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Abstract

Background: Constraint-based computational approaches, such as flux balance analysis (FBA), have proven
successful in modeling genome-level metabolic behavior for conditions where a set of simple cellular objectives
can be clearly articulated. Recently, the necessity to expand the current range of constraint-based methods to
incorporate high-throughput experimental data has been acknowledged by the proposal of several methods.
However, these methods have rarely been used to address cellular metabolic responses to some relevant
perturbations such as antimicrobial or temperature-induced stress. Here, we present a new method for combining
gene-expression data with FBA (GX-FBA) that allows modeling of genome-level metabolic response to a broad
range of environmental perturbations within a constraint-based framework. The method uses mRNA expression
data to guide hierarchical regulation of cellular metabolism subject to the interconnectivity of the metabolic
network.

Results: We applied GX-FBA to a genome-scale model of metabolism in the gram negative bacterium Yersinia
pestis and analyzed its metabolic response to (i) variations in temperature known to induce virulence, and (ii)
antibiotic stress. Without imposition of any a priori behavioral constraints, our results show strong agreement with
reported phenotypes. Our analyses also lead to novel insights into how Y. pestis uses metabolic adjustments to
counter different forms of stress.

Conclusions: Comparisons of GX-FBA predicted metabolic states with fluxomic measurements and different
reported post-stress phenotypes suggest that mass conservation constraints and network connectivity can be an
effective representative of metabolic flux regulation in constraint-based models. We believe that our approach will
be of aid in the in silico evaluation of cellular goals under different conditions and can be used for a variety of
analyses such as identification of potential drug targets and their action.
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Background
The recent progress in genome sequencing techniques has
led to the development of genome-level models of metab-
olism that have been analyzed using constraint-based
approaches, such as flux-balance analysis (FBA) [1,2]. The
success of FBA stems from the fact that, unlike kinetic
models, FBA aims to identify optimal metabolic steady-
state activity patterns that satisfy constraints imposed by
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mass balance, the metabolic network structure, and the
availability of nutrients. The most common cellular task to
be optimized (the system’s objective function) is that of
growth, although other choices are possible depending on
the selective environment of the cell [3,4]. The FBA frame-
work has been applied to many genome-level models (see
e.g., [5-11]) with great success, as well as the systematic
prediction of genetic knockout phenotypes [12,13], the glo-
bal organization of metabolic fluxes [14], and the discovery
of novel regulatory interactions [15]. However, fulfillment
of systems biology’s goal to generate models that integrate
data from all cellular levels (genomic, transcriptomic,
proteomic, metabolomic, etc.), and can accurately predict
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metabolic phenomena under different environmental con-
ditions has hitherto been hampered by minimal application
of regulatory constraints.
According to the central dogma of biology, informa-

tion flows from DNA to mRNA and ultimately to
enzymes which catalyze and regulate various cellular
functions. Hence, one might envision a fully “hierarch-
ical” regulation of metabolism where expression levels of
mRNA correlate directly with the amount of enzymes
and thus with the flux through associated reactions. For
some conditions, this simplified assumption can be used
for the purpose of modeling metabolic activity [16].
However, this type of hierarchical control does not take
place in general since there are several levels of flux
regulation which operate separately from the purely gen-
etic. These mechanisms include variations in protein
translation, protein activation/inactivation and metabol-
ite regulation of enzymatic activity. Studies have shown
that even within one pathway there may exist a variety
of flux regulatory mechanisms for each reaction that
range from purely hierarchical to fully metabolic control
[17-20].
The varying role of hierarchical regulation for network

reactions has limited the utilization of gene-expression
data to improve predictions of genome-scale metabolic
models. The earliest attempt at imposing transcriptional
regulation on constraint-based models was conducted by
Palsson and coworkers who developed regulatory flux-
balance analysis (rFBA) [21-25] where, using Boolean
logic, a transcriptional regulatory network was superim-
posed on an FBA model. rFBA can be used to predict a
form of quasi-dynamic flux profile (i.e., series of steady-
state flux profiles) in a changing environment. The time
course of an experiment is divided into a number of suc-
cessive short intervals and at each time step, new regula-
tions based on metabolic steady state of the previous
time is formulated. Next, FBA is used to predict a steady
state flux that is consistent with the set regulatory rules
at that moment.
Later, Nielsen and coworkers [26] further developed

the idea of combined regulatory metabolic control by
implementing gene-expression data as a Boolean
switch to block the activity of any reaction for which
the responsible mRNA was not expressed. Further
progress on this methodology was made when Becker
and Palsson [27] introduced the Gene Inactivity
Moderated by Metabolism and Expression (GIMME)
algorithm which uses a set of pre-determined thresh-
olds for transition of each gene from “on” to “off”.
The user selects a priori a minimally acceptable out-
come for the FBA models and GIMME iteratively
activates genes that were initially turned “off” in order
to ensure that the FBA model achieves its required
metabolic functionalities.
Another method dubbed E-Flux [28] uses gene-
expression values to relatively regulate the flux that reac-
tions in a model can carry. In a process akin to “setting
the width of pipes” in a network, E-flux uses gene-
expression data for different conditions to set normal-
ized relative upper flux limits on affected reactions and
then optimize a previously chosen objective function. Al-
though the method is innovative in that it utilizes the ac-
tual gene-expression data, it is still limited in that a) it
requires a pre-determined objective function for the
condition associated with the gene-expression data, and
b) the flux limit for each reaction is purely determined
by the value of gene-expression values, and hence is un-
likely to account for metabolic regulation. All subsequent
advances involve utilizing mixed-integer linear program-
ming (MILP) to identify cellular states that optimally
adhere to both regulatory and metabolic regulations.
The introduction of steady-state regulatory flux bal-

ance analysis (SR-FBA) [29] which utilizes MILP to
maximize biomass growth while concurrently trying to
adhere to the maximum number of regulatory con-
straints, allowed a detailed quantification of the extent
to which metabolic and transcriptional regulation con-
trol the metabolic behavior of a cell. Jensen and Papin
further improved this mode of analysis by developing
the Metabolic Adjustment by Differential Expression
(MADE) methodology [30]. This method, unlike GIMME,
does not require a prior selection of expression thresholds
and instead uses MILP and the statistical significance of
changes in gene-expression to develop a metabolic model
that recreates the measured expression dynamics while
ensuring that the FBA model maintains previously deter-
mined threshold functionality. Although these methods
have been useful in qualitatively predicting gene-expression
patterns and metabolic adjustments between different
conditions, they are limited by the fact that they require an
a priori user-defined objective function and also do not fully
make use of the predictions of FBA models; thus, a signifi-
cant portion of the available data is not fully utilized.
Further work by Shlomi et al. [31] that has been incor-

porated in the iMAT algorithm [32] uses gene-
expression data and a Boolean gene-to-reaction mapping
to impose hierarchical regulation on a metabolic model.
Here, affected reactions are classified based on asso-
ciated gene-expression data as either highly expressed
(RH), moderately expressed or lowly expressed (RL).
iMAT utilizes MILP to identify a possible steady-state
flux distribution among those that maximize the number
of reactions with predicted flux consistent with the
gene-expression data as well as the model’s stoichiomet-
ric and thermodynamic constraints. Thus, the goal of
iMAT is to maximize the sum of the number of reac-
tions in RL that carry a flux of zero, and the number of
reactions in RH that carry a flux greater than an
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arbitrarily chosen threshold [31]. Consequently, iMAT
maximizes only the pattern of hierarchical regulation.
Although the method has been successfully applied to
model different human tissues (e.g., [33,34]) and other
multi-cellular organisms [35], the utility of the method
is limited since ensuring that active reactions carry a
minimum flux does not necessarily ensure that the
model can predict correct cellular objective flux(es).
Despite these deficiencies, iMAT has a strong advantage
over other methods [26,27,29,30], in that it does not
need a predefined set of required metabolic functional-
ities and an FBA objective function.
Here, we present a new approach that uses gene-

expression data to optimize not only the pattern of
hierarchical regulation, but also the level of differential
gene-expression within the rigid framework of metabolic
constraints placed on a system by the connectivity of
the reaction network. Although our steady-state based
method does not account for capacity limitations in
various enzymes, and thus the beneficial, deleterious or
regulatory role of metabolite concentrations, the model's
adherence to conservation of mass balance and network
connectivity imposes pseudo-metabolic regulation. The
coupled interaction of this absolute form of metabolic
control with optimal hierarchical control in gene-
expression FBA (GX-FBA) improves our theoretical ca-
pabilities for analyses of a wide range of phenomena, such
as cellular responses to environmental perturbations
which traditionally have been considered outside the
realm of FBA.
A recently published approach by Lee et al. [36] is also

focused on using actual gene-expression levels to guide
metabolic flux prediction. However, this method differs
significantly from GX-FBA in that it minimizes the abso-
lute difference between metabolic fluxes and gene-
expression data from RNA-seq experiment.
To illustrate the utility of GX-FBA, we have analyzed

the genome-scale metabolic model for the etiological
agent of bubonic plague, the gram-negative bacterium
Yersinia pestis (YP) [37]. We have studied YP’s genome-
scale metabolic response in physiologically important
conditions: temperature shifts known to induce viru-
lence in low calcium media [38,39], as well as its re-
sponse to stress induced separately by the antibiotics
streptomycin and chloramphenicol. Our analyses open
windows into the metabolic workings of this bacterium
while it survives within macrophages following initial
introduction into a mammalian host, proliferates in the
blood, and attempts to resist therapeutic efforts. Our
analyses indicate that majority of cellular metabolic
changes associated with response to stress is unique to
the type of perturbation. The only common adaptive re-
sponse to all four types of stress was for YP to initiate a
series of energy saving measures.
Methods
Reconstruction of the metabolic network
The Yersinia pestis model iAN818m [40] is based on the
annotated genome of strain 91001 [41]. The model was
extensively hand-curated to ensure compliance with ex-
perimental observations, accounting for the activity of
818 of the 1146 metabolism-related genes (71%) in the
genome. Several studies [42-45] have shown that the
composition of YP’s cellular membrane changes when
the cell transitions from the flea gut environment (high
Ca2+, 26°C) to that of the mammalian host (low Ca2+,
37°C). This phenomenon has been implemented in the
model by developing two separate biomass composi-
tions. The model includes the pathways for production
of yersiniabactin virulence factor; however it currently
does not contain the biosynthetic pathways for the pro-
duction of other pathogenic proteins such as yersinia
outer proteins. For a detailed summary of the model
characteristics and a complete list of the metabolic reac-
tions see [40]. Recently, another reconstruction for a
virulent strain of YP was developed [46]. We have used
the iAN818m model in our analysis since the gene-
expression data are collected from avirulent strains that
are more closely related to strain 91001.

Flux Balance Analysis (FBA)
FBA is based on representing known metabolic reactions
of an organisms by the stoichiometric matrix, S (m×n),
where m is the number of metabolites and n the number
of different reactions. Applying the assumptions of mass
balance and metabolic steady-state, we find the following
set of linear equations governing the system’s behavior:

dXi

dt
¼

X
Sijνj ¼ 0;

where Xi is the concentration of metabolite i. Other lim-
itations that are imposed on a system based on experi-
mental studies enforce that the amount of flux through
a reaction, the amount of nutrients imported, or waste
products secreted from the organism have a lower and
upper boundary:

α≤vi≤β;

χ≤bi≤ϕ;

where bi and vi are the export/import flux of metabolite
species i, and the flux through internal reaction i re-
spectively, and α, β, χ, and ϕ are the lower and upper
limits for these fluxes. Finally, FBA utilizes linear pro-
gramming to determine a feasible steady-state flux vec-
tor that optimizes an objective function, most
commonly chosen to be the production of biomass, i.e.,
cellular growth.
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GX-FBA: Flux optimization constrained by mRNA
expression data
We combine mRNA expression data with a constraint
based framework through the following multi-step ap-
proach. Note that, we only use mRNA expression data
for genes that are included in our metabolic model.
Additionally, we choose to only take into account gene-
expression changes of at least 50% (±0.5 fold change).
We have ensured that this particular choice of threshold
value does not significantly impact our results. Note,
however, that if the threshold is set to a large value, only
a few constraints are imposed on the model, which
obviously will have a large impact on the GX-FBA
predictions.
We have implemented the GX-FBA algorithm in a

script (Additional file 1) that is contingent upon the Cobra
Toolbox for Matlab [47] with the Gurobi Optimizer 4.6.0
linear programming solver (Gurobi Optimization, USA).
Our methodology is as follows:

(1) Generate the wild-type flux distribution νi
wt for the

starting condition (1) using an Interior Point
optimization algorithm with biomass growth or any
other appropriate goal as the objective function.

(2) For nutritional constraints associated with the post-
transition environment (condition (2)), flux
variability analysis (FVA) [48] with minimal flux for
biomass production set to zero is utilized to
calculate the lower and upper fluxes that each
model reaction i (vi

min and vi
max respectively) can

carry solely based on environmental limitations and
network connectivity. From these results, the mean
possible flux value for each reaction i (vi) and
average flux carried by all active reactions (v all) is
determined.

(3) Identify the set of reactions T for which an
mRNA expression value can be associated. Using
the results of the FVA analysis (step 2), reactions
that carry unreasonably high flux values (for case
of YP vi≥100) are eliminated, since these
reactions could cause numerical problems when
solving the GX-FBA objective function and likely
take part in type III extreme pathways [49]. For
protein complexes and reactions catalyzed by
isozymes, the maximal up- or down-regulation
value is used unless the mRNA expression values
are inconsistent (mixture of up- and down-
regulation). In the latter case, the reaction is
excluded from T.

(4) For each internal metabolic reaction i in T, a new
constraint βi =Ci

mRNAνi
wt is assigned if the mRNA

expression is up-regulated, and αi =Ci
mRNAνi

wt if it
is down-regulated, where Ci

mRNA is the mRNA
expression ratio and αi and βi are the lower and
upper constraints of flux i.

(5) Construction of the new objective function:

Z ¼
X
i∈T

log2 CmRNA
i

� � νi
νi
:

If the wild-type value of a reaction i is zero, νi
wt

and vi are set equal to the average value for all ac-
tive reactions (v all) and hence:

• For up-regulated reactions βi ¼ CmRNA
i νall.

• For down-regulated reactions αi =0.
Note that reversible reactions are not included in T
and Z. This is because of challenges in reconciling the
biochemical concept of reaction flux with mathematics
of linear programming. For example, whereas in linear
programming a value change from 4 to −10 is a
minimization, in terms of biochemical flux, the activity
of the enzyme has increased by a factor of 2.5. In order
to decrease the number of reversible reactions and in-
crease the number of reactions that are included in Z,
the result of the FVA analysis is used to identify those
reactions that although normally reversible, under the
conditions imposed by environmental constraints carry
flux in only one direction. Subsequently, the designa-
tions of these reactions in the model are changed and
they are included in the formulation of Z. Also note that
biomass production is not explicitly included in this
choice of objective function Z. When studying the tran-
sition of YP from 26°C to 37°C, we used the growth of
YP in TMH at 26°C as the wild-type reference state. For
the case of antimicrobial agents, we used YP growing at
37°C in TMH as the reference state.

Comparison with measured flux measurements
In order to test the accuracy of GX-FBA’s predictions,
we analyzed a set of experimentally measured flux
changes for yeast growing on 4 different carbon sources
[50]. We employed the yeast model [50] derived from
Lange [51] and used the reported gene-expression mea-
surements to constrain the GX-FBA model. For each
analysis, as the primary nutrient for yeast switched from
A to B, we used the FBA predicted flux pattern for yeast
as it grows on nutrient A as the reference flux. We eval-
uated GX-FBA by calculating the relative deviation be-
tween the fluxes for a reaction in two conditions as:

dr ¼ x� y
xj j þ yj j

where x is the flux of a reaction in condition 1 and y is
the flux of the same reaction in condition 2. Since |dr| ∈
[0, 1], we consider dr a percentage flux change from
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condition 1 to condition 2. For conditions where both x
and y are zero, we define dr=0. Thus, we may calculate
the average (per reaction) percentage error in GX-FBA
predicted flux by calculating

e ¼ 1
N

XN
i¼1

di
GX�FBA � di

exp

���
���

where the sum is over the N reactions for which there is
experimental flux data.

Degeneracy of optimal FBA solutions
To gauge the effect of degeneracy in the FBA optimal
flux state (condition (1) above) on the set of GX-FBA
solutions, we used the following approach which is a
variation on an effective random sampling method pre-
viously suggested [52]:

(1) Identify the optimal value of the FBA objective
function, Z*

FBA.
(2) For each model reaction i, use flux variability

analysis [48] to identify a lower and upper flux
bound αi

* and βi
* respectively, for which ZFBA=Z

*
FBA

is feasible.
(3) Identify the reaction set R, consisting of all reactions

for which αi
* ≠ βi

*.
(4) Randomly select a reaction from R and fix its

reaction flux to a random value νi
* ∈ [αi*, βi*].

(5) Calculate the FBA optimal flux state subject to
νi = νi

*.
(6) Calculate the GX-FBA optimal flux state using the

FBA optimal state in (5). From the resulting flux
profile, we determine the value of ZGX-FBA, the
maximum and minimum biomass production flux,
as well as agreement with fluxomic measurements.

(7) Repeat from step (4).

For each of our simulations we sampled 25000 differ-
ent FBA optimal flux states.

Results
We argue that to properly analyze mRNA experiments
for their systems-level impact on cellular metabolism, it
is necessary to couple these experimental data with a
theoretical framework that takes metabolic network con-
nectivity and mass conservation into account. In con-
trast to the expression activity of a single gene, the
metabolic activity of a reaction not only depends on the
expression of the enzyme, but also on the abundance of
its substrates and products. Thus, the activity of a single
reaction is conditional on the structure of the metabolic
network as well as the network’s global activity pattern.
It has previously been observed experimentally that

gene-expression profiles provide qualitative descriptions
of metabolic flux activity [53,54]. However, while a direct
coupling between mRNA expression and enzyme activity
has been observed for some genes, such a quantitative
relationship between levels of transcripts and metabolic
flux does not exist in general [19]. For some genes, it is
even observed that the strength of the coupling changes
with variations in cellular environment, going from dir-
ect coupling to independent behavior [19].
By maximizing the qualitative and quantitative agree-

ment between flux profile and gene-expression pattern
subject to metabolic feasibility, we allow the relationship
between transcription level and flux to span the full
range of possible coupling strengths. To this end, we
have developed a new constraint-based approach for
combining gene-expression data and metabolic flux ana-
lysis, GX-FBA, which explicitly takes mass conservation
and the connectivity of a metabolic network into ac-
count (see Methods). A simple example of how GX-FBA
implements regulation via gene-expression is presented
in Figure 1.

Sample case: central carbon metabolism following
external perturbation
In Figure 1, we use an abbreviated description of central
carbon metabolism to demonstrate how GX-FBA incor-
porates gene-expression data, mass conservation, and
network connectivity to predict cellular behavior follow-
ing an external perturbation (decrease in oxygen con-
centration in the medium). In this simple model
(Additional file 2), glucose is the sole nutrient imported
into the cell. As with most FBA calculations, we chose
maximum biomass (BM) production as the objective
function by formulating a simple BM reaction composed
of carbohydrates and nucleotides (see Figure 1). We
finally impose an upper limit on import (export) of glu-
cose (pyruvate) and an arbitrary energy maintenance
cost of 12 units of ATP. A complete stoichiometric de-
scription of this model is included in the Additional
file 2.
As shown in Figure 1a, FBA predicts that the cell

fully uses oxidative metabolism, producing ATP with
complete conversion of glucose carbons into BM and
CO2. Figure 1b, displays the possible range of fluxes for
reactions 2 and 5 when satisfying both the stoichiomet-
ric and the import/export constraints of the model. Due
to the fixed energy burden associated with cellular main-
tenance, the flux associated with glycolysis (reaction 2)
can never be zero. Additionally, the TCA flux cannot be
zero for a growth state, since GTP is essential for the
production of BM.
In Figure 1c, we impose a possible genetic up/down

regulation on select network reactions, emulating an in-
complete set of expression data for genes associated with
metabolic reactions. The expression pattern portrays a
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Figure 1 Example of the GX-FBA approach. a) An abbreviated model of central carbon metabolism with glucose (GLU) as the sole nutrient
source with a fixed ATP maintenance cost of 12. FBA predicted fluxes in blue, flux constraints in red. b) A 2D schematic of possible FBA flux
regions for reactions 2 and 5. The feasible flux region is shaded yellow, and the maximal growth solution is marked “FBA solution.” Non-growth
associated maintenance cost implies that the flux through the glycolytic reactions (1 & 2) cannot be zero. c) GX-FBA predicted fluxes (blue) using
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possible cellular response to decrease in the concentra-
tion of oxygen in the medium: The glyoxylate shunt and
reactions involved in anaerobic ATP production are up-
regulated, whereas reactions associated with oxidative
energy production are down-regulated. The displayed re-
action flux values correspond to the GX-FBA predicted
metabolic activity pattern, showing that imposition of
these gene-expression dictums in combination with the
constraints of network connectivity lead to a notable de-
crease in the rate of BM production. Also, as is common
with anaerobic metabolism, a large fraction (~77%) of
imported carbons is not fully utilized, instead being
exported as CO2 and malate. Figure 1d, shows the new
allowable flux ranges for reactions 2 and 5 when subject
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to the constraints imposed by GX-FBA. Note that, the
glycolytic fluxes increase only by 14%, far less than the
700% and 50% up-regulation prescribed by the gene-
expression levels. The two reasons for this are: A) Based
on the linear connectivity of the glycolytic pathway, the
up-regulation of reaction 1 cannot surpass the smaller
up-regulation of reaction 2; and B) A further increase in
glycolysis would produce ATP molecules that cannot be
consumed in this simple metabolic model, and thus, the
absence of a pathway for ATP export limits the rate of
glycolysis.
Finally, a direct consequence of the network connectivity

is that down-regulation of reaction 3 is incommensurate
with up-regulation of reaction 7. Since the GX-FBA flux so-
lution corresponds to the activity pattern maximizing its
objective function and reaction 7 has a greater shadow
price (positive contribution to the objective function) than
reaction 3, reaction 7 is up-regulated while the flux for re-
action 3 remains the same. This serves as an example of
hierarchical regulation through the gene-expression dictum
not controlling the final flux activity pattern. Overall, the
predicted GX-FBA solution for this sample problem agrees
with expected metabolic behavior when oxygen concentra-
tion in the medium is reduced.
It is immediately evident that GX-FBA shares certain fea-

tures with the iMAT method, in particular, the use of gene-
expression data to constrain the overall metabolic activity
pattern and absence of a need to predetermine required
cellular functionalities. However, in the following we will
point out three significant differences between the two
approaches. First, iMAT maximizes the number of up and
down regulated reactions, not taking into account the mag-
nitude of change in expression level. Instead, GX-FBA aims
to maximize the correlation between differential changes in
gene-expression and reaction fluxes, explicitly taking the
level of differential gene-expression into account. Second,
GX-FBA does not use a binary criterion for pattern
maximization whereby the metabolic flux of reactions cor-
responding to highly expressed genes must exceed an arbi-
trarily chosen threshold value and that of lowly expressed
genes should be zero [31]. Third, GX-FBA is based on the
level of differential gene-expression between two activity
states, here chosen as the unperturbed wild-type (with
maximal growth) and a stress state, although other pairs of
activity states are possible. In contrast, iMAT may use as in-
put the gene-expression pattern of either a single experi-
ment or the consensus pattern from a compendium of
experiments, thus forgoing the introduction of an objective
function for any of the activity states.

Application to Saccharomyces cerevisiae metabolic
network
In order to validate GX-FBA’s utility for predicting
changes in flux activity based on gene-expression data,
we used the method to examine the metabolic behavior
of S. cerevisiae under different nutritional environments.
The experimental flux measurements and microarray
data are from Daran-Lapujade et al. [50]. The metabolic
network model used for the simulations is the same
augmented model developed by Lange [51] that was
used in [50].
To compare GX-FBA with the experimental data, we

used the measured flux values to calculate the relative
changes (d) in each reaction’s flux activity as the
eukaryote transitions between different growth condi-
tions (see Methods). This calculation was repeated for
the GX-FBA predicted results using wild-type FBA flux
values as reference state. The average percentage error
(e) (see Methods) between measured and predicted flux
magnitude changes was calculated, finding on average
that e = 21%. Furthermore, to assess the capability of
GX-FBA to accurately identify metabolically active reac-
tions after a perturbation, we compared the results of
our predictions with experimental measurements and
calculated the average precision (0.88) and recall (0.99)
values (see Figure 2a). These results compare favorably
to those reported by Shlomi et al. [31].

Effects of alternate optimal FBA solutions
The GX-FBA objective function depends on details of
the FBA optimal state (see Methods), making it neces-
sary to evaluate the possible impact of degenerate opti-
mal FBA flux states [55] on the GX-FBA solutions.
Implementing a random sampling approach of the
degenerate FBA optimal states (see Methods), we used
the S. cerevisiae model and gene-expression results to
measure the impact on the optimal value of the GX-FBA
objective function, ZGX-FBA (Figure 2b). We found that
approximately 99% of the samples are contained within
a 10% variation (0.9 to 1.1) of the most likely value for
ZGX-FBA. Furthermore, panel 2c demonstrates that the
optimal FBA flux state degeneracy has minimal impact
on the GX-FBA predicted growth yield. Note that, in the
remainder of this paper we have ensured that reported
responses are robust to degeneracy in the FBA opti-
mal state.

Application to Yersinia pestis metabolic network
YP is one of the most prolific killer organisms of all
time. Conservative estimates stipulate that 200 million
people have been victims of bubonic plague in various
pandemics throughout human history [56]. There is still
no working vaccine available for this malady. While
plague is frequently considered a disease of the past, sev-
eral thousand new cases are reported each year, predom-
inantly in Africa [57]. Hence, the recent reports of
multiple-antibiotic-resistant strains of YP [58-60] are
cause for great concern. We have applied GX-FBA to
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Figure 2 Assessment of GX-FBA method using experimental
data on yeast metabolism. Distribution of GX-FBA predicted
quantities in response to 25,000 random samples of degenerate FBA
optimal states: a) Precision and recall of GX-FBA predictions,
b) maximal ZGX-FBA objective function, and c) maximal biomass
production flux (b) and c) normalized to peak values.
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four publicly available mRNA expression data sets of YP
using the published genome-level metabolic model
iAN818m [40] and identified common motifs of YP
metabolic response to different forms of stress. Table 1
displays the number of genes and reactions that were
constrained in our model for each set of mRNA expres-
sion results. In particular, we focused on alterations
in gene-expression of YP following environmental
temperature changes [61,62] and exposure to anti-
biotics [63,64]. Figure 3 summarizes the predicted
changes to microbial metabolism following each
perturbation.
Genome-level evaluation of metabolic response to
temperature perturbations
We used two available mRNA expression data sets for
YP’s response to temperature change, one for strain 201
[61] and one for strain KIM5 [62], to examine global
changes in the cell’s metabolism resulting from this
lifecycle transition. It has previously been demonstrated
that for YP an increase in temperature from 26°C to
37°C may induce a transition from avirulent phenotype
to virulence [38,39].
A scatter plot for the overlap of the two mRNA ex-

pression data sets, Figure 4 demonstrates that, although
both strains are of the Mediaevalis biovar, their response
to the temperature increase is highly non-uniform. The
primary difference between the datasets is presence of
Ca2+ cation in the medium. Gene-expression data for
Strain 201 were derived from bacteria grown in a
calcium-poor environment while the data for strain
KIM5 are from samples grown in a Ca2+-rich (4mM)
medium. This single difference results in phenotypic
variations that can explain the observed dissimilarities
between the gene-expression results. The cellular behav-
ior dubbed ‘low-calcium response’ (LCR) refers to the
observation that following the transition from 26 to
37°C and in the absence of Ca2+ (conditions resembling
mammalian intracellular environments [65]), virulent
strains of the bacteria undergo bacteriostasis within one
to two generations. It has been suggested that LCR is
necessary for adaptation of YP to the intracellular host
environment [66]. Start of LCR occurs under a narrow
range of conditions. At 26°C, YP does not require spe-
cific amounts of Ca2+ to grow; however, at 37°C, a min-
imal Ca2+ concentration of 2.5 mM is required to
repress the LCR.
Using the available gene-expression data and GX-FBA,

we analyzed the metabolic underpinnings for the
observed phenotypic behaviors. Computational simula-
tions for strain 201 predict a significant decrease in flux
for biomass production upon transition from 26°C to
37°C, while simulations of strain KIM5 find the flux of
biomass production at 37°C is nearly equal to that of
26°C (see Table 2). These results are in good agreement
with experimental observations [61,62,67,68] despite the
fact that GX-FBA does not directly manipulate or
optimize cellular growth rate.



Table 1 Statistics for the four sets of mRNA expression data used in our analyses

Form of stress # of
transcripts

# of genes in the
model

# of genes up/down
regulated

# of affected
reactions

% of total active
reactions

Temperature
change,

259 80 68 65 13

strain 201

Temperature
change,

507 207 138 202 41

strain KIM5

Streptomycin 345 131 110 153 31

Chloramphenicol 738 207 183 267 54

The number of up/down regulated genes in the GX-FBA simulations differs from the number of genes present in the model because of the imposed selection
criterion (see Methods).

Navid and Almaas BMC Systems Biology 2012, 6:150 Page 9 of 18
http://www.biomedcentral.com/1752-0509/6/150
Metabolism of YP at 37°C in a low calcium environment
As can be expected, the onset of LCR in YP leads to a
great deal of metabolic change. Our GX-FBA simula-
tions of the temperature transitions in Ca2+-free and
Ca2+-rich aerobic TMH environments [69] also point to
drastic differences in the metabolic activity (See Figure 5,
and Table 2). The two most significant differences in
genome-scale metabolic activity pattern in the presence
and absence of Ca2+ involve use of oxidative means for
the generation of energy and metabolism of amino acids
and fatty acids.
In the LCR case, the oxidative portion of the TCA

cycle is greatly down regulated and the organism relies
more on the glyoxylate pathway to bypass this dimin-
ished process and convert the byproducts of glycolysis
into malate and oxaloacetate. This behavior makes sense
for an organism preparing to enter bacteriostasis and re-
ducing its energy demands.
Although transition from 26°C to 37°C elevates metab-

olism of some amino acids such as arginine, the onset of
LCR reduces biosynthesis of some amino acids that are
essential for growth (such as isoleucine, leucine and val-
ine). In case of arginine, the up regulated pathways point
to subsequent conversion of this amino acid to the
metabolically more tractable compounds succinate and
glutamate, and thus the process is clearly linked to the
global carbon and nitrogen metabolism.
In addition to being used as a carbon source, another

possible reason for increased production of arginine
could be the need to boost production of ornithine,
which is a precursor for production of polyamines. Poly-
amines are cationic organic compounds which modulate
DNA, RNA and protein synthesis and are essential for
cellular growth [71-74]: in YP, polyamines are also ne-
cessary for the production of biofilms in the flea gut and
thus aid in the process of transmission from fleas to
mammals [75]. However, more important for conditions
that resemble intracellular environments, polyamines
can act as free radical scavengers and protect the cell
from oxidative damage [76].
Furthermore, it is known that polyamines up-regulate
the oxyR and katG genes in E. coli, which are responsible
for the induction of catalase and peroxidase detoxifying
enzymes [77]. GX-FBA results also suggest that the
change in temperature leads to increases in the catalase-
peroxidase activity in strain 201. This activity is known
to play a prominent role in aiding colonization of the host
by helping the bacteria resist oxidative attacks of phago-
cytes [78]. The catalase or catalase-peroxidase activity is
common to most pathogens; however, experimental data
have shown that this activity in YP is extremely high [79].
Thus the GX-FBA predicted increase in catalase-
peroxidase activity is in agreement with known fact that
resistance to reactive oxidative species (ROS) produced by
macrophages is critical for YP during initial stages of in-
fection [80]. Thus, it is plausible that the elevated rate of
the arginine production following onset of LCR is an at-
tempt by YP to combat oxidative stress.
In order to determine the primary causes for the

reduced flux of biomass production in strain 201, we
systematically analyzed the effect of the mRNA expression
value of each individual gene. Although we observe
reduced activity in energy metabolism, particularly oxida-
tive phosphorylation (see Figure 5), our detailed analysis
suggests that the noted diversion of amino acids toward
energy consumption pathways is one of the leading causes
for the predicted reduced cellular biomass production. For
example, an increase in the activity of threonine dehydra-
tase (EC. 4.3.1.19) leads to diversion of serine toward pro-
duction of pyruvate and ammonia and away from
production of biomass. Threonine dehydratase plays a
critical role in production of isoleucine and valine; how-
ever, because these amino acids cannot be produced by
YP, the increased activity is directed toward catalyzing al-
ternate reactions. Note that uncovering such drastic sys-
tem level shifts in metabolism and assessing their
importance on altering the bacterial growth rate is difficult
purely from the analysis of gene-expression data, and
hence underscores the importance of using tools such as
GX-FBA to fully extract information from empirical data.



Pathway 201 KIM5 Streptomycin Chloramphenicol
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Gluconeogenesis
Citrate cycle (TCA 
cycle)
Pentose phosphate 
pathway
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Fatty acid biosynthesis

Fatty acid metabolism

Purine metabolism

Pyrimidine metabolism
Alanine, aspartate & 
glutamate metabolism
Glycine, serine & 
threonine metabolism
Cysteine & methionine 
metabolism
Valine, leucine & 
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Figure 3 GX-FBA predicted changes to activity of reactions in various metabolic pathways (as defined by KEGG) following temperature
changes from 26°C to 37°C in low (strain 201) and high calcium (strain KIM5) medium and in presence of antibiotics. Blue=flux decrease,
red=flux increase, green=flux did not increase or decrease by at least a factor of 2.
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Metabolism of YP at 37°C in a calcium-rich environment
Although the growth rate for YP in presence of Ca2+

does not differ between 26 and 37°C, GX-FBA analyses
indicate that there is a significant difference in YP me-
tabolism between the two temperatures. Particularly, our
analyses indicate that upon transition to 37°C and
environments akin to human blood YP switches to
an extensively profligate mode of metabolism. It has
previously been observed that metabolism of YP can
be highly inefficient [81]. It initiates extensive uptake
of metabolites from the medium and given that the
growth rate is similar to that at 26°C, majority of
these compounds are not used for production of
biomass.
Although the pathways for production of fatty acids

and glycerophospholipids (see Figure 3 and 5b) are
enhanced, the products are not being used for biomass
production. Empirical analysis of the fate of these
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Figure 4 Gene-expression response to virulence induction. Scatter plot of mRNA expression data for genes common to Han et al. [61] and
Motin et al. [62]. Similar expression values are clustered along the diagonal. Note that both analyzed strains belong to biovar Mediaevalis.
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compounds could provide important new insight into
bacterial objective during proliferation.

Metabolic response to Antimicrobial agents
Early treatment with antibiotics is an effective method of
caring for plague patients. Two of the antibiotics of
choice for such treatment are Chloramphenicol and
Streptomycin [82]. We used available microarray mRNA
expression profile of YP (strain 201) following inter-
action with these two antibiotics [63,64] to gain a better
understanding of each antibiotic’s mode of operation.
The results of these studies are reported in Table 2 and
Figures 3 and 6. Our model predicts that, if one focuses
on metabolism alone, neither antimicrobial agent fully
halts cellular growth. Following contact with either anti-
biotics, growth potential drops to about half of its wild-
type value. Because it is known that the primary targets
of both of these antimicrobial drugs are protein-
production processes, and given the fact that our model
Table 2 Model predicted normalized growth values (with
respect to wild type growth at 26°C) for Y. pestis after
imposition of additional constraints based on mRNA
expression data

Form of stress Normalized growth
range

Temperature change 26°C to 37°C, YP 201,
[Ca2+]≈ 0 mM

0.13-0.13

Temperature change 26°C to 37°C, KIM5,
[Ca2+]= 4 mM

1.0-1.0

Antibiotics: Streptomycin 0.50-0.50

Antibiotics: Chloramphenicol 0.47-0.47
does not explicitly account for the different stages of
mRNA translation, our prediction of finite growth yields
is not surprising.
For Streptomycin the reduction is caused by changes

in the activity of a number of critical energy-producing
pathways such as the citric acid cycle and oxidative
phosphorylation, as well as some biosynthetic pathways
such as those for production of purines and some amino
acids (e.g., cysteine and methionine metabolism). Inter-
estingly, GX-FBA predicts that after treatment with
Streptomycin, production of another set of essential
amino acids (leucine, isoleucine and valine) is
increased. Given the reduced growth yield of the bac-
teria, these amino acids must serve an alternate pur-
pose than inclusion in microbial biomass. Elucidating
this role might aid in enhancing the bactericidal capacity
of Streptomycin.
Upon interaction with Chloramphenicol, the activities

of nearly all of YP pathways that are crucial for synthesis
of biomass, including glycolysis, urea cycle, and path-
ways for production of fatty acids and lipopolysacchar-
ides, are reduced.
Interestingly, our simulations show that following inter-

action with both antibiotics, pathways of riboflavin meta-
bolism in YP are enhanced. Some early studies [83-86] have
shown that treatment with Streptomycin and some other
antibiotics stimulates growth of rats receiving suboptimum
amounts of riboflavin, thiamine and pantothenic acid. It
has been believed that antibiotic-induced elimination of
certain gut bacteria that compete for these compounds is
the main reason for the growth stimulation. However, our
results seem to indicate that increased bacterial production
of these compounds could also serve a stimulatory role.



a

b

Figure 5 (See legend on next page.)
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Figure 5 Predicted change in metabolic pathway activity following temperature change. GX-FBA predicted change in activity of select
pathways in Y. pestis biovar Mediaevalis in response to change in temperature from 26°C to 37°C: a) for strains 201 under LCR conditions and
b) for strain KIM5 in a Ca2+ rich environment. Blue=flux decrease, red=flux increase, green=flux did not increase or decrease by at least a factor

of 2. The graph is made using the iPath2 program [70] and the width of the lines (w) is set to: w ¼ 20þ log10
νGX�FBA
i
νwti

� �
. If calculated w<0 for sake

of being able to notice the change w=1.
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Common post-stress metabolic motifs
As can be seen from Figures 3, 5 and 6, when comparing
the metabolic activity of YP in the four experiments dis-
cussed above, we can identify only a small set of meta-
bolic pathways for which the flux always either increased
or decreased when compared with the pre-perturbation
metabolism. Metabolic activity for pathways (as defined
by KEGG [87]) of purine and pyrimidine metabolism,
alanine, aspartate and glutamate metabolism, and tyro-
sine metabolism were consistently reduced when placed
in stressful environments.
In YP, it has been shown that following a transition

from ambient temperature to 37°C and a calcium-
deficient medium, the adenylate energy charge of the
cells decreases [88]. The results of our GX-FBA simula-
tions seem to indicate that conservation of energy post-
stress is a common adaptation strategy for YP. The
results indicate that for such conditions the cell amelio-
rates any energy shortcoming by reducing the rates of
some unnecessary ATP-consuming reactions while sim-
ultaneously lowering the degradation rate of adenosine
and other energy-carrying purine nucleosides. The re-
duction in the rate of de novo purine biosynthesis has
been attributed to the lowered rate of growth [61,63].
However, this explanation does not agree with the obser-
vation that significantly reduced mRNA expression levels
in strain KIM5 at 37°C were not followed by a reduction
in growth. On the other hand, de novo biosynthesis of
purines consumes significant amounts of energy. Down-
regulation of this pathway could be part of a cell-wide
energy-saving strategy.
Discussion
To date, implementations of FBA have been incapable of
addressing states of metabolic activity resulting from
perturbations other than gene losses/additions, incorpor-
ation of genetic expression data based on Boolean logic
[21-23,26] or changes in nutrient availability. Conse-
quently, analyses of important mechanisms such as cellular
stress response (CSR), which usually results in the induc-
tion of specific stress or shock proteins, have been outside
the scope of genome-level metabolic investigations.
CSR is a system-level response, and hence, any study

of such phenomena that only focuses on the altered ac-
tivity of a handful of enzymes will overlook the cascad-
ing effects of gene-expression changes on the entire
cellular metabolism. In order to expand the utility of
FBA genome-scale models toward solving such state
transitions, we developed GX-FBA, which combines
hierarchical regulation imposed by gene-expression with
the rigid constraint of metabolic reaction connectivity.
We have applied our methodology toward studying the
metabolic response of bacterium Y. pestis to a number
of environmental perturbations which are known to
cause phenotypic changes, ranging from induction of
virulence to cellular death.
One of the first questions about the utility of GX-FBA

that has to be answered involves verification that the con-
straints imposed by network connectivity alone have the
ability to partially mimic metabolic regulation, and if need
be, oppose the dictum of hierarchical regulation. Through
imposition of soft internal constraints (i.e., no lower/upper
flux boundaries for upregulations/downregulations re-
spectively) on a network by GX-FBA (see Methods), the
behavior of a reaction can oppose hierarchical directives.
This flexibility of GX-FBA is a strength and can be used

to aid in identifying reactions in a pathway that might be
least susceptible to hierarchical regulation in response to a
given environmental condition. In order to illustrate this
capability of GX-FBA, we used available flux measure-
ments for S. cerevisiae [50] to examine the quality of the
computationally predicted fluxes (Figure 2). Our results
show that for an optimal GX-FBA objective function, our
predictions on average display a percentage error relative
to experimentally measured flux changes of only e = 21%.
A number of studies have shown that in some cases,

there is not a strong correlation between mRNA expres-
sion levels and protein abundance [89-91]. Such incon-
sistencies can also be found between proteomic and
transcriptomic results for yeast [50] and YP [38,61].
For the GX-FBA simulations of yeast metabolism, the
majority of such inconsistencies were resolved and the
models correctly predicted the directions of flux change.
Given that our GX-FBA methodology can predict some

of these differences, we surmise that network connectivity
can serve as an appropriate constraint for ensuring that
GX-FBA does not summarily impose hierarchical regula-
tion on the network, since network connectivity is a critical
component of metabolic flux regulation.

Cellular stress response
Environmental perturbations usually cause a cellular re-
sponse that is characterized by adjustments in genetic
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Figure 6 Predicted change in metabolic pathway activity following interaction with antibiotics. GX-FBA predicted change in activity of
select pathways in Y. pestis strain 201 in response to interactions with antimicrobials a) Streptomycin and b) Chloramphenicol. Color scheme and
width formula are similar to Figure 5.
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expression levels and cellular physiology. This rearrange-
ment, if successful, permits the cell to adapt to the new
environment. Study of cellular response mechanisms to
external changes provides the basis for addressing ques-
tions related to cellular robustness and opens the possi-
bility to identify drug targets. To date, studies on cellular
stress response have primarily focused on the identifica-
tion of expression patterns (either in transcriptome or
proteome) and how these translate into system-wide
effects on the metabolome, fluxome, and ultimately, rea-
lized cellular phenotypes.

Yersinia pestis' metabolic response to temperature changes
The flea/host/flea life cycle of YP forces the bacteria to
adapt to two environments that differ in temperature
and nutrient levels. Analysis of YP's acclimation from
ambient temperature in the flea gut to 37°C in the mam-
malian host can provide us with information about how
the cell prepares for inducing virulence and combating
the host’s defenses.
Our analyses suggest that immediately following intro-

duction into the host and encapsulation within a phago-
cyte (i.e., an environment with a low concentration of
Ca2+); the YP cell's primary metabolic response involves
reducing the activity of most prominent producers of
ROS, most notably oxidative phosphorylation. The
reduced rate of ATP production via ATP synthase
coupled with increased energy demand associated with
CSR can explain the observed depletion of the ATP pool
in stressed cells [88,92-94]. As a result, the cell attempts
to conserve energy by reducing the activity of non-
essential reactions and pathways. Production of purines
is one such process which can be metabolically compen-
sated by reduced rate of nucleotide degradation. Con-
comitant to decreased ROS production, the cell
increases the activity of enzymes (e.g., catalase-peroxid-
ase) that protect cellular macromolecules from harmful
interactions with ROS such as hydrogen peroxide. The
cell also starts utilizing some amino acids such as argi-
nine and serine as sources of carbon.
In nutritionally rich environments that contain suffi-

cient quantities of Ca2+, YP initiates a highly wasteful
metabolic strategy whereby generation of energy via oxi-
dative means is favored. The cell downregulates path-
ways for production of some nitrogen-based compounds
and instead scavenges these compounds from the host
medium.

Yersinia pestis' metabolic response to Antimicrobials
Analyses of the predicted metabolic profiles resulting
from subjecting YP to Streptomycin and Chlorampheni-
col provide a better insight into the effects of these anti-
microbial agents on the energy economy of the cell.
Focusing on the reduced rate of growth in the presence
of Streptomycin, we identify reduced activity of oxidative
energy production pathways, as well as reduced produc-
tion of key biomass components such as purines and
amino acids as the responsible processes (see Figure 6a).
However, unlike metabolic augmentations after treat-
ment with Chloramphenicol, activities of metabolic
pathways that are linked to production of cellular mem-
brane are not drastically altered. This is an intriguing
observation by itself, as it is known that part of the bac-
tericidal action by Streptomycin is to permeabilize the
cellular membrane [95,96].
GX-FBA simulations predict that interaction with

Chloramphenicol leads to extensive decrease in nitrogen
metabolism of the cell. Pathways producing amino acids
and nucleotides are particularly downregulated (see
Figure 6b). Also as noted the activity of pathways asso-
ciated with production of cellular membrane are
reduced.
Interestingly, the only process that is upregulated upon

interaction with antibiotics is the pathway for metabol-
ism of riboflavin (see Figure 6a,b). This upregulation
diverts some of the GTP needed for biomass production.
Thus increased production of riboflavin coupled with
reduced production of purines contributes to the pre-
dicted diminishing of growth yields. The enhanced rate
of riboflavin production also provides an intriguing alter-
nate explanation for an empirical observation. During
the 1950’s it was observed that certain antibiotics, in-
cluding streptomycin, stimulate growth in rats whose
diet is deficient in certain forms of vitamin B [83-86]. It
was generally agreed that the vitamin-sparing effects of
antibiotics resulted from alterations to the intestinal
flora. While some believed that antibiotics decrease the
number of bacteria, and hence reduce competition for
scarce resources [84], others had theorized that antibio-
tics might increase the rate of synthesis of some types of
vitamin B [86]. Given the fact that Y. pestis is closely
related to enterobacteria via its progenitor Yersinia pseu-
dotuberculosis, the result of our simulations seem to
lend credence to the latter hypothesis as a possible fac-
tor for how antibiotics relieve vitamin B deficiency in
mammals.
Finally, for both Streptomycin and Chloramphenicol,

the activities of a majority of the TCA cycle reactions do
not change drastically. In contrast, a majority of the
reactions associated with oxidative phosphorylation are
downregulated. This is unexpected because recent work
by Kohanski et al. [97] have shown that treatment with
bactericidal antibiotics (such as Streptomycin) leads to
increased oxidative phosphorylation and production of
superoxide anion which leach irons from iron-sulfur
clusters in E. coli and S. aureus. Availability of this iron
in the cell leads to production of hydroxyl radicals via
Fenton reaction, and these deleterious compounds are
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believed to be the most significant contributor of cellular
death among ROS. However, the results of our simula-
tions and a detailed examination of measured gene-
expression levels in YP following interaction with
Streptomycin clearly show that genes associated with
oxidative phosphorylation (particularly those for NADH
dehydrogenase) are significantly downregulated. This
suggests that an examination of metabolism of hydroxyl
radicals in YP could highlight either exceptions to the
reported mechanism of cellular death by bactericidal
antibiotics or could find alternate means for generation
of this ROS.

Common cellular stress motif
We grouped the metabolic reactions that behave simi-
larly under the four stress conditions based on function
and pathway affiliation to look for a possible global
stress-response strategy in YP. Overall the metabolic
activity of only a handful of pathways was similarly
altered among all 4 conditions. GX-FBA predicts that
for all examined perturbations, the metabolic activity of
pathways of metabolism for purines, pyrimidines as well
as amino acids alanine, aspartate, glutamate, and tyro-
sine were constantly reduced.
The likely consequence of these motifs is conservation

of energy. This is in agreement with the observation that
CSR is usually accompanied by exhaustion of cellular
ATP pool [88,92-94], as the energetic requirements of
protein degradation, chaperoning, and DNA repair are
very taxing on the cell’s energy metabolism. GX-FBA
predicts that YP cells partially ease this strain by de-
creasing rates for some ATP-consuming reactions.
The reduced production of purines after stress has

previously been ascribed to lowered growth rates [61,63]
and a reduced demand for these metabolites. However,
this explanation does not agree with the observed reduc-
tion in purine production in KIM5 since no significant
changes in cellular growth were detected [62]. We
propose an alternative explanation based on the thesis
that the cell attempts to conserve energy post-stress:
The process of de novo purine biosynthesis consumes
considerable energy. Production of Inosine 5'-monopho-
sphate starting from ribose 5-phosphate demands five
molecules of ATP. Hence, reduced de novo production
of purines could be part of the cellular energy conserva-
tion efforts.
Conclusion
In summary, we have developed a new method to com-
bine microarray data with a constraint-based formalism
to gain deeper understanding of the system-level meta-
bolic behavior of cells following a wide range of pertur-
bations. Applying our framework to a large-scale model
of metabolism in the gram-negative bacterium Yersinia
pestis to study CSR and metabolism of this pathogen as
it transitions between host and vector environments and
combats deleterious effects of antibiotic treatment, we
find that the cell primarily tries to conserve energy while
maximizing import of needed metabolites. Our efforts
also show that by using this methodology that success-
fully couples gene-expression data to system-level mo-
dels of metabolism, we can glean new insights that
might not be readily discernible through other means.
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