed baseline SELENOP concentrations below the European average,
that is, below 4.4 mg SELENOP/L [11]. As expected, Se and SELENOP concentrations correlated tightly at
the baseline, and increased in parallel in both studies, similar to the findings in other Se supplementation
trials that monitored both biomarkers [16,18–20]. In the prior studies, saturation of SELENOP was
observed when analyzing the dynamics of different dosages of supplemental selenomethionine [18],
or when analyzing different Se-containing supplements ranging from 50 to 200 µg Se/d [16]. None of
these studies applied dosages of selenite of 1.0 mg/d or greater, and accordingly, none observed resulting
concentrations of 10 mg SELENOP/L or greater. Whether the elevated SELENOP concentrations observed
in our analyses are the result of the choice of the intravenous application route, or the choice of using
selenite as a supplemental selenocompound instead of Se-enriched yeast or selenomethionine, remains
to be studied. Similarly, whether or not clinical success of the therapeutic Se applications is associated
with an increase in SELENOP concentrations is unknown.

Changes in plasma SELENOP concentrations are transient following selenite supplementation,
and the half-life of SELENOP may be in the range of 3–4 h, as determined with experimental rodents [42].
Under the assumption of a comparable stability of SELENOP in human blood, a continuous Se
supplementation seems to be a prerequisite for maintaining the high plasma SELENOP levels intended in
the clinical trials analyzed. On the other hand, the dynamic behavior of SELENOP concentrations is also of
particular importance for a potentially toxic trace element like Se—a chronic excess of which may become
harmful [43]. For these reasons, it appears advantageous to use selenite instead of selenomethionine in
such clinical trials where a dynamic control of increasing and decreasing Se status is intended [44,45].

Among the strengths of our study are the analysis of longitudinal blood samples from two
independent groups of patients receiving selenite dosages in very unusual amounts, and the parallel
assessment of the two most informative biomarkers of Se status. Among the limitations are the relatively
small groups of supplemented patients, the lack of a healthy control group, and the fact that both studies
are not yet completed, thereby lacking additional clinical information.

5. Conclusions

The results indicate an unprecedented increase in plasma SELENOP concentrations in patients
receiving i.v. injections of high therapeutic selenite dosages, beyond the threshold considered to
constitute the absolute upper limit of circulating SELENOP. Hereby, SELENOP qualifies as an Se status
biomarker for such studies, enabling the monitoring of therapeutic selenite administration and the
anabolic effects of the supplemental Se on selenoprotein biosynthesis in the clinical setting.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/4/1067/s1,
Figure S1: Individual responses of biomarkers of Se status to selenite infusion in the SECAR trial.
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