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Convergence

In this paper, a new orthogonal basis for the space of cubic splines has been introduced. A lin-
ear combination of cubic orthogonal splines is considered to approximate the functions in which
the coefficients are calculated with numerically stable formulae. Applications to the numerical
solutions of some parabolic partial differential equations are given, in which the approximations
are obtained using the first and second integral of orthogonal splines which leads to an efficient
solution procedure. The convergence analysis in the approximate scheme is investigated. A com-
parison of the obtained numerical solutions with some other papers indicates that the presented
method is reliable and yields result with good accuracy. The main parts of our study are as follows:

+ We propose a robust approach based on the orthogonal cubic splines procedure in conjunction
with the operational matrix.

+ The convergence in the approximate scheme is analyzed.

» Numerical examples show that the proposed method is very accurate.

Specifications table

Subject Area:
More specific subject area:
Method name:

Name and reference of original method:

Resource availability:

Applied Mathematics

Numerical Analysis

Operational matrix method

Orthogonal cubic B-splines approach

This method has been developed in MATLAB

Method details

Background

There are many practical problems in natural model systems that lead to nonlinear partial differential equations (PDEs). Usually,
many assumptions are made to make some nonlinear PDEs solvable, and many of them are difficult to solve [1,2]. Due to the potential
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applications of such nonlinear PDEs, the investigation of efficient solutions to solve them has been of great interest [3—-6]. Meanwhile,
parabolic nonlinear PDEs are used to describe a wide range of time-dependent phenomena, including heat conduction, particle
emission, pricing of derivative investment instruments, elasticity, biological species, chemical reactions, environmental pollution,
fluid flow, filtration of liquids, gas dynamics, etc. see [7-16].

The numerical solutions of nonlinear parabolic PDEs using splines functions have been proposed by several authors such as Raslan
[15]. He has described the collocation method using quartic B-spline for the equal width (EW) equation. Mittal and Jain [17], have
developed a B-spline collocation method for solving the convection-diffusion equation. They also developed a B-spline collocation
method for solving nonlinear parabolic PDEs with Neumann’s boundary conditions [19]. Tamsir and Dhiman [20] have presented
a Cubic trigonometric B-spline differential quadrature method for the numerical treatment of Fisher’s reaction-diffusion equations.
Mohammadi [21] has presented Spline solution of the generalized Burgers’-—Fisher equation. His numerical method is based on the
exponential spline and finite difference approximations. Goh et al. [22] have also developed a numerical method using cubic B-spline
for the heat and wave equation. Their schemes are second order in both time and space for the heat equation. In this paper, we
consider the nonlinear parabolic partial differential equation

u, = @(x, t,uug,u,,), a<x<b, t>0, N
with the initial condition

u(x,0) =uy(x), a<x<b, 2)
and Dirichlet boundary conditions

u(a, 1) = g,(0),1 20, 3

u(b,1) = g,(1),1 2 0. “

We assume that ¢, ug, g, and g, and their derivatives are continuous functions in their domains.

The B-spline collocation method is not suitable for solving parabolic PDEs with Dirichlet boundary conditions. We know that
when there are Dirichlet-type boundary conditions in a problem and we want to use the collocation method to solve it, the basis
functions in the collocation method must vanish on the boundary, while cubic B-splines do not vanish on the boundary. So, we have to
either redefine the basis functions into a new set of basis functions vanishing on the boundary where the Dirichlet’s type of boundary
conditions is specified [17] or to solve a parabolic PDE problem with Neumann boundary conditions [19]. For this reason and many
useful features of orthogonal functions, we introduce orthogonal bases for space of splines functions in Section 1.

Orthogonal bases for the space of cubic splines

In this section, an orthogonal basis for the space of cubic spline functions will be used, which is made using the Gram-Schmidt
process from the cubic B-spline basis (see Mason et al. [23], Alavi and Aminikhah [24]).

Let S4(A,) be the space of cubic splines on the knot sequence A, = {a=¢_,,¢_,41» ---» 616, = b} and let {Z; }Z:'_n_l be the cubic
B-splines basis on the knot sequence {a =¢_, 3 =¢_,_» =C_,_1 = C_psCpil> - >Snet1>Sn = Snt1 = Snpa = Gpy3 = b}, Where g, | — ¢, = h,
k=-n-n+1,...,n—1.

Using Gram-Schmidt process on {&; }Zim , the orthogonal basis {P, }Z: . Will be obtain as follow

Efnfl!
—n —-n = g—n,lm—n—]’
PBope1 =E i1 = 0pi 1B — 01 2Boars
P =B =0 1Py —0-j2Bgu2) — 03B
s'Bn+1 = En+]’
“Bn = En - on,lmrwl’
Bt = Epet = 0ne 1,1 By — 001 2Bos1» 5)
s‘Pj =8, —0;1Bjs1—0,2PBj12 —0,3Bj13
B =5 o1 P01 2Bs —013Pos — 014,
B =5 N 01,1‘-132 - 01,2‘133 - 01,3‘54 - 01,4’5-2’
P_ = AP, + BP,,
By = AP, + BP_;,
Bo =Eo —00-1PB_1 —00,2B_2 — 00-3B_3 — 001B1 — 002B> — 003P3.

"B—nfl

[ Il

where j =n—2,n—3...,2. The coefficients in (5) are introduced in Alavi and Aminikhah [24].

Proposition 1 [24]. If f € C*a,b] and S,(f)(x)= Z:l_n_lck‘l}k(x) then S,(f) is uniformly converges to f. That is
lim, g ||/ = S, = O-
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For convenience in numerical computations, we use vector form of .S, (f) as follows

n+l

SN0 =Y, Py =TI, ©
k=—n—1
where
Cn = (C,n,I,C,n, ""cn+l)T’ @
I, = (B 100 B0 o By () ®

n+l

i—_n_ 1s used, where

Furthermore, in order to achieve a square system in numerical computations the set of the nodes A" = (5,»)

h
g—n—l =S n é—n =¢,t 27
§7n+1 = Contls "-sfnJrZ =hgfn+2’ s 5n72 = Cn-2>
Sne1 = Snt1s Sn = 6n = 35 Entl = S

Remark 1. Assume that B, I, B, I,53, I,P and I,P are (2n + 3)-square matrices defined by

¢ $j z
(B)ij = Ei(€)s (IlB)i,j =/ Ei(»)dy, (IZB)I'J =/ / Eiv)dydz,
& T
([173)1.!]. =/ B,(»dy, ([27)),-!]- =/ / B;(y)dydz.

where i,j =—-n—1,-n,...,n+ 1. According to the definition of Z;s we can calculate the elements of matrices B, I3 and I,B as
follows

1
I3
o1
32 4
311
9% 12 6
o121
48 6 3 6
o2
6 3 6
B ’
o2
6 3 6
o211
6 3 6 48
o1
6 12 96
JRT
4 3
1
§1
o 5 1 1 1 1 1 [ T
64 4 4 4 4 1 4 1 1
o 5 1 1 1 1 1 [ T
2% 16 2 2 2 2 2 2 2
o 2 B 1 3 3 3 303 3
768 48 24 4 4 4 4 4 4
1 1 1 23
Omﬂiﬂll 1 1 1
1 1 23
% 3w 11 1
LLB=h e, ,
1 1 23
ﬂiﬁlll
I U S
24 2 24 384
1B 593
24 48 768 4
1B
16 256 2
11
64 4
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0 49 4 9 14 19 24 4+52n-2) 20n=7 4+52n-1)
640 20 20 20 20 20 o 20 40 20
LA 17 A 12 17 22 74+52n-3) 20n—11 7+5(2n-2)
2560 80 10 10 10 10 10 20 10
0o M 1 B 27 12 57 27+1502n—4) 60n—51 27+15(2n=3)
7680 240 120 20 20 20 o 20 40 20
1 1 7 121 4n=5
1 7 121 4n=17
e o 0 2 2n—4 3 2n—-73
LB =k :
1 7 121 5
™ % i 2 b 3
L 7 121 5761 2
120 30 120 3840
L u 4081 EA
120 48 7680 10
L 47 3
80 512 10
L 1
640 20

Furthermore (5) entail

(va)—n—l,i = (IVB)—n—l,i’ (va)—n,i = (IVB)—n,i - g—n,l(va)—n—l,i’

(va)fnJrLi = (lvB)fnJrl,i - Q*VI‘FI,I(]VP)*H,I. - 07n+1,2(lv7))7n71,i’

{P)_ji=UB) ;=0 j 1 ULP) gy = 0-j 2, P)_(r2)i = 0 3L, P)_(j43)0

(I\/p)n+l,i = (IVB)n+l,i’ (va)n,i = (I\/B)n,i - on,l(I\/p)n+l,i’

Pyt = Uy By = 0ne1 1Py = 051 2Pt i

4P = U,B)ji = 0;1(LP)jr1; = 0j2(L,P)jra;i — 0;3(L,P)jya s

APy = U By = 0o iUV P)g = 012 P) 35 = 0-1 3L, P) g = 0-1 4, Py,

U, Py =U,B) =011, Py — 012, P)3; — 0131, Py — 0141, P,

Py = T WPy + s P

P, = H%(va)l,i + ﬁ(lvp)—l,i’

U, P = U, B)y; — 091, P)_y; — 002, P)_2; — 0031, P)_3; — 00,1, P)y;
=002, Py = 0031, P3,-

where j=n—-2,n-3,...,2,i=-n—1,-n,...,n+ 1 and v = 1,2. Thus we can write

& )
/ S,(N)dy=Cr1, ©

fj z .
/ / S, () (Wdydz = CT I, (10)
ya Ja

where If is jth column of matrix I,P, v=1,2.

Application of the Method to parabolic partial differential equation

In this section, we have tried to solve parabolic partial differential Eqs. (1)-(4) using S,, as an approximation tool. Let 0 <t <T
and t, = sAt, s =0,1,...,S are the equal parts of [0,7] where Ar = g To discretize the problem (1)-(4), the method of Hariharan
et al. [25] is used. We assume that u,,,(x,7) can be expanded in terms of cubic orthogonal splines (6) as

n+1
U= Y i P(x) = I TL(x), (11)
k=—n—1
where C, and I1,, are given by (7) and (8). The row vector CT is assumed constant in the subinterval [t,,1,,,]. By integrating (11) with
respect to ¢ from 7, to ¢, we obtain

Uy (X, 1) = Uy (x, 1) + (t = 1)CT T, (). (12)
Also, by integrating (11) with respect to x from a to x we have
n+1 x
() = up(@n+ Y e / Be»)dy (13)
k=—n—1 a

Integrating (13) with respect to x from a to x and using (3), gives

n+1

u,(x,1) = g,(t) + (x — a)u,(a,t) + Z c,i/ / PBr(»dydz, (14)

k=—n-1
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where * denotes the differentiation with respect to ¢. By substituting x = b in Eq. (14) and using (4), we get

n+1

b z
u,x(a,n:ﬁ(gb(r)—ga(t)— > o / / mk@)dydz). (15)

k=—n—1
Substituting Eq. (15) into (14), held

U (x, 1) = g,(1) + ﬁ (8(1) = £,(1))

n+1 x z b .
+k=§‘_162</a /a ‘Bk(J’)dde—)bc_Z/a /a ‘Bk(y)dydz>. (16)

By integrating (16) with respect to 7 from ¢, to ¢, we obtain

uCx, 1) = u(x,1,) + g,(1) = g,(t) + % (85(1) = 83t — 4(1) + g4(1,))

n+1

s x z X—a b z
Ht_t“)k:_zn_lck( / / Pu)dydz 3= / / snk(y)ziyrzz) a7

Also, by substituting Eq. (15) in (13) we get

n+1

1 ) ) . x 1 b z
u,x(x,t)zm(gb(t)—ga(t))+k=_zn_lc}((/a znk(y)dy—m/a / ink(y)dydz>. (18)

Integrating (18) with respect to 7 from 7, to ¢, yields

(0, 1) = 10 1) + T (80 = (1) = 8,00+ 84(1,)

n+l x b z
s L
+(t—1) kgﬂ‘,_] a < / Py = — / / znk(y)dydz). (19)
Further, by discretizing (12), (16), (17), (19), assuming x — Eint > by, and using (9) and (10), we get
uxx(‘fj’ Is+l) = uxx(g" ts) + ATC’TH"((:]‘), (20)
(&) t1) = Galtyr) + A (€t osn) = 8alt11)) + € (I;' - 1! ), @1
u(€,toy) = u;, 1) + 8,15 1) — 8a(1s) + 4; (gb(ts+1) = &p(ty) — 8,(1s41) + ga(ls)) + AICHT(@ - ﬂﬂ;’“ ) (22)
1 i 1
ux(éj’ ts+l) = ux(fj’ ts) + m (gb(Ierl) - gb(ts) - ga(t.v+l) + ga(ts)) + AtCZ<I{ - EI;-H )5 (23)

£i— . .
where Ay = ;T: Assuming x — &;, 1 — ¢, in (1), we get

ut<5j91x+l) = (p(gj»ls+l’ u(ép ts+l )’ux(éj’ ts+l )’uxx (6]5 ts+l))' (24)

Substituting (20)-(23) in (24) gives a system of (2n + 3) equations in (2n + 3) unknowns cz, k=-n—-1,-n,...,n+1.
If Eq. (1) is linear, then (24) leads to a system of linear equations that will be easily solvable. In the cases that (1) be nonlinear,
then Eq. (24) leads to a system of nonlinear equations that will be solved by the trust-region-dogleg algorithm [26].

Convergence analysis

To prove convergence of the solution of the presented method, we need to show that the maximum errors tend to zero as 7 — 0,
A — 0.
n+1 s

Assume that i, (x,1) = 21" ¢}

P (x), t € [ty,1,,] is the approximation of the exact solution u,, (x, ). Let
e, (X, 1) = Uy (X, 1) =l (X, 1), (25)
represent error in (x, 7). Using Proposition 1 we know that

lim
n—0o0

e,(x,t -)Hoo =0. (26)

Now, the numerical method presented in Section 2, could be rewritten along with the error terms.
By integrating (25) with respect to x from a to x, leads to

i (x, 1) = up (x, 1) = i (a, 1) — u (a, 1) — / e,(y,0)dy. 27)
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According to the initial and boundary conditions (2), (3), and (4), we set
u(x,0) = i(x,0),
u(a,t) = ii(a, 1),
u(b,t) = (b, 1),

By integrating (27) with respect to x from a to x and using (28) we have

i, (x, 1) — up(x, 1) = (x — a)(ﬁ,x(a, 1) —u,(a, t)) - / / e,(y,dydz.

Putting x = b in (29) and using (28) gives

b z
. 1
i (a,t) —u,(a,t) = m/ / e,(y,0)dydz.
a a

By substituting (30) in (29) we obtain

b z x z
ity (x, 1) — u,(x, 1) = ’;_Z/ / e,(y,dydz —/ / e,(y,)dydz.
a a a a

Integrating (31) with respect to  from ¢, to ¢, leads to

b z t x z t
(e, 1) — u(x, 1) = ii(x, 1) — u(x, 1) + —2 / / / e, (v, Ddtdydz — / / / e, (v, dtdydz.
b—a a a tg a a tg

Applying Eq. (32) successively implies

Ax, gy ) —u(x, 1) = a(x, t) —u(x,ty)

Xx—a b rz i X ozl
+ / / / e,(y, t)dtdydz—/ / / e,(y,t)dtdydz
b—aj, Ja tg a Ja Jig

=ii(x,t;_q) —u(x,t;_y)

b rz i X rz i
+ 124 / / / e,(y,)dtdydz —/ / / e,(y,Ndtdydz
b—a a a te 1 a a [
Xx—a b rz it Xzl
+ / / / e,(y,)dtdydz —/ / / e,(y,)dtdydz
b—a a a tg a a tg

= di(x, ty) — u(x, 1)

X—a b z 1 x z t
+ / / / e,(y, t)dtdydz—/ / / e,(y,t)dtdydz
b—a f, J, f0 a Ja Jy

x—a b z tg x z tg

+ / / / e,(y,t)dtdydz — / / / e,(y,t)dtdydz
b—a a a te_1 a a [
x—a b z (] x z torl

+ / / / e,(y,)dtdydz —/ / / e,(y,t)dtdydz.
b—a a a tg a a tg

Now the Eq. (28) concludes

S X—a b z [43%] x z 48]
BCx, ) = ulxty) = 3 | 5= / / / e,(y. )drdydz — / / / e, (. dedydz ).
j=0 a Ja a tj a a tj

, then from (33) we have

Let max, <<, le, (v, )| = |e,(y, 1)

s b prz

~ x—a

|u(x,ls+1) - “(x»lx+l)| < Ar 2 (b / /
NPT da Ja

From relation (34) we obtain

X zZ
dydz+/ /
a a

dydz).

en(ystj*) en(yatj*)

MethodsX 10 (2023) 102190

(28)

29

(30)

(E1Y)

(32)

(33)

(34
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X—a b z x z
< / / dydz+/ / dydz>
o\b—a a a a a

((b—a)x —a) + (x — a)*) At Z
j=0

S
[l £301) = uCx 14 )| o < ALY ey
Jj=0

= en(ij*)

©

S

s
< At(b — a)? 2
j=0

e )| - (35)
From Egs. (35), (26) we have limy,_q ||@(x, 7,4 ) — u(x, 75, 1)||, = 0 and, for fixed x (35) leads to limy, g ||i#(x. 751 1) — u(x, 15, ))|| = O
Numerical experiments

In order to show the efficiency and accuracy of the presented method, three numerical examples are prepared in this section. In

numerical examples, we suppose that u(x, t) denotes the exact solution and i(x, ) denotes the estimated solution.
The versatility and the accuracy of the methods are measured using the L, and L, error norms which are defined as [27]

>

L, = max |u(xj, 1) — i(x;, 1)
J

; ‘u(x/-, 0 —i(x;, t)|2
Z ‘u(x i t)‘2
J

where t € [0, T] ia a fix number.
Example 1. In this problem we consider the following convection-diffusion equation

u,(x, 1) + eu (x,1) = yu, (x,1), 0<x <1, 1>0. (36)
where ¢ = 0.1, y = 0.02 and with the initial condition

ug(x) = exp(ax).
The exact solution of (36) is

u(x) = exp(ax + fit),

where a = 1.17712434446770 and g = —0.09. The boundary conditions g,(r) = u(0,7) and g,(t) = u(1,7) can be gained from the exact
solution. According to (24) and (36), we conclude

Crty=ryjs (37)
in which
. . 1
2= 1= 413" wear(1] - = 1) A, (&),
& . . .
rs,j = yuxx(éj’ tx) - gux(gj’ts) - m (gb(tx+1) - gb(tx) - ga(ts-H) + ga(ts)) - ga(t.v+1) - Z’j (gb(ts+l) - ga(ts+l))'

By rewriting (37) for j = —n— 1,—n, ..., n + 1, the following main system is produced
ATc, =r,, (38)

sothat A= (2_, 1,2 ... 24 ) @0d ¥y = (Fg_, 1, Fg_pseee s Foppl )T.

For each s, the amounts of C, are computed after solving the linear system (38). Then, the values of u(éj, tor 1) are uncovered
applying (22).

Note that for s =0 in (2), u(&;, 0) = uf(x), and uxx(gj,o) = u(x), otherwise u (& t;) and uxx(éj, t,) are updated using (23) and
(20), respectively.

The maximum absolute errors at the final time ¢ = 3 of the proposed method and some spline-based methods include; redefined cu-
bic B-splines collocation (method I) [17,18], cubic B-Spline Quasi-Interpolation (method II) [28-30] and B-spline differences (method
III) [31] are reported in Table 1. Furthermore, the error norms L, and L, for the proposed method and methods I, II and, III are
tabulated in Table 2. In Table 3, the maximum absolute errors in final time ¢ = 3 for fixed 2 = 0.1 and different values of At are shown.
In Fig. 1, the logarithm of absolute errors at the final time ¢ = 3 of the proposed method and methods I, II and, III are depicted. The
exact solutions and absolute errors of the numerical method for (36) are depicted in Fig. 2. In order to have a fair comparison, we
assume that 2 = 0.01 and A7 = 0.0001 in all methods.

Example 2. In this problem, we consider the following generalized Fisher equation [32]

uy = (1 = ), + 2u — 22, ‘% <x< % t>0. (39)
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Table 1

Maximum absolute errors of Example 1 for different spline methods in 7 = 3 for 4 = 0.01

and At = 0.0001.

x Present method Method I Method II Method III

0.1 4.095409¢ — 08 2.525707e — 07 5.690595¢ — 07 6.711264e — 08
0.2 9.171525e — 08 5.007888e — 07 1.131648e — 06 1.330686e — 07
0.3 1.451018e — 07 7.381093e — 07 1.669654¢ — 06 1.961289¢ — 07
0.4 1.940863e — 07 9.594134e — 07 2.171395e — 06 2.549332¢ — 07
0.5 2.319977e — 07 1.158246e — 06 2.622121e — 06 3.077662e — 07
0.6 2.524701e — 07 1.320182e — 06 2.988978e — 06 3.507948e — 07
0.7 2.490144e — 07 1.410071e — 06 3.192103e — 06 3.746789¢ — 07
0.8 2.140111e — 07 1.349596¢ — 06 3.053780e — 06 3.586091e — 07
0.9 1.367619¢ — 07 9.797077e — 07 2.213315e — 06 2.603237e — 07

Table 2

The error norms of Example 1 for different spline methods for 2 = 0.01 and Az = 0.0001.

t Error norm Present method

Method I

Method II Method III

1.149070e — 07
4.372485¢ — 08
1.984331e — 07
8.136983¢ — 08
2.543450e — 07
1.128187e — 07

6.676803e — 07
2.564121e — 07
1.113716e — 06
4.639174e — 07
1.413629¢ — 06
6.349489¢ — 07

1.510797e — 06 1.773833e — 07
5.800060e — 07 6.813040¢ — 08
2.521026e — 06 2.959304e — 07
1.049667¢ — 06 1.232706e — 07
3.199975¢ — 06 3.756242¢ — 07
1.436727e — 06 1.687166e — 07

1 L,
L,
2 L,
LZ
3 L,
LZ

Table 3

The maximum absolute errors of Example 1 for 7 =3 and 2 = 0.1.

At

Max. absolute error

1/2
1/4
1/8
1/16
1/32
1/64
1/128
1/256
1/512
1/1024
1/2048
1/4096

1.197011e — 03
6.141829¢ — 04
3.112529¢ — 04
1.567016e — 04
7.862573e — 05
3.938392¢ — 05
1.971156e — 05
9.862463e — 06
4.934673e — 06
2.469967e — 06
1.237412e — 06
6.210833e — 07

(@3)[l

—u

log ||lu(z, 3)

19 1]

Present Method | |
= = =Method I

Method II B
wonenens Method I1T

0.2

0.4
X

0.6 0.8 1

MethodsX 10 (2023) 102190

Fig. 1. The logarithms of absolute errors of Example 1 for different spline methods in = 3 for 2 = 0.01 and Ar = 0.0001.
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x107°
4 15
3 =
Gl
= S
82 |
= =
1 =
0

Fig. 2. The exact solutions (left) and the absolute errors (right) of Example 1 with 4 = 0.05 and At = 0.005.

Table 4
Maximum absolute errors of Example 2 for different spline methods in 7 = 1.5 for h = z/20 and
At =0.0001.
x Presented method Method IT Method III Method IV
—97/20 3.940962¢ — 07 3.875122¢ — 07 2.573821e — 07 2.309600e — 07
-T1z/20 8.321440e — 07 8.617166e — 07 1.935984e — 06 1.497486e — 06
—57/20 8.595661e — 07 4.617298e — 07 3.623414e — 06 2.099887¢ — 06
—37/20 5.859313¢ — 07 2.297674e — 06 3.413060e — 06 4.97039%4e — 07
—n20 1.415094e — 07 7.296242e — 06 1.160199e — 06 3.748889¢ — 06
/20 3.360662¢ — 07 1.329430e — 05 2.347445¢ — 06 1.015345e — 05
37/20 7.121270e — 07 1.840305¢ — 05 5.657620e — 06 1.764220e — 05
57/20 8.722955e — 07 2.048811e — 05 7.168941e — 06 2.48799%4e — 05
T /20 7.392216e — 07 1.735549e — 05 5.725458e — 06 3.056752e — 05
97 /20 3.010297e — 07 6.695846¢ — 06 1.966998e — 06 3.368879e — 05
Table 5
The error norms of Example 2 for different spline methods for 4 = z/20 and Ar = 0.0001.
t Error norm Presented method Method II Method III Method IV
1 L, 1.028282¢ — 06 3.769251e — 05 2.511016e — 05 7.295803e — 05
L, 6.370047¢ — 07 1.576174e — 05 1.075739¢ — 05 2.917490e — 05
2 L, 5.570207e — 07 9.847311e — 06 1.898947e — 06 1.371097e — 05
L, 3.233114e - 07 4.163493e — 06 8.371396e — 07 5.207501e — 06
3 L, 1.428927¢ — 07 1.922356¢ — 06 7.112927¢ — 07 1.941321e — 06
L, 8.258020e — 08 8.524094e — 07 3.159984e — 07 7.315347e — 07

The exact solution of (39) is given by
u(x,t) = %(2 + tanh(?) — (1 — tanh(r)) sin(x)).

The initial and boundary conditions can be obtained from the exact solution.
Using (20)—(24) and (39), the following nonlinear system of equations is obtained

(& t51) = (1= (&) 1)) (e (& 1) + 2080 1001)) = (0 (&01501)) (40)
where j =-n—1,-n,...,n+ 1.

For each s, the values of C, are calculated by solving the nonlinear system (40) and then the values of u(.f it +1) are determined
by utilizing (22).

The maximum absolute errors at the final time # = 1.5 of the proposed method are compared with those of cubic B-Spline Quasi-
Interpolation (Method II) [28,29], B-spline differences (method III) [31] and a cubic B-splines collocation method (Method IV) [32] in
Table 4. Also, the error norms L and L, corresponding to the suggested method and the methods II, III and, IV are expressed in
Table 5. In Table 6, the maximum absolute errors at the final time ¢ = 3 for the fixed 2 = z/10 and different values of Ar are reported.
The logarithm of absolute errors at the final time 7 = 3 of the proposed method and the methods II, III and, IV are depicted in Fig. 3.
The exact solutions and absolute errors of the numerical method for (39) are illustrated in Fig. 4. In order to have a fair comparison,
we assume that 4 = /20 and Az = 0.0001 in all methods.
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Table 6
The maximum absolute errors of Example 2 for r = 3 and & = x/10.

At Max. absolute error
1/2 1.013505¢ — 03
1/4 4.386564¢ — 04
1/8 1.998553¢ — 04
1/16 9.472917¢ — 05
1/32 4.602310e — 05
1/64 2.267089¢ — 05
1/128 1.124972¢ — 05
1/256 5.603761e — 06
1/512 2.797277e — 06
1/1024 1.398236¢ — 06
1/2048 7.000375e — 07
1/4096 3.629958e — 07
-9

T
Present Method
— = =Method IT
10 e Method III 1
Method IV

%1075
1 6
0.8
5-; 0.6 .
s
0.4
0.2
’ ™.
\ /'/G
-
0 \ /// 4
S 2
x 2 0 t

Fig. 4. The exact solutions (left) and the absolute errors (right) of Example 2 with A = z/20 and At = 0.005.

Example 3. As the final example, the following generalized Burgers-Fisher equation is considered [27]
U+ aulu, —eug, = pu(l —u®), —1<x<1,1t>0. (41)

The exact solution is given by

Sl

ux, 1) = (% + %tanh(al(x - a2t))) .

10
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Table 7
Maximum absolute errors of Example 3 for different spline methods in r = 4 for » = 0.05, At = 0.0001.
x Present method Method II Method III Method IV
—-0.9 2.510289%¢ — 09 3.500592¢ — 08 4.523877e — 06 4.691982¢ — 04
-0.7 7.927065¢ — 09 1.041859¢ — 07 1.498539¢ — 05 4.604582¢ — 04
-0.5 1.333691e — 08 1.690881e — 07 2.757963e — 05 4.533378e — 04
-0.3 1.811131e — 08 2.263077e — 07 4.263947¢ — 05 4.482437e — 04
—0.1 2.165096e — 08 2.715832e — 07 6.054250e — 05 4.456459¢ — 04
0.1 2.340849¢ — 08 2.996171e — 07 8.171590e — 05 4.460873e — 04
0.3 2.291644e — 08 3.038728e — 07 1.066416e — 04 4.501930e — 04
0.5 1.982312e — 08 2.763384e — 07 1.358619¢ — 04 4.586822¢ — 04
0.7 1.393666e — 08 2.072547e — 07 1.699852¢ — 04 4.723796e — 04
0.9 5.281705e — 09 8.481648e — 08 2.096925e — 04 4.922300e — 04
Table 8
The error norms of Example 3 for different spline methods using 4 = 0.05, At = 0.0001.
t Error norm Present method Method II Method III Method IV
1 L, 3.454354e — 07 1.915832e — 06 4.688442¢ — 03 3.244907e — 03
L, 2.635589¢ — 07 1.633663e — 06 2.271386e — 03 2.041180e — 03
2 L, 5.256692¢ — 08 2.033358e — 06 2.245220e — 03 2.223872¢ — 03
L, 3.211588e — 08 1.409211e — 06 9.192477e — 04 1.806935e — 03
3 L, 4.567310e — 08 9.192536e — 07 7.671616e — 04 1.139620e — 03
L, 2.767084e — 08 5.940740e — 07 2.936482¢ — 04 9.995790e — 04
4 L 2.351230e — 08 3.054486e — 07 2.318744e — 04 5.070087e — 04
L, 1.392544¢ — 08 1.931589¢ — 07 8.693930e — 05 4.623098¢ — 04
-6
8+ 1
,-10F ]
f Present Method
< 19 - = =Method II
B Method TIT
= wrnsnnns Method TV
e .
3
) emmmmmTTTTTT TR -~
=161 T <o
= 1817 8
220 1 1
-22 1 1 L
-1 -0.5 0 0.5 1
X

Fig. 5. The logarithms of absolute errors of Example 3 for different spline methods in # = 4 using 4 = 0.05 and Ar = 0.0001.

where
—ab o (1 +6)

1T 2046 T 1+s PR

and a =1, =1, € =1, 6 = 1. Furthermore, the initial and boundary conditions can be obtained from the exact solution.
Using (20)-(24) and (41) the following nonlinear system of equations will be obtained

Mt(gj’tsﬂ) + a(”(‘sj’tsﬂ))&ux (‘fj’ts+l) - Euxx(gj’tsH) = ﬁu(gj’t.ﬁl)(l - (u(gj’tSH))a)’

where j=-n—-1,-n,....,n+ 1.

42)

For each s, the values of C, are calculated by solving nonlinear system (42) and then the values of u(fj, 1,41) are obtained using

(22).

The maximum absolute errors at the final time ¢ = 4 of the proposed method are compared with those of cubic B-Spline Quasi-
Interpolation (Method II) [28,29], B-spline differences (method III) [31] and a cubic B-splines collocation method (Method IV) [32] in
Table 7. Moreover, the logarithm of absolute errors in final time 7 = 4 of the proposed method and the methods II, III, and IV are
depicted in Fig. 5. The error norms L, and L, of the presented scheme and the methods II, III, and IV are tabulated in Table 8. In

11
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Table 9
The maximum absolute errors of Example 3 for t = 4 and & = 0.05.
At Max. absolute error
1/2 1.254373e — 04
1/4 6.214032e — 05
1/8 3.040334e — 05
1/16 1.496881e — 05
1/32 7.418337e — 06
1/64 3.691718e — 06
1/128 1.841384e — 06
1/256 9.195592e — 07
1/512 4.594947e — 07
1/1024 2.296760e — 07
1/2048 1.148201e — 07
1/4096 5.740565e — 08
x10-8
1 8

u(z,t)

\\\ Sy -
\(// 1
x -1 t

Fig. 6. The exact solutions (left) and the absolute errors (right) of Example 3 with 4 = 0.02 and At = 0.002.

Table 9, the maximum absolute errors at the final time ¢ = 4 for the fixed 4 = 0.05 and different values of At are calculated. The exact
solutions and absolute errors of the numerical method for (41) are demonstrated in Fig. 6. To present a fair comparison, 2 = 0.05 and
At =0.0001 have been supposed in all methods.

Conclusions

In this article, an orthogonal basis for the space of cubic spline functions were obtained by using cubic spline bases and an
orthogonalization process. Next, a linear combination of the members of this base was used to approximate the functions, and the
first-order and second-order integrals of this linear combination were obtained at the knot points. This approximation tool was used
to numerically solution of a general case of the nonlinear parabolic partial differential equation. We started the approximations from
the highest order of the derivative in the equation and with multiple integrations, at the knot points we reached a system of algebraic
equations. This system becomes linear or nonlinear, depending on whether the initial problem related to it is linear or nonlinear,
respectively. The linear can be solved by conventional methods and the trust-region-dogleg algorithm is used to solve the nonlinear
case. Also, the convergence in the approximate scheme is analyzed. Next, one linear problem and two nonlinear problems were
presented and the numerical results of the presented method were compared with other numerical methods that used splines. The
numerical results indicated the accuracy and reliability of the presented method.

The main difference between the presented method with other methods that use splines to numerically solution of partial differ-
ential equations is that we use the linear combination of bases to approximate the highest order of the spatial and temporal derivative
and then with integrating and placing the knot points, we arrive at a numerical solution for the equation. Another difference is the
use of a special type of orthogonal cubic splines that have not been used before to solve these types of equations. These basis functions
have interesting numerical properties and are numerically stable. We have examined some of their properties before, but according
to the numerical results, it seems that more properties of these bases can be obtained in the future, which will be useful for solving
various problems.
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