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ABSTRACT

Obesity is associated with increased risk and aggressiveness of many types of cancer. Women 
with obesity and breast cancer are more likely to be diagnosed with larger and higher-grade 
tumors and have higher incidence of metastases than lean individuals. Increasing evidence 
indicates that obesity includes systemic, chronic low-grade inflammation, and that adipose 
tissue can act as an important endocrine site, secreting a variety of substances that may 
regulate inflammation, immune response, and cancer predisposition. Obesity-associated 
inflammation appears to be initially mediated by macrophage infiltration into adipose tissue. 
Macrophages can surround damaged or necrotic adipocytes, forming “crown-like” structures 
(CLS). CLS are increased in breast adipose tissue from breast cancer patients and are more 
abundant in patients with obesity conditions. Moreover, the CLS index-ratio from individuals 
with obesity seems to influence breast cancer recurrence rates and survival. In this review, we 
discuss the most recent cellular and molecular mechanisms involved in CLS establishment 
in the white adipose tissue of women with obesity and their implications for breast cancer 
biology. We also explain how CLS influence the tumor microenvironment and affect breast 
cancer behavior. Targeting breast adipose tissue CLS can be a crucial therapeutic tool in 
cancer treatment, especially in patients with obesity.
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INTRODUCTION

Overweight and obesity are major risk factors for cancer and chronic diseases such as 
diabetes, insulin resistance, and cardiovascular disease [1]. These conditions are currently 
on the rise in low- and middle-income countries. Obesity is characterized by an excessive 
accumulation of adipose tissue accompanied by systemic chronic inflammation, and it is 
associated with several types of cancer: breast, ovarian, liver, and pancreatic cancers, among 
others [2,3]. Overweight and obesity are defined by body mass index (BMI), the ratio between 
an individual's weight (in kilograms) and the square of their height (in meters). A person with 
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a BMI of 25 or more is considered overweight, and a BMI of 30 or more is considered obese, 
according to the World Health Organization (WHO) classification [4]. However, BMI is an 
imprecise tool to determine obesity status, since it does not provide a quantitative analysis 
of the adiposity directly. Instead, it correlates with a few direct measures of body fat content 
[5]. In contrast, computed tomography is capable of providing an estimate of the amount of 
fat stored in different adipose tissue compartments. However, this technique is not routinely 
used in the diagnosis of obesity [6].

Adipose tissue is an endocrine and immune organ [7,8] composed of an intricate network of 
heterogeneous cell types, including infiltrating immune cells, such as lymphocytes (T and 
B cells), mast cells, and antigen-presenting leukocytes (macrophages and dendritic cells). 
Granulocytes, fibroblasts, endothelial cells, extracellular matrix (ECM), and other stromal 
components are also present [9,10]. This complex network may have a dramatic impact on 
carcinogenesis and tumor promotion [8,9,11,12]. Obesity has been associated with a higher 
risk of developing breast cancer, particularly in postmenopausal women, as well as with a 
worse disease outcome for women of all ages [13].

Breast cancer is the most common cancer in women worldwide [14-16]. Several risk factors for 
breast cancer are well-established by epidemiologic studies and include exogenous hormones, 
family history of cancer, genetic traits, race, ethnicity, and physical inactivity [16]. There are 
three surface receptors commonly used to characterize breast cancer: the estrogen receptor 
(ER), the progesterone receptor (PR), and the human epidermal growth factor receptor 2 
(HER2). According to their presence or absence, breast cancer can be classified into ER+/−, 
PR+/−, and HER2+/−. Triple negative breast cancer (TNBC) is characterized by the absence of 
ER-/PR-/HER2- receptors [17]. TNBC is considered more aggressive with a poorer prognosis 
than other types of breast cancer, mainly because there are fewer targeted medicines that treat 
triple-negative breast cancer [18]. Systemic effects of adiposity are believed to be implicated in 
breast cancer development and aggressiveness, and may involve breast fat [19].

Adipocytes secrete many paracrine and endocrine hormones, as well as adipokines, and are 
classified into four types: white, brown, beige, and pink [8,20]. These regulate local and 
systemic metabolism and inflammation [8,9,11,21]. In mammary tumors, white adipocytes 
are the major component of the stromal microenvironment, and they can accelerate cancer 
progression by releasing free fatty acids and producing several inflammatory cytokines [22], 
inducing tumor proliferation and angiogenesis [8,9,11,23].

Expansion of white adipose tissue, characterized by white adipocyte hyperplasia (an increase in 
adipocyte number) and/or hypertrophy (an increase in adipocyte size), promotes inflammation 
mediated by macrophage infiltration, activation, and polarization [24]. Adipose tissue 
macrophages (ATMs) are highly inflammatory and can secrete proinflammatory cytokines such 
as tumor necrosis factor α (TNF-α). ATMs likely contribute to propagation of the recruitment 
of additional macrophages by releasing chemokines such as monocyte chemoattractant 
protein-1 and chemokine (C-C motif ) ligand 2 (MCP1/CCL2). An increase of ATMs can result 
in the formation of crown-like structures (CLS) that surround dead adipocytes [25-27]. During 
obesity, ATM infiltration positively correlates with adipocyte size and CLS density [27,28].

CLS formation in the breast adipose tissue is related to the production of several 
immunomodulatory molecules which may favor breast cancer cell proliferation and 
progression. Here, we provide an overview of the mechanisms involved in CLS formation and 
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their correlation with breast cancer. Moreover, we discuss the role of CLS in breast cancer 
prognosis, clinical-pathological parameters, and therapeutic approaches.

ADIPOSE TISSUE-ASSOCIATED MACROPHAGES AND 
CROWN-LIKE STRUCTURES
Adipose tissue is heterogeneous and contains a diversified pattern of immune cells and 
adipocytes depending on the anatomical localization. During weight gain, adipose deposits 
expand beyond the tissue capacity, resulting in white adipose tissue dysfunction and 
secretion of a greater number of inflammatory cytokines [29]. This moves the tissue toward 
a phenotype with more pro-inflammatory immune cells inducing a higher inflammatory 
response [30].

Adipose tissue can increase in size (hypertrophy) and in number of adipocytes (hyperplasia), 
accompanied by structural and cellular changes in the tissue in response to excess energy. 
These changes include fibrosis, local inflammation, infiltration of immune cells, polarization 
of macrophages from an anti-inflammatory to a pro-inflammatory phenotype, adipocyte 
death, hypoxia, and mechanical stress in the ECM [31,32].

Excessively hypertrophied adipocytes can induce secretion of chemotactic factors and 
promote recruitment of immune cells to the adipose tissue. Elevated expression of monocyte 
chemoattractant protein-1 (MCP-1) and chemokine (C-C motif ) ligand 2 (CCL2) in the white 
adipose tissue (WAT) of subjects with obesity can prompt an increased influx of monocytes 
that will differentiate into macrophages to migrate and infiltrate into WAT, setting up a feed-
forward inflammatory process [33].

The newly recruited monocytes then become polarized, turning into either proinflammatory 
M1 macrophages (or classically activated macrophages) or into anti-inflammatory M2 
macrophages (alternatively activated macrophages) [34]. Macrophage populations can be 
distinguished based on the expression of surface markers and their location; for example, 
CD206, CD163, arginase-1, Mg1l, and IL-10 characterize the M2 macrophage population, 
which is involved in adipocyte tissue remodeling. M1 macrophages can be distinguished 
based on iNOS, CD86, and CD80 markers, while also expressing genes such as interleukin-6 
(IL-6) and TNF-α [35]. Adipose tissue from lean individuals presents more M2 than M1 
macrophages, while adipose tissue from obese individuals present more abundant M1 
compared to M2 macrophages [36]. Macrophages in lean adipose tissue play an important 
role in maintaining the function and homeostasis of the tissue through phagocytosis of dead 
adipocytes, secretion of anti-inflammatory cytokines, and regulation of iron flux, which plays 
an important role in adipogenesis [37,38].

In conditions of obesity and overweight, M1 macrophages can accumulate and upregulate 
CD11c and F4/80 [39], producing proinflammatory factors that potentiate inflammation 
and insulin resistance [40]. M1 macrophages can deregulate adipocyte signaling processes, 
increase the production of reactive oxygen species, and secrete proinflammatory cytokines 
associated with oxidative stress and tissue destruction [40]. M1 macrophages in adipose 
tissue can form a characteristic “crown-like structure (CLS)” around the necrotic, 
hypertrophied, and dying adipocytes that need to be resorbed [27,28,41,42]. Electron 
microscopic analysis of human and mouse adipose tissue in conditions of obesity showed 
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ruptured adipocyte membranes and the presence of cellular debris, dilated endoplasmic 
reticulum, and cytoplasmic lipid droplets, suggesting necrosis [43]. CLS is consider a 
hallmark of the proinflammatory process in adipose tissue, characterized by adipocyte cell 
death and intense release of free fatty acids, and infiltration of other immune cells such 
as lymphocytes, neutrophils, and mast cells, promoting and maintaining the exacerbated 
inflammatory state [44]. Moreover, adipose tissue macrophages are an important source 
of the proinflammatory cytokines TNF-α and IL-6, which can block the insulin receptors, 
leading to insulin resistance [45].

However, a deeper characterization is needed of the adipocyte cell death type that occurs 
during obesity; how this influences the polarization of macrophages is not yet clear. Even 
though CLS is a proinflammatory microenvironment, debate about the M1 or M2 profiles 
of macrophages in obesity is ongoing. Recent work indicates that a complex mixture of M1 
and M2 macrophage phenotypes can be observed in white adipose tissue during obesity 
[46], indicating that macrophages cannot be classified using the simple dual M1/M2 
model. Importantly, excess accumulation of adipose tissue produces a proinflammatory 
“metabolically activated” macrophage (MMe) phenotype, mechanistically distinct from M1 
or M2 activation [47,48]. It was demonstrated that MMe accumulation in mammary adipose 
tissue promotes the establishment of TNBC during obesity, indicating that the metabolic 
status of these macrophages under conditions of weight gain may be crucial to cancer 
progression [49].

CROWN-LIKE STRUCTURES AND BREAST CANCER: 
CLINICAL-PATHOLOGICAL PARAMETERS AND 
PROGNOSIS

CLS are related to free fatty acid release in adipose tissue, NF-κB activation, and generation 
of a pro-inflammatory microenvironment [50]. For these reasons, CLS are often used as 
a biomarker of adipose tissue inflammation [51]. Adipose tissue inflammation associated 
with metabolic syndrome may favor breast cancer development and progression [52]. Given 
the important biological function of CLS, methods have been developed to measure these 
structures by light microscopy, and an index has been created to quantify CLS severity on 
a scale ranging from 0 to 1.0 [30]. CLS were found to be related to several stages of cancer 
formation and progression in different types of cancer, including breast cancer in women 
[53] and men [54], squamous cell carcinoma [55], endometrial cancer [56], prostate cancer 
[57], and hepatocellular cancer [58].

Consistent with clinical and experimental observations, the prognostic value of CLS in breast 
cancer may vary according to race/ethnicity [59], menopausal status [60,61], tumor subtype 
[62], presence of fibrosis [63], increased mammary tumor vascular density [64], resistance to 
therapy [65], and treatment responsiveness [66]. The breast cancer microenvironment is highly 
heterogeneous, composed of several immune cell types and molecules that are reprogrammed 
to sustain tumor growth and spread. The most abundant immune cells are macrophages, and 
more than 50% of macrophages are tumor-associated macrophages (TAMs) [67].

During carcinogenesis, circulating monocytes are recruited by tumor-derived 
chemoattractants including CCL2 (MCP-1) and CSF-1, and also differentiate into TAM. An 
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enhanced understanding of how obesity modulates M1 and M2 macrophage density and 
function in human breast tissue is important, since most of TAM are composed of M2 
macrophages [68] and could play a role in tumorigenesis by suppressing anti-tumor immune 
responses [69,70]. TAM are found along the tumor-stroma border, an area characterized by 
improved fibrotic ECM remodeling [71], allowing macrophages with an M1 profile to polarize 
to M2 through contact with molecules that mimic biochemical and biophysical alterations of 
ECM [72], thus contributing to worse cancer clinical outcomes [73].

The TAM with an M1 profile exhibit antitumor properties that identify and destroy cancer 
cells via phagocytosis and cytotoxicity. However, experimental data suggest that during 
tumor initiation, proinflammatory macrophages might promote malignant transformation 
through mutagenic reactive species of oxygen and nitrogen [74]. Additionally, the presence 
of inflammatory configurations is related to NF-κB activation and enhanced levels of 
proinflammatory mediators, including TNF-α, IL-6, and cyclooxygenase-2 (COX-2)-derived 
prostaglandin E2 (PGE2) [30]. These mediators can act to upregulate the transcription of 
the CYP19 gene encoding aromatase, leading to estrogen production [75] and worse breast 
cancer prognosis.

The presence of more CD68 and CD163 macrophage markers in breast adipose tissue is 
correlated with increased numbers of cancer-associated adipocytes in the breast cancer 
microenvironment [76,77], and these events are related to decreased survival in breast cancer 
patients [62,76,78]. These findings indicate that CLS can affect cancer development and 
impact breast cancer patients' overall survival (Figure 1).
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Figure 1. CLS-mediated signaling pathway in normal and obese adipose tissue and impact on breast cancer. Normal breast adipose tissue is characterized by 
the presence of smaller and less numerous white adipocytes, fewer crown-like structures, a prevalent M2 macrophages subset, with the secretion of anti-
inflammatory cytokines such as IL-10, TGF-β, IL-33, and adiponectin. Obese breast adipose tissue is characterized by larger size and more abundant white 
adipocytes, with the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, FFA, TNF-α, macrophages-chemoattractant CCL-2 chemokine, angiogenesis 
inducers such as VEGF, a prevalent M1 macrophages subset and an increased production of leptin, a negative feedback signal in the regulation of energy 
balance. This obese breast adipose tissue provides a favorable microenvironment to cancer establishment and progression. 
CLS = crown-like structures; IL = interleukin; TGF = transforming growth factor; FFA = free fatty acid; TNF = tumor necrosis factor; CCL = chemokine (C-C motif) 
ligand; VEGF = vascular endothelial growth factor.

https://ejbc.kr


CLS are also correlated with race with regard to breast cancer prognosis. Iyengar et al. [59] 
reported that menopausal Taiwanese women had pathologically enlarged adipocytes and 
increased presence of CLS in breast tissue, despite having a lower BMI than Caucasian 
women in the United States. In contrast, in Hispanic/Latin breast cancer survivors who 
underwent mastectomy, CLS were absent in 35% of patients with grade II and III obesity [79], 
indicating that a subset of patients with normal BMI and breast cancer can also present signs 
of inflammation and metabolic abnormalities (Table 1).

This healthier phenotype presented by some individuals with obesity is called metabolically 
healthy obesity, characterized by a lower degree of systemic inflammation, favorable 
inflammatory and hormonal profiles, normal adipokine secretion patterns, and reduced levels of 
ectopic and visceral fat storage [80,81]. A subgroup of normal-weight individuals with abnormal 
metabolic parameters (those exhibiting metabolically unhealthy non-obesity or metabolically 
obese normal weight) has also been described [82]. However, metabolically healthy obese people 
may be more prone to the risk of obesity-associated cancer mortality [83,84].

CROWN-LIKE STRUCTURES AND BREAST CANCER 
TREATMENT
Since the presence of CLS in breast adipose tissue involves the modulation of several 
components such as proinflammatory immunological cells, proinflammatory cytokines, 
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Table 1. Clinical and experimental studies in breast cancer and crown-like structures
Reference Model Target Results
Morris et al., 2011 [53] Human Aromatase activity; adipocyte size; serum 

inflammation marker; CLS-B index
CLS-B correlated with BMI and adipocyte size

Subbaramaiah et al., 2011 [91] Animals NF-kB Activation; TNF-α, IL-1β, and COX-2 
levels; aromatase activity; CLS

Obesity-inflammation-aromatase axis in the mammary gland and 
WAT, and its association with CLS, increased risk of ER breast cancer

Subbaramaiah et al., 2012 [75] Human Aromatase activity; CLS-B index CLS-B index as an improved correlation marker of breast cancer and 
obesity

Iyengar et al., 2015 [60] Human CLS-B presence; Circulating inflammatory 
mediators

CLS-B is associated with metabolic syndrome and worse breast 
cancer prognosis

Cowen et al., 2015 [64] Animal Effect of a high-fat/high-calorie diet on 
mammary carcinogenesis

Breast adipose tissue inflammation induced by diet increases tumor 
vascular density

Seo et al., 2015 [63] Animal; in vitro 
and human

Role of obesity in interstitial fibrosis in 
mammary fat

α-SMA levels correlated with CLS-B contribute to increased levels of 
matrix extracellular remodeling in obesity

Koru-Sengul et al., 2016 [62] Human Association between the number of TAM 
and/or CLS and ethnicities

Race is associated with the numbers of TAM and CLS in breast 
cancer

Mullooly et al., 2017 [89] Human CLS-B and sex steroid hormones in breast 
adipose tissue

CLS were not related to hormone levels or tumor characteristics, but 
were associated with hormone ratios

Vaysse et al., 2017 [90] Human CLS-B associated with mammary adipocyte 
size, body composition, and serum 
biomarkers

CLS was associated with systemic markers

Brown et al., 2017 [61] Human Effect of menopause on breast aromatase 
expression in relation to BMI, CLS and 
systemic markers of metabolic dysfunction

Postmenopausal women had higher BMI and presence of CLS than 
did premenopausal women

Cha et al., 2018 [76] Human Macrophage infiltration and identification of 
CLS status

CD68+ and/or CD163+ macrophages and CLS are present in adipose 
tissue near the breast cancer lesion

Iyengar et al., 2018 [59] Human CLS compared in Taiwanese vs Caucasian 
women

Compared with Caucasians, Taiwanese women had larger 
breast adipocytes despite lower BMI after adjusting for BMI and 
menopausal status

Greenlee et al., 2019 [79] Human Inflammation and BMI in Hispanic/Latina 
breast cancer patients

Prevalence of CLS-B was associated with Hispanic/Latina patients

Springer et al., 2019 [73] Human and 
mice

Extracellular matrix affects macrophage 
phenotype

Fibrotic extracellular matrix remodeling promotes a TAM phenotype 
of macrophages in CLS

CLS-B = crown-like structures in breast; BMI = body mass index; TNF-α = tumor necrosis factor α; IL = interleukin; COX-2 = cyclooxygenase-2; WAT = white 
adipose tissue; ER = estrogen receptor; α-SMA = α-smooth muscle actin; TAM = tumor-associated macrophage.
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adipocyte cell death, release of free fatty acids, and different hormones, it is important to 
note that any anti-cancer therapy targeting CLS can be potentially mediated by all these 
parameters. Endocrine therapy is one treatment tool for breast cancer, as it blocks estrogenic 
activity and suppress adipose tissue aromatization of androgens to estrogens [85]. Although 
aromatase inhibitors reduce circulating estrogens in most cases, conditions of overweight 
and obesity in patients with breast cancer (premenopausal and postmenopausal) make 
patients more prone to a higher risk of recurrence and resistance to therapy [86]. Estrogen 
replacement therapy in ovariectomized mice with obesity revealed that treatment with 
17β-estradiol is enough to attenuate weight gain, reduce production of inflammatory markers 
and number of CLS [87], and reduce the expression of genes related to inflammation (Cd68, 
Mcp1, and Tnf) [88].

The presence of CLS and inflammatory mediators in breast adipose tissue in women 
with both breast cancer and obesity is associated with changes in intracellular signaling 
and significant changes in cell dysfunction [30]. The CLS are implicated not only in 
inflammation, rather than in obesity alone, but also as drivers of aromatase activity in the 
breast via a complex and dynamic system of paracrine interactions between macrophages and 
other cells [53,75], a process also associated with increased estrogen-to-androgen ratios [89]. 
These findings underscore the role of CLS as a potential booster of estrogenic signaling and 
may be crucial for endocrine therapy selection during breast cancer treatment [90]. In vitro 
experiments further defined the pathways mediating this effect, showing that macrophage 
COX-2 expression and PGE2 production promote estrogen receptor (ERα) target gene 
expression [91]. Based on these results, post-menopausal patients with obesity and breast 
cancer may benefit from an aromatase inhibitor/COX-2 inhibitor combination treatment 
during breast cancer [92].

Supplementation of breast cancer patients with omega-3 fatty acids can also modulate CLS in 
breast cancer tissue and serve as an important adjuvant in the treatment of this cancer. There 
are multiple preclinical and epidemiologic studies suggesting that eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA) attenuate inflammation and reduce risks for breast 
cancer [93,94]. In vitro studies also corroborate the anti-tumor effects of omega-3 against 
human breast cancer cells [95,96]. In a study using rodents, omega-3 supplementation 
significantly decreased the number and size of CLS and F4/80+ macrophages and decreased 
expression of proinflammatory mediators including Ptgs2, IL-6, CCL2, TNF-α, NF-κB, and 
interferon-γ proteins in the mammary fat pad [97].

CLS can be also modulated by other compounds such as polyphenols (resveratrol) decreasing 
inflammation in breast tissue and potentially affecting breast cancer. Supplementation with 
resveratrol in the diet of mice with obesity and breast cancer resulted in lower numbers of 
CLS and decreased proinflammatory cytokine gene expression [66].

Since CLS can be also be identified in a significant proportion of normal-BMI women 
undergoing mastectomy for breast cancer risk reduction or therapy, CLS may be also 
important in breast cancer treatment in normal weight women [98], not only in obese breast 
cancer patients.

To date, at least three clinical trials have advanced in the investigation of adiposity and 
inflammation to evaluate the risk factors associated with metabolic profile and tumor 
growth, which influence disease-free survival, overall mortality, and breast-cancer-specific 
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mortality (NCT02240836; NCT03091842; NCT02598557). The forthcoming results of these 
studies should elucidate the relationship of CLS function to prognosis in different subtypes 
of breast cancer, providing new therapeutic approaches.

CONCLUSION

CLS are increased in breast adipose tissue from breast cancer patients and are particularly 
abundant in patients with conditions of obesity. Breast cancer associated with chronic 
obesity is most common in postmenopausal women. In this review, we discussed how CLS 
are related to the inflammation status of breast adipose tissue, and how these events can be 
decisive for breast cancer development and treatment, especially in obese women.

To improve interventions to prevent and treat breast cancer, a better understanding of the 
physiological and molecular mechanisms involved in breast tissue inflammation is crucial. It 
is important to understand that breast adipose tissue CLS are important keys to breast tissue 
inflammation and, consequently, may directly influence the development and treatment of 
breast cancer.

Targeting breast adipose tissue CLS can be a prominent therapeutic tool during cancer 
treatment, especially in patients with obesity. Therefore, tests based on body adipose tissue 
composition and inflammation in daily medical practice could be very effective to better 
stratify patients and direct combinatorial approaches in clinically relevant ways toward breast 
cancer treatment.
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