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Abstract

We investigate the sensitivity of Boolean Networks (BNs) to mutations. We are interested in Boolean Networks as a model of
Gene Regulatory Networks (GRNs). We adopt Ribeiro and Kauffman’s Ergodic Set and use it to study the long term dynamics
of a BN. We define the sensitivity of a BN to be the mean change in its Ergodic Set structure under all possible loss of
interaction mutations. Insilico experiments were used to selectively evolve BNs for sensitivity to losing interactions. We find
that maximum sensitivity was often achievable and resulted in the BNs becoming topologically balanced, i.e. they evolve
towards network structures in which they have a similar number of inhibitory and excitatory interactions. In terms of the
dynamics, the dominant sensitivity strategy that evolved was to build BNs with Ergodic Sets dominated by a single long
limit cycle which is easily destabilised by mutations. We discuss the relevance of our findings in the context of Stem Cell
Differentiation and propose a relationship between pluripotent stem cells and our evolved sensitive networks.
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Introduction

The robustness of biochemical networks in noisy environments

is thought to be a key property of properly functioning cells [1–3].

However these genetic networks are also capable of sensing and

reacting to environmental [4] or internal changes [5]. We evolve

insilico genetic networks to be sensitive to the loss of interactions

between genes. The resulting networks are found to exhibit

a similar number of excitatory and inhibitory interactions and to

be comprised mainly of highly unstable limit cycles. We also note

that such sensitive networks share many of the qualitative features

ascribed to stem cells (a list of these features is outlined in [6] and is

also described later in the article). In particular we propose that

changes in the interactions between genes as a possible means for

stem cells to differentiate. This hypothesis suggests that pluripotent

stem cells should be more sensitive to interaction loss than

differentiated cells.

Differential equation models are commonly used to understand

genetic networks [7–10]. We utilize a Boolean approach in which

both gene expression levels and time are discretised: Genes are on

(1) or off (0) and time is treated as proceeding in discrete steps. We

simplify the network interactions so that genes can only either up-

or down- regulate other genes or have no effect on them. Despite

the abstract nature of this approach it has been used to provide

high level models reproducing the qualitative behaviour of the

yeast cell-cycle [11,12] and the p53-Mdm2 gene circuitry [13].

Also a variant of this model has been useful in predicting the

mutant phenotypes of Drosophilia [14], while another variant has

provided a dynamical model which explains flower development

in Arabidopsis thaliana [15]. It is intellectually attractive in that it

simplifies the state space in a manner that many experimental

scientists will find intuitive and already utilise anecdotally. While

noise can be incorporated into these models they are otherwise

numerically deterministic, unlike nonlinear (chaotic) differential

equations where the choice of, e.g. time discretisation, can affect

the network behaviour at the qualitative level.

Using evolutionary algorithms on GRN models to target specific

functions is becoming a common research tool in the field. This

includes designing differential equation networks to form bi-stable

switches and oscillators [16] and also evolving for oscillatory

behaviour in continuous space, discrete time systems [17,18].

Evolving Boolean Networks under selection has a long tradition,

and has grown rapidly with the advent of modern computing.

Many previous studies in this field have focused primarily on

robustness in cellular function. Bornholdt and Sneppen [19,20]

consider mutational fitness by adding/removing interaction edges

and evaluating fitness by the ability of the mother and daughter

networks to reach the same attractor. The evolved networks are

found to have shorter attractors and larger frozen components

(nodes in an attractor that do not change their state) than random

networks. Braunewell and Bornholdt later considered robustness

to small perturbations in update times [21]. A fully stable attractor

set is quickly found in few mutational steps, usually with

a decreased number of attractors and an increased basin size.

Boolean networks that are dynamically robust to state space

perturbations was examined by Szejka and Drossel [22]. Networks

were easily evolved that would return to the same attractor after

single nodes were flipped from that attractor state, thus they were

considered robust to noise. Further neutral mutations could then

extend the basin of attraction of the main attractor. In a later study

[23] they extended the fitness condition to include a response to

external signals, evolving networks capable of switching between

two stable attractors, under the influence of an external control

node. In both of these last two studies 100% fitness was typically

reached. A common theme from these studies is the ease with
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which solution networks were generally found, and we also find it

easy in our study to evolve highly robust networks.

Robustness is a recurring theme in the Boolean Network studies

cited above and yet a vast variety of definitions are mooted,

concerned with many different aspects of robustness. One reason

for this is the relative ease in making a definition for robustness as

the retention or reproduction of a function under small

perturbations. This is a valid interpretation for both robustness

to noisy expression or mutational robustness. The unifying feature

is the same, i.e. that attractors remain stable and unchanged. How

to define sensitivity is less clear.

Sensitivity research into Boolean Networks has largely focused

on the ensemble dynamics of random Boolean Networks [24]. The

typical aim is to classify the dynamics of these networks into so

called ordered, chaotic and critical (phase transition between

ordered and chaotic) regimes based on network characteristics,

including the connectivity and choice of update functions.

Different sensitivity measures have been used to make these

classifications including the Derrida curve [25] and the activity

and sensitivity measure [26]. These measures relate to how

perturbing the state in a Boolean Network affects the resulting

dynamics. Thus they differ considerably from the sensitivity

measure we employ later, which considers changes in the long-

term dynamics of a Boolean Network resulting from permanent

interaction losses.

Consider a case where under a state space perturbation the

network switches from one attractor to another, we might say that

the original attractor is not robust to that perturbation, but how do

we quantify how sensitive or unrobust it is? This may depend on

how different the new attractor is or whether other state space

perturbations from the new attractor return the system to the

original attractor. Such issues stem from the general lack of

a definition of function for any given Boolean Network.

We adopt the Ergodic Set (ES) definition proposed by Ribeiro

and Kauffman [27] which incorporates both the attractors of the

network and also transitions between them via state space

perturbations. These perturbations take the form of single node

flips from an attractor which may then result in the system moving

to another attractor. An Ergodic Set is defined as a subset of

attractors which is strongly connected under these transitions and

has no exiting transitions (Figure 1). Thus, dynamically, if

a network enters an ES it stays there under all such (weak)

expression noise. Most of the Boolean Networks they examined

possessed only one Ergodic Set.

Taking the ES as the basis of our definition for the global

functionality of any given Boolean Network, allows us to formulate

a definition for robustness and, more importantly, the sensitivity of

a Boolean Network to mutations. In particular we focus on

mutations resulting in the loss of an interaction between nodes. We

find that evolving for sensitivity to mutations of this type leads to

what we call topologically balanced networks, which have a similar

number of excitatory and inhibitory interactions. The attractors of

these networks are typically more unstable and this leads to

sensitivity. Nearly all of the maximally sensitive networks that we

find incorporate relatively long limit cycles into their ESs. These

are likely to be more unstable under mutations than fixed point

attractors. In addition we evolve BNs under conditions that

penalise these long limit cycle cases and are still able to find

networks which are highly sensitive, but non-maximal.

The ES was introduced to qualitatively describe the dynamical

behaviour of a BN while accounting for the effect of noise [27].

The hypothesis that the ES of a cell defines its cell type is an

extension of Kauffman’s long proposed view of the attractors of

BNs corresponding to different cell types. It has also been

proposed that the ES concept could prove a good qualitative

model for stem cell differentiation [28]. The hypothesis here is that

a single ES represents a pluripotent stem cell whereas networks

with multiple ergodic sets represent differentiated cells. However

very few Boolean Networks were found to possess multiple ESs

and the transition from a single ES to multiple ones remained to

be established. Thus in [28] was introduced the Threshold Ergodic

Set (TES) concept wherein a noise parameter h controls whether

attractors are connected by the same type of transitions as defined

for ESs. However a transition only exists between two attractors if

there are at least a h number of transitions between them. Thus

changing h controls the number of TESs in a BN. Now multiple

ESs are replaced by multiple TESs to represent differentiated cells.

We propose a subtle departure from this stance which largely

retains the necessary qualitative behaviour of stem cells and does

not require appealing to multiple ESs or TESs. Furthermore we

propose relating pluripotent stem cells to the sensitive networks we

evolve.

Model
Our Threshold Boolean Network (TBN) model represents

a gene regulatory network of N transcriptional regulators which

are represented by their gene expression patterns

v(t)~(v1(t),v2(t),:::,vN (t))[f0,1gN at some discrete time t during

a biological cell process. An interaction matrix (which we also refer

to as a network) A~(aij) defines the regulatory interactions

between genes. The entry aij expresses the strength of interaction

gene j has on gene i. We restrict ourselves to the case where

aij[f{1,0,1g. So interactions either inhibit (aij~{1) or promote

(aij~z1) gene i, or are absent. Given a state v(t) and a network A

then the state of the system at the next time step is determined by

h(t)~Av(t): vi(tz1)~1 if hi(t)w0 (turns on), vi(tz1)~0 if

hi(t)v0 (turns off) and vi(tz1)~vi(t) if hi(t)~0 (retains the

previous state). This is effectively a consensus model in the

presence of multiple regulatory inputs. It should be noted that we

use the common network term ‘node’ to refer to genes throughout.

For our definition of sensitivity we need to formally define an

Ergodic Set (ES) of a TBN, A. Let CA be defined as the set of all the

attractors of A. For a TBN these are either fixed points or finite

limit cycles. Furthermore for finite systems an attractor is always

reached in finite time from any initial condition. Let fpg be a fixed

point attractor in CA. There are N states in the expression space

Figure 1. Example Ergodic Set (ES). Solid circles represent
attractors of the network, whereas the arrows indicate transitions
between attractors that arise when a node is flipped. Self transitions
exist but are omitted from the diagram. The yellow attractors form an
Ergodic Set indicated by the dashed circle. Once the system reaches an
attractor in the ES it can no longer leave and so the ESs of a network
represent entirely its long term behaviour. Red circles indicate the
attractors which lie outside an ES.
doi:10.1371/journal.pone.0036010.g001
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f0,1gN that can be reached from fpg by flipping a single node.

For any such flip the dynamics dictated by A (as detailed above)

drive the system to an attractor in CA in finite time (this could be

fpg itself). All such transitions from one attractor to another (or

itself) form a directed graph. Any strongly connected subset of

these attractors, with no transitions that leave the subset, is defined

as an ES of A. Figure 1 depicts an example ES. While A may have

more than one ES, this has been found to be very rare in previous

studies [27,28] and our findings are concurrent with these. In

practice we exclude instances of multiple ESs from most of our

analysis, however we do acknowledge that they may be of

relevance and will discuss this later.

The underlying assumption for the dynamics which define ESs

is the presence of a separation in timescales between the fast

deterministic TBN dynamics defined by A and a slow node

flipping dynamic which facilitates transitions between attractors.

Under this assumption, given enough time and some probability

for any flip being non-zero, the ES dynamics of A define the long

term dynamics of the network. To characterise dynamics on the

ES itself we can define a Markov Chain whereby the states are

attractors of the ES and the transition probabilities are defined by

the flip transitions between them. We choose also to normalise

these transition probabilities by the number of transitions between

attractors (as multiple transitions can exist between the same two

attractors) and also the length of the originating limit cycle. The

second normalisation assumes an equal distribution of time

between the states on any limit-cycle. Given that such a Markov

Chain is ergodic by definition then we can easily calculate its

stationary distribution p0 which is a probability vector over the

attractor states of the ES. To complete our description of the long

term dynamics on the stationary distribution, we define another

stationary distribution p1 which arises when we incorporate

a penalty factor in the probability transition matrix. For an

attractor state v, the transition resulting from flipping node i is

normalised by the factor 10{jhi(v)j=Z if either vi~0 and hi(v)v0
or vi~1 and hi(v)w0: Otherwise a 1=Z factor is used where Z is

just a normalisation factor. The penalty factor accounts for the

unlikeliness that a gene will flip on if there are other genes actively

repressing it and vice versa. For a TBN with only one ES we utilise

p1 to fully characterise it’s long term dynamics.

Let there be two TBNs A and B, with ESs EA and EB, and with

pA1 and pB1 as the stationary distributions of their respective

Markov Chains. We define the distance between two ESs to be

dES(EA,EB)~(1=2)
P

c[EA|EB
jpA1 (c){pB1 (c)j where pA1 (c)~0 if

c=[EA: This measures how different their long term dynamics

would appear in terms of the time spent on attractors inside their

ESs. As we are interested in the sensitivity of A in relation to losing

interactions, let us call A’ a deletion mutant of A. By this we mean

that for some (i,j) pair a’ij~0 whereas jaij j~1 but a’ij~aij
otherwise. Let MA~fA’g, i.e. the set of all deletion mutants of A.

The sensitivity of A to edge deletions is defined to be the mean of

dES(EA,EA’) over all edge deletion mutants of A, i.e.

sA~SdES(EA,EA’)TA’[MA
: The higher the value of sA, the more

sensitive A is to edge deletions. Lower values of sA correspond to

more robust networks.

The sensitivity measure sA, we define here bears a notable

relation to the Long-run sensitivity (LRS) defined for probabilistic

Boolean Networks in [29]. Our sensitivity measure corresponds to

what is described in [29] as the average LRS (averaged over edge

deletions in our case) in the special case of probabilistic Boolean

Networks with random perturbation (defined in [29]) which only

have one underlying network. In particular, by applying the small

perturbation noise limit assumptions that define the ES, the

average LRS value can be equivalent to our sensitivity measure sA,

as long as two conditions are not violated. The first being trivially

that A and its deletion mutants must each only have one ES, as

otherwise sA is undefined. The second requirement arises because

under our sA sensitivity measure, two attractors of two different

ESs are considered distinct if they are different in any way, even if

they share common states as can be the case with limit cycles.

However the stationary distribution used in the LRS is defined

over all possible states and so will assign different sensitivity

contributions from the sA measure if an attractor in EA shares

a common state with some non-identical attractor in some EA’:
Using this new definition of sensitivity we ran insilico

evolutionary experiments both to find the most sensitive networks

as well as the most robust. The algorithm employed was a simple

adaptive walk that started with a randomly drawn matrix A. At

each evolutionary step a random single edge change was made to

the current matrix. For instance if the edge aij~z1 was selected

for mutation, it could either be modified to 0 or 21 with equal

probability for the mutant matrix ÂA: The sensitivity sA of the

original was compared to the sensitivity of the altered matrix sÂA:
During the evolutionary search for sensitive matrices ÂA was

accepted and A discarded if sÂA§sA, otherwise A was retained and

a new mutation was attempted. The inequality sign is flipped for

the robustness evolutions that seek to minimise sA: Up to 1000

mutational moves could be attempted in each run but in most

cases a local fitness peak was reached well before that number.

Separate evolutions were also run to find sensitive networks which

did not rely solely on long limit cycles in their ESs to provide high

levels of sensitivity. It should be noted that the sensitivity of

networks with multiple ESs is not well defined and these rare cases

were excluded from our evolutionary experiments. Pseudocode for

the evolutionary experiments is included in the supporting

information Text S1.

Results and Discussion

We start by comparing the unevolved networks with their

evolved counterparts for evolutions aimed at either increasing or

decreasing sA: The unevolved networks form a random control

ensemble. The networks evolved for robustness share similar

features to previous studies. However, the sensitive networks

possess two intriguing features. The first we describe as being

topologically balanced, whereas the second relates to the presence

of long limit cycles in their ESs, which collapse under deletion

mutations. Finally we place our results for sensitive networks in the

context of stem cell differentiation.

Balance, Long Limit Cycles and Beyond
With regards sensitivity there are two questions we wish to

address. Firstly, how sensitive can TBNs become and secondly,

how do they achieve this level of sensitivity? Figure 2 shows that,

even under our relatively simple evolutionary scheme, networks

can often achieve optimal sensitivity through local mutations.

The primary topological trend which facilitates the increase in

sensitivity is an increase in what we call topological balance. As

shown in Figure 3 the number of positive and negative interactions

trends strongly towards being more equal as a result of the

evolution. This is consistent with the primary method by which

sensitivity is achieved dynamically. In order to achieve optimal

sensitivity, networks tend to evolve long limit cycle attractors, that

then dominate their ESs (Figure 4). Under the TBN update rules

any attractor is most unstable with respect to losing interaction

edges if the number of excitatory and inhibitory inputs are

balanced. Thus having an exactly balanced number of +1 and 21

edges as inputs into a node will leave an attractor most likely to be

Evolving Sensitivity Balances Boolean Networks
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unstable with respect to losing an edge. Also, the longer the limit

cycle, the more likely it is to be unstable with respect to a mutation.

When evolving for robustness (i.e. smaller sA), networks either

achieved optimal robustness, sA~0 or very close to it, in the exact

opposite manner to achieving sensitivity. Here the total number of

edges were increased and became unbalanced (especially when

looking at individual rows of an evolved matrix A) while the ESs

were dominated by a single highly robust attractor in the vast

majority of optimally robust cases (Figure 5A).

Networks with long limit cycles in their ESs that are unstable

and collapse under mutations (possibly onto fixed points) is

common a feature of the highly sensitive networks evolved. This

mirrors the mechanism whereby the cell-cycle is arrested in

response to DNA lesions [30]. If the cell-cycle is represented by

a limit cycle in the ES, which in the face of deleterious mutations

would collapse into fixed point attractors, then these attractors

might be representative of cell cycle checkpoints. Such mappings

could form the basis for using the ES and sensitivity framework

presented here to discover topological features that are related to

cell-cycle arrest.

To investigate whether the generation of long limit cycles is the

only route to greater sensitivity, further evolutionary runs were

conducted with sA being discounted by a factor D~SA’s ES

attractor lengthT{1. The length of an attractor is defined to be the

number of states in it. D essentially weighs down the sensitivity

score of any network whose Wild Type ES is dominated by long

limit cycles. Figure 6A shows that, while no networks achieved

optimal sensitivity, a substantially elevated level of sensitivity was

generally achievable. In particular the sA of the evolved networks

is typically above 0.5. Like the previous evolved networks these

ones are also topologically balanced (Figure 6B). However the ESs

of these networks tend not to possess long attractors but rather

fixed points instead. Note that a fixed point attractor will only stop

being an attractor of A entirely under at most half of all possible

edge losses, even if A is topologically balanced. So at best, losing

attractors could only ever account for a sA score of approximately

0.5, which is substantially below that achieved in many networks

(Figure 6A). So how do these TBNs without long limit cycle

achieve the additional sensitivity?

Here sensitivity arises from the mutants displacing probabilistic

mass from the stationary distribution, pA1 of the original or Wild

Type (WT) network A. A mutant A’ can displace this mass in the

following four different ways:

1. An ES attractor of A can be made unstable (i.e. not an

attractor) in A’:
2. Mass can be placed on a new attractor included in the ES of A’

which was not in the ES of A.

3. An ES attractor of A can be retained in A’ as an attractor but

excluded from the ES of A’:
4. Mass can be redistributed across attractors which exist in both

the ESs of A and A’:

When limit cycles are not discounted against the resulting TBNs

achieve sensitivity almost exclusively via methods 1 and 2. This is

due to the loss of the long limit cycle from the Wild Type due to

the mutation and being replaced with a new attractor in the ES of

the mutant. However as noted for ESs which do not possess long

Figure 2. Histograms showing network sensitivity (sA). 1000
networks of 8 nodes were evolved to maximise sensitivity to edge loses.
A large number achieve optimal sensitivity and almost all networks are
able to improve on their initial sensitivity. jAj indicates the number of
networks.
doi:10.1371/journal.pone.0036010.g002

Figure 3. Histograms showing the edge balance for networks.
The 1000 networks of 8 nodes were evolved to maximise sensitivity to
edge loses. The evolved networks tend to have a more equal number of
positive and negative edges than in the initial networks. The networks
become more topologically balanced in order to become more
sensitive to edge loses. jAj indicates the number of networks.
doi:10.1371/journal.pone.0036010.g003

Figure 4. Histograms showing the average attractor length in
the networks’ Ergodic Sets (ESs). The 1000 networks of 8 nodes
were evolved to maximise sensitivity to edge loses. The ESs of the
evolved networks tend to be dominated by very long limit cycles unlike
the initial networks. These long limit cycles arise as they are more
unstable under edge loses than shorter attractors. jAj indicates the
number of networks.
doi:10.1371/journal.pone.0036010.g004
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limit cycles, the other methods become relevant. For the case when

there are five genes, if we consider those networks with sAw0:7,
only 0.4755 of the mean sA score arises from methods 1 and 2. An

additional contribution of 0.0541 is gained from method 3 while

a further 0.2127 is achieved through method 4. A more detailed

breakdown of these statistics is provided in Table S1. These

statistics show that a variety of dynamical mechanisms are

employed by networks to achieve sensitivity and that this can

occur in the absence of long limit cycles.

Sensitive Networks and Stem Cells
Ergodic Sets are recognised models for stem cell differentiation

[28], where the Threshold Ergodic Set (TESh), with a threshold

parameter h[½0 1� was introduced. For A in a TESh a transition

from the attractor c1 to c2 only exists if at least a proportion h of the

possible flips result in a transition from c1 to c2. For h very small the

ES is identical to the TES, but as h is increased the number of

distinct TESs naturally increases. Varying the value of h is the

device used to go back and forth from a single TES to multiple

TESs. By associating a single TES with the pluripotent stem cell

state and multiple TESs with a differentiated stem cell, it has been

argued that h plays the role of a hidden noise parameter. In this

way TESs have been used to model six distinct properties of stem

cell differentiation [6]. These properties were (i) stochastic and

deterministic (ii) differentiation, (iii) limited reversibility, (iv)

induced pluripotency, (v) induced change of cell type and (vi)

different degrees of differentiation. Here we argue instead that in

most of these cases, multiple Ergodic Sets are not necessary to

explain these features.

The above hypothesis relies on representing differentiated stem

cells as multiple TESs and also on the varying of a parameter h to

force the appearance of multiple TESs. The need to force multiple

Figure 5. Sensitivity and Edge Balance Histograms for Robustness Evolutions. 1000 networks of 5 nodes were evolved over a maximum of
1000 generations to maximise robustness to edge losses, i.e. minimise sA: Panel A has histograms of the evolved (squares) and initial (circles) sA
values. All evolved networks achieved at least an sA value less than 0.06. 328 networks achieved optimal robustness (sA~0). Of these 302 have an
Ergodic Set (ES) with only one hoghly robust attractor, whereas the other 26 have only two attractors in their ESs. Panel B indicates that the edge
balance flattens out becoming slightly more unbalanced. jAj indicates the number of matrices and sA is the sensitivity as defined in the text. Looking
at individual matrices reveals that typically rows become unbalanced entrenching the likelihood of the node staying on or off for the single attractor
of the ES.
doi:10.1371/journal.pone.0036010.g005

Figure 6. Two sets of histograms showing the sensitivity (sA) and edge balance for the networks in which long limit cycles
are suppressed. The 1000 networks of 5 nodes were evolved to maximise sensitivity to edge loses, with a fitness discount factor against long
limit cycles. Panel A shows that while most networks are able to increase their sensitivity (sA) to edge loses they are unable to achieve optimal
sensitivity without the longer limit cycles. Panel B shows that, as under the previous evolutionary criteria the networks become more topologically
balanced in order to increase their sensitivity. jAj indicates the number of networks.
doi:10.1371/journal.pone.0036010.g006
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TESs only arises though from the association of multiple TESs

with a differentiated stem cell. We propose that the ES (or TES0)

of the pluripotent cell need only be different from the ES of the

differentiated cell, and that the process of differentiation can be

facilitated by changes to the topology of the network. In effect we

argue that stem cell networks may share dynamical properties

similar to the sensitive networks we evolved earlier.

We have already demonstrated that evolving BNs to be sensitive

to edge losses is straightforward and that the ESs of the BNs are

very different to those of their mutants. While we have largely

referred to the loss of an interaction as a mutation it should be

noted that this actually corresponds to the smallest functional

change that can be enforced on a TBN type dynamical system. So

if we accept the hypothesis that different ESs correspond to

different cell phenotypes then a highly sensitive TBN will have the

potential to differentiate, via edge changes, into a variety of cell

types with distinct behaviours (Figure 7). Cell differentiation in the

ES context can now be considered as a process facilitated by small

topological changes to the underlying network.

Deterministic differentiation [31] can now be identified with

a sequence of controlled changes to the underlying interaction

network which drive the dynamics towards a desired differenti-

ated state (Figure 8). As indicated in Figure 7 different edge

changes correspond to different signals designed to achieve

distinct differentiated cells. Both induced pluripotency [32,33]

and an induced change of cell type [34] are experimentally

achieved by modifying the expression levels of some genes. These

changes are stronger (dynamically speaking) than single edge

deletions and will correspond to switching the ES of the cell

either back to the plurioptent state by reversing edge changes

(Figure 8) or simply shifting the system to a different differen-

tiated state (Figure 7).

It may well be the case that pluripotency and a higher degree of

sensitivity are related. Differentiated cells rarely revert to

a pluripotent state, although this is possible (limited reversibility,

[35,36]). Following our hypothesis that edge changes lead to

differentiation this suggests that pluripotent cells are more sensitive

whereas fully differentiated cells are more robust. Indeed its

possible that several edge changes are required to achieve this level

of robustness from a sensitive state. This suggests that the silencing

or activation of genes which lead to a sensitive pluripotent cell

differentiating into a more robust differentiated cell, may

correspond to unbalancing edge changes. In particular we mean

changes which disturb the topological balance of a network. If

differentiation corresponds to more than one edge change then

limited reversibility might well be interpreted as applying to cells

which are still topologically close to the pluripotent state and so

can more easily switch back (for example going from network B to

A in Figure 8). These cells are likely to have achieved an

intermediate level of sensitivity somewhere between the highly

sensitive pluripotent cells and the more robust differentiated ones.

Indeed totipotent cells and other less versatile pluripotent and

multipotent cells might be ranked similarly by their sensitivity. In

Figure 8 the networks happen to be organised by their sensitivity

(high to low from A to C). However as network A was evolved for

sensitivity it is unsurprising that in most cases making edge changes

away from A tends to decrease sensitivity. It is not obvious that

pluripotent stem cells will lie precisely on these sensitivity peaks in

the fitness landscape but we hypothesise that they may well lie on

relatively higher regions than is the case when they are

differentiated.

A potential testbed for our prediction that less differentiated

stem cells will be more sensitive than more differentiated ones

could lie with the model organism Arabidopsis thaliana. Insilico

robustness studies performed on the A. thaliana root stem cell niche

GRN ([37]) show that while it is reasonably robust to update

function perturbations (attractors are gained or lost under about

40% of the perturbations), it is far less robust compared to other

characterized GRNs responsible for cell differentiation in

A. thaliana [38,39]. This result coincides with our prediction on

the sensitivity of stem cells. Applying our sensitivity measure to

these models, perhaps under a modified form to accommodate

different update rules, and exploring either their local or neutral

genetic spaces may provide explanations for the difference in

robustness between these networks.

We have largely ignored multiple ESs from our discussion,

and from our insilico experiments, where they are deliberately

excluded. This was largely because it is not mathematically

obvious how our sensitivity metric functions in the presence of

multiple ESs. Nonetheless, they do exist and are a piece of the

puzzle which deserve further study, especially as they may well

explain cases of stochastic differentiation in which identical

multipotent cells stochastically generate different cell types

[40,41]. Within our picture these may correspond to edge

changes that switch from a multipotent cell with a single ES to

cells with multiple ESs. Evolutions were carried out in which we

sought to identify for the existence of such edge changes and in

almost all cases networks were found that can switch between

a single and multiple ES with a single edge change. Depending

on the initial state, the original cells will then switch into one of

the particular ESs after such an edge change. The presence of

Figure 7. Example Ergodic Sets undergoing Differentiation via
edge changes. In the three ES diagrams the circles represent
attractors, with yellow ones lying inside the ES and red ones outside.
Transitions are depicted by the arrows and the dashed circle marks out
the ES of each network. The orange arrows indicate edge changes from
the original interaction matrix. The original network was one evolved
for sensitivity and as is by design its mutants have very different ES
structures. The double arrow indicates that different phenotypes of
differentiated cells could undergo further edge changes to switch
phenotypes as is observed in experiments where cell type changes are
induced.
doi:10.1371/journal.pone.0036010.g007
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multiple ESs in certain differentiated cells is a plausible

explanation for stochastic switching between cell types.

Our conjecture that sensitive networks are related to stem cell

differentiation networks suggests several avenues of further study

for both theorists and experimentalists. The evolutionary methods

used here are not limited to a Boolean Network formalism,

however the theoretical challenge lies in constructing an

appropriate fitness function. This requires an appropriate

definition for the sensitivity of such a dynamical system. A

modification of the description for the dynamics of stochastic

differential equation systems may be a means to this end. The

tendency towards topological balance that we have identified

could prove a topological marker of sensitivity that may be

accessible experimentally in stem cell control circuits and genetic

switch systems in general.

We have proposed that many of the features of stem cell

differentiation can be qualitatively replicated by edge changes

resulting in changes to the underlying ES of a BN. This principle

could apply more generally to other biological systems and as an

example let us consider cancer. One proposal is that cancerous

cells are inhabiting particular cancer attractors [42]. This proposal

can be reformulated by considering cancerous ESs which might

arise through mutations that alter the original cell’s ES. The

challenge in applying the style of evolutionary analysis presented

here to modelling the onset of cancer is in distinguishing cancer

phenotypes from non-cancerous ones as expressed in ESs. Cancer

does have many well documented hallmarks [43,44] which could

be utilised to define features around which evolutionary experi-

ments could be constructed. For example cancerous cells are able

to avoid apoptosis and so the process of apoptosis could be

characterised by a set of attractors present in a normal cell’s ES.

Evolutions could then be performed to find network’s which lose

this set of attractors from the ES. The topology of such networks

could then be examined, as we have done for sensitive networks,

which may then reveal topological properties that characterise the

greater risk for those genetic networks developing cancerous

hallmarks.

Methods

The algorithm employed to increase/decrease sA was a simple

adaptive walk that started with a randomly drawn matrix A. At

each step in the walk a random single edge change was made to

the current matrix. For instance if the edge aij~z1 was selected

for mutation, it could either be modified to 0 or -1 with equal

probability for the mutant matrix ÂA: The sensitivity sA of the

original was compared to the sensitivity of the altered matrix sÂA:
During the evolutionary search for sensitive matrices ÂA was

accepted and A discarded if sÂA§sA, otherwise A was retained and

a new mutation was attempted. The inequality sign is flipped for

the robustness evolutions that seek to minimise sA: Up to 1000

mutational moves could be attempted in each run but in most

cases a local fitness peak was reached well before that number.

Separate evolutions were also run to find sensitive networks which

did not rely solely on long limit cycles in their ESs to provide high

levels of sensitivity. It should be noted that the sensitivity of

networks with multiple ESs is not well defined and these rare cases

were excluded from our evolutionary experiments. Pseudocode for

the evolutionary experiments is included in the supporting

information Text S1.

Supporting Information

Text S1 Pseudocode of the Sensitivity/Robustness
Evolution Simulations and a Flow Chart illustrating the
major steps in the Two Algorithms. The pseudocode

provides details on how the evolutionary simulations were run

either to maximise or minimise sA for TBNs. The flow chart

illustrates both these algorithms.

(DOCX)

Table S1 Showing the Breakdown of how Probabilistic
Mass is Displaced for the Evolved Networks in Sensitiv-
ity Evolutions that Penalise Long Limit Cycles. The table

shows for three system sizes (N = 5,8 and 10) a breakdown of how

the probabilistic mass is displaced by the mutants of 1000 evolved

Figure 8. Sequence of Ergodic Sets and their Networks Modelling Stem Cell Differentiation. The interaction matrices of three Threshold
Boolean Networks (TBNs) and their corresponding Ergodic Sets (ESs). In the ES diagrams the circles (and oval) represent attractors, with yellow ones
lying inside the ES and red ones outside. The blue oval in B corresponds to a limit cycle of length 6. Transitions are depicted by the arrows and the
dashed circle marks out the ES of each network. Network A is a five gene network evolved for sensitivity. Network B is different by one edge from A
and network C is different again from B by one edge, both edge differences are encircled. Going from A-C we have a progression from a network
evolved for sensitivity becoming more robust as edges are alt. Such a sequence of alterations could well correspond to the progression undergone by
a cell in cases of deterministic differentiation. Thus intermediate states of differentiation like the ES of B would be candidates from which reversibility
may occur going back to ES A via reversal of the network change. The induced pluripotency observed experimentally may well correspond to moving
back through such a progression of network changes in a direction opposite to that indicated by the orange arrows.
doi:10.1371/journal.pone.0036010.g008
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networks and a select subset that meet a minimum sensitivity, sA.

Methods 1–4 correspond to the different displacement methods

mentioned in the main article. The min sA column gives the

minimum sensitivity of the subset of evolved networks and the

column marked No. gives the number of those networks from the

originally evolved 1000 that meet the minimum sensitivity criteria.

(DOCX)

Author Contributions

Conceived and designed the experiments: JXL MST. Performed the

experiments: JXL. Analyzed the data: JXL. Contributed reagents/

materials/analysis tools: JXL. Wrote the paper: JXL MST.

References

1. Morohashi M, Winn AE, Borisuk MT, Bolouri H, Doyle J, et al. (2002)
Robustness as a measure of plausibility in models of biochemical networks.

Journal of Theoretical Biology 216: 19–30.
2. Stelling J, Sauer U, Szallasi Z, III FJD, Doyle J (2004) Robustness of cellular

functions. Cell 118: 675–685.

3. Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3: –.
4. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial

chemotaxis. Nature 397: 168–171.
5. Ayed A, Hupp T, Levav-Cohen Y, Goldberg Z, Alsheich-Bartok O, et al. (2011)

The p53-mdm2 loop: A critical juncture of stress response. In:p53, Springer US,

volume 1 of Molecular Biology Intelligence Unit. pp. 65–84. URL http://dx.doi.org/
10.1007/978-1-4419-8231-5-5 10.1007/978–1–4419–8231–5–5.

6. Villani M, Barbieri A, Serra R (2011) A dynamical model of genetic networks for
cell differentiation. PLoS ONE 6: e17703.

7. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, et al. (2000) Kinetic
analysis of a molecular model of the budding yeast cell cycle. Molecular Biology

of the Cell 11: 369–391.

8. Locke JCW, Millar AJ, Turner MS (2005) Modelling genetic networks with
noisy and varied experimental data: the circadian clock in arabidopsis thaliana.

Journal of Theoretical Biology 234: 383–393.
9. Locke JCW, Southern MM, Kozma-Bognr L, Hibberd V, Brown PE, et al.

(2005) Extension of a genetic network model by iterative experimentation and

mathematical analysis. Molecular Systems Biology 1: 2005.0013.
10. Locke JCW, Kozma-Bognr L, Gould PD, Fehr B, Kevei E, et al. (2006)

Experimental validation of a predicted feedback loop in the multi-oscillator clock
of arabidopsis thaliana. Molecular Systems Biology 2: 59.

11. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is
robustly designed. Proc Natl Acad Sci USA 101: 4781–4786.

12. Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle

sequence of fission yeast. PloS One 3: e1672.
13. Ge H, Qian M (2009) Boolean network approach to negative feedback loops of

the p53 pathways: synchronized dynamics and stochastic limit cycles. Journal of
Computational Biology 16: 119–132.

14. Albert R, Othmer HG (2003) The topology of the regulatory interactions

predicts the expression pattern of the segment polarity genes in drosophila
melanogaster. Journal of Theoretical Biology 223: 1–18.

15. Alvarez-Buylla ER, Azpeitia E, Barrio R, Benı́tez M, Padilla-Longoria P (2010)
From abc genes to regulatory networks, epigenetic landscapes and flower

morphogenesis: Making biological sense of theoretical approaches. Seminars in
Cell & Developmental Biology 21: 108–117.
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