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Abstract

Background: Previous studies have reported that labeling errors are not uncommon
in omics data. Potential outliers may severely undermine the correct classification of
patients and the identification of reliable biomarkers for a particular disease. Three
methods have been proposed to address the problem: sparse label-noise-robust
logistic regression (Rlogreg), robust elastic net based on the least trimmed square
(enetLTS), and Ensemble. Ensemble is an ensembled classification based on distinct
feature selection and modeling strategies. The accuracy of biomarker selection and
outlier detection of these methods needs to be evaluated and compared so that the
appropriate method can be chosen.

Results: The accuracy of variable selection, outlier identification, and prediction of
three methods (Ensemble, enetLTS, Rlogreg) were compared for simulated and an
RNA-seq dataset. On simulated datasets, Ensemble had the highest variable selection
accuracy, as measured by a comprehensive index, and lowest false discovery rate
among the three methods. When the sample size was large and the proportion of
outliers was ≤5%, the positive selection rate of Ensemble was similar to that of
enetLTS. However, when the proportion of outliers was 10% or 15%, Ensemble
missed some variables that affected the response variables.
Overall, enetLTS had the best outlier detection accuracy with false positive rates <
0.05 and high sensitivity, and enetLTS still performed well when the proportion of
outliers was relatively large. With 1% or 2% outliers, Ensemble showed high outlier
detection accuracy, but with higher proportions of outliers Ensemble missed many
mislabeled samples. Rlogreg and Ensemble were less accurate in identifying outliers
than enetLTS. The prediction accuracy of enetLTS was better than that of Rlogreg.
Running Ensemble on a subset of data after removing the outliers identified by
enetLTS improved the variable selection accuracy of Ensemble.
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Conclusions: When the proportion of outliers is ≤5%, Ensemble can be used for
variable selection. When the proportion of outliers is > 5%, Ensemble can be used for
variable selection on a subset after removing outliers identified by enetLTS. For
outlier identification, enetLTS is the recommended method. In practice, the
proportion of outliers can be estimated according to the inaccuracy of the diagnostic
methods used.

Keywords: Rlogreg, enetLTS, Ensemble, Mislabeled, Robust, Feature selection
Background
With the development of high-throughput technologies, an increasing amount of high-

dimensional genomic data is being generated. The problem of determining diagnostic,

prognostic, and therapeutic markers for disease and clinical outcomes has been ad-

dressed by many methods. These methods can manage a high-dimensional and low

sample size setting, and include regularized methods, such asthe elastic net (EN) [1],

least absolute shrinkage and selection operator (LASSO) [2]; and feature extraction

methods, such as partial least squares (PLS) regression [3].

The performance of these methods depends on the accurate labeling of data. Mis-

labeled samples would deteriorate the accuracy of these procedures seriously [4]. How-

ever, there is no guarantee that the class labels are all correct. Researchers have

reported that 10–15% of samples are mislabeled in a microarray [5, 6]. For example, an

RNA-seq dataset for triple negative breast cancer (TNBC) [7] contains 28 samples with

discordant labels obtained from different tests (immunohistochemical (IHC) method or

fluorescence in situ hybridization (FISH)), which are potential outliers. Genomic data

typically incorporates mislabeled samples that arrive from many sources, such as a

missed diagnosis or misdiagnosis, and samples mislabeled in experiments [8]. More-

over, technical problems in microarray experiments or heterogeneity problems, such as

samples obtained from different subpopulations, result in outliers [8].

It is crucial to detect outliers. Associated marker selection and the prediction of pa-

tient outcome would not be influenced by label noise. Additionally, wrongly diagnosed

patients that are detected and treated may receive appropriate treatment instead of in-

effective treatment, or even harmful treatment. Moreover, if detected outliers are not

mislabeled after being checked, they may be unusual clinical cases that may reveal hid-

den information on the covariate and probably be worth studying further [9].

Many feature selection methods exist for high-dimensional omics data [1, 2]. How-

ever, there are very few feature selection methods that consider the problem of mis-

labeled samples.

Bootkrajang et al. [4] proposed sparse label-noise-robust logistic regression (Rlogreg)

to detect mislabeled arrays with a sparse logistic regression classifier. Rlogreg is a ro-

bust extension of the Bayesian logistic regression classifier (Blogreg) proposed by She-

vade and Keerthi [10]. In Rlogreg, a label-flipping probability that accounts for possible

mislabeling is defined as part of the classifier. Bayesian regularization is used to set the

regularization parameter instead of cross-validation to save computational time and

eliminate the effects of label noise when setting the regularization parameter.
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Kurnaz et al. [11] proposed the robust elastic net based on the least trimmed square

(enetLTS), which is a robust method for linear and logistic regression based on the EN

penalty. The least trimmed square (LTS) is used to obtain robust results, and the EN

penalty allows for variable selection in high-dimensional sparse settings. The trimming

procedure is highly robust, but also leads to a loss in efficiency, and therefore, a

reweighted step is considered in enetLTS.

To detect outliers in high-dimensional datasets including mislabeled samples, Lopes

et al. [7] proposed Ensemble, which is an ensemble classification setting based on dis-

tinct procedures, including logistic regression with elastic net (EN) regularization,

sparse partial least squares (PLS) - discriminant analysis (SPLS-DA), and sparse gener-

alized PLS (SGPLS). Cook’s distance (Cook’s D) is used to evaluate the samples’ outlier-

ness. A final consensus list of observations sorted by their outlierness level is achieved

using rank product statistics corrected for multiple testing.

The three methods Rlogreg, enetLTS, and Ensemble are described in detail in section 1 of

Additional File 1. For variable selection in a sparse high-dimensional setting, all three methods

use the regularization of parameters. Rlogreg uses the L1 penalty and enetLTS uses the EN,

where the regularizer is a linear combination of the L1 and L2 penalties. The EN tends to select

more variables and groups of correlated variables than the L1 penalty. In Ensemble, the com-

bination of L1 and L2 penalties is set in the EN, SPLS-DA, and SGPLS models. For robustness,

in Rlogreg, Bootkrajang et al. [4] set label-flipping probabilities as parameters in the maximum

likelihood estimator to formulate the proportion of mislabeled samples. In enetLTS, Kurnaz

et al. [11, 12] applied the least trimmed square (LTS) to the EN and used the C-step algorithm

to identify the optimal subset without outliers. In Ensemble, the models are performed on the

original datasets with outliers, without considering robustness. In Rlogreg, the detected outliers

are the misclassified observations with response y = 1 that are predicted as zero, or observations

with y = 0 but predicted as 1. In enetLTS, outliers are detected using large Pearson residuals in

the reweighted step. In Ensemble, Cook’s D is used to evaluate outlierness, and the consensus

ranking of outlierness is achieved using the rank product test.

These three methods, which address the label error in high-dimensional data, base on

different principles. Their pros and cons need to be explored so that the appropriate

method can be chosen when dealing with high-dimensional datasets with mislabeled

samples. Hence the accuracy of variable selection and outlier detection of these

methods needs to be evaluated. The evaluation and exploration of these methods can

also provide guidance for improving the results in the next step.

This article is organized as follows: In results section, results of simulation studies are

presented, which were conducted to evaluate the performance of the three models, in-

cluding the accuracy of variable selection, outlier detection, and prediction. The three

methods were also compared by applying them to a TNBC dataset. Then the results

are discussed and concluded. The simulation setting and performance measures are

also described in methods section.
Results
Simulation results for the comparison of the three methods

In this section, we present a simulation study to investigate the performance of Rlogreg,

Ensemble, and enetLTS. The accuracy of variable selection, outlier identification, and
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prediction, and the running time of the three methods are compared in scenarios with

various sample sizes, dimensions, and proportions of outliers. Details of the simulation

setting and performance measures are presented in the last section.

The results of running the three methods on simulated datasets are shown in Figs. 1–

5. Section S2 (Table S2–1 to S2–4) of Additional File 1 gives the results in more detail,

including the accuracy of variable selection, outlier detection, and prediction.

The high-dimensional variables were selected using indicators that represent the vari-

able selection accuracy, namely positive selection rate (PSR) and false discovery rate

(FDR) [13]. PSR indicates the proportion of real disease-related biomarkers that are

screened out, and FDR indicates the proportion of biomarkers screened out that are

not related to the disease. We used a comprehensive indicator GM [13, 14], which is

the geometric mean of (PSR and (1 − FDR)) to measure the accuracy of variable selec-

tion. High PSRs and low FDRs will give high GMs, which indicates high accuracy of

variable selection.

The PSRs and FDRs of the three methods when n = 100 and p = 200 and 1000 are

shown in Fig. 1. Ensemble had the lowest FDR among the three methods, and the En-

semble PSR was lower than the enetLTS PSR. The PSR and FDR of enetLTS were both

high. Rlogreg had the lowest PSR among the three methods, and the FDR was high.

The GMs indicated that Ensemble had the highest variable selection accuracy, followed

by enetLTS, then Rlogreg with the lowest variable selection accuracy. The Ensemble
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Fig. 1 Variable selection accuracy of Rlogreg, enetLTS, and Ensemble when n = 100. Abbreviations: PSR,
Positive Selection Rate. FDR, False Discovery Rate
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PSRs decreased when the proportion of outliers increased, whereas the enetLTS PSRs

did not change much when the proportion of outliers increased.

The PSRs and FDRs of the three methods when n = 500 and p = 200 and 1000 are

shown in Fig. 2. When the sample size was increased from n = 100 to n = 500, the vari-

able selection accuracy improved for all three methods, but increased the most for En-

semble. When the proportion of outliers was ≤5%, the Ensemble PSR was close to the

enetLTS PSR (approximately 0.8) and the Ensemble FDR was very low (about 0.01) but

the enetLTS FDR was much higher. These results show that with ≤5% outliers, the En-

semble variable selection accuracy was very high. However, with 10 and 15% outliers,

the Ensemble PSRs decreased to about 0.6 and 0.5, respectively, whereas the enetLTS

PSRs decreased very little with the higher proportions of outliers; with 15% outliers, the

enetLTS PSR was about 0.7. The Rlogreg FDR was similar to the enetLTS FDR, but the

Rlogreg PSR was much lower than the enetLTS PSR, so the Rlogreg variable selection

accuracy was the lowest among the three methods.

These results show that Ensemble had the highest variable selection accuracy, as

measured by the GM, among the three methods, mainly because its FDR was much

lower than the FDRs of the other two methods. The Ensemble variable selection accur-

acy was better with the large sample size. When the sample size was n = 500 and the

proportion of outliers was ≤5%, the Ensemble and enetLTS PSRs were similar. How-

ever, when the proportion of outliers was 10% or 15%, the Ensemble and enetLTS PSRs
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Fig. 2 Variable selection accuracy of Rlogreg, enetLTS, and Ensemble when n = 500. Abbreviations: PSR,
Positive Selection Rate. FDR, False Discovery Rate.
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were quite different, which implies that Ensemble may miss some variables that affect

the response variables whereas the enetLTS PSRs decreased very little.

The outlier detection accuracy of the three methods is shown in Fig. 3. Here we used

two indicators Sn (sensitivity) and FPR (false positive rate) in the screening test [13].

The outliers to be identified is regarded as patients to be detected in the screening test.

Sn represents the proportion of truly misclassified outliers among outliers that identi-

fied. FPR represents the proportion of correctly labeled samples that are determined to

be misclassified. The outliers identified by enetLTS and RLogreg had the highest Sn,

but the Rlogreg FPRs were higher (and > 0.05 in some cases) than the enetLTS FPRs,

which were all within 0.05. Ensemble has the lowest Sn and FPRs among the three

methods. When the proportion of outliers was 1% or 2%, the Ensemble and enetLTS

Sns were similar, but with ≥5% outliers, the differences between the Sns began to in-

crease. With 15% outliers, the Ensemble Sn dropped to about 0.25. When the sample

size was n = 500, the enetLTS Sn increased by 10 to 20% compared with its value for

the smaller sample size (n = 100). The enetLTS Sn decreased slightly with the higher

proportions of outliers, but the decrease was relatively small.

These results show that, overall, enetLTS had the highest outlier detection accuracy

among the three methods. The enetLTS Sn was high and the FPRs were all within 0.05,

even when the proportion of outliers was relatively large. With 1% or 2% outliers, En-

semble had high outlier detection accuracy, but with higher proportions of outliers
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Fig. 3 Outlier detection accuracy of Rlogreg, enetLTS, and Ensemble. Abbreviations: Sn, sensitivity. FPR, False
Positive Rate
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many outliers were missed. Although the RLogreg Sn was high, the FPRs also were high

and sometimes exceeded 5%.

The prediction accuracy of the three methods is shown in Fig. 4. Their predictive per-

formances were evaluated by calculating the misclassification rate (MR) from test data-

sets without outliers. The enetLTS MR was lower than the Rlogreg MR in most cases.

Because the Ensemble variables are the intersection of variables selected by the three

models EN, SPLS-DA, and SGPLS, the Ensemble MR could not be computed.

The leverage point refers to the outlier in the independent variable space; for ex-

ample, when the gene expression data of a sample deviates from the gene expression

data of most samples. We mainly examine the effect of misclassified observations on

the various methods if their independent variables deviate from most observations. Be-

cause gene expression data are quality controlled before they are analyzed, none of the

samples will deviate significantly. The degree of deviation was set as 3, that is, the inde-

pendent variables of wrongly mislabeled samples follow independent normal distribu-

tion N (3,1). The results of these three methods with the simulated data were similar

with and without leverage. Table S2–6 of Additional File 1 gives the results in more

detail.

To make the scenario closer to real data, we set up a simulated dataset based on the

triple-negative breast cancer (TNBC) dataset [7], which is publicly available from The

Cancer Genome Atlas (TCGA) Data Portal. The simulated dataset had a sample size of

n = 1000, among which 500 samples had y values of 1 (TNBC group) and 500 samples
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Fig. 4 Prediction accuracy of Rlogreg, enetLTS. Abbreviations: MR, Misclassification Rate
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had y values of 0 (non-TNBC group). A subset with p = 5000 was selected randomly

from the TNBC dataset. The mean vector and covariance matrix for the TNBC and the

non-TNBC groups were obtained from the corresponding subsets, and then the nor-

mally distributed random variables were generated.

We randomly selected samples and changed the labels to obtain the misclassified

samples. The proportions of misclassified samples were set as 2.5, 5, 10, and 15%. The

ability of the three methods to identify outliers is shown in Fig. 5 and Additional File 1:

Tables S2–5.

The outlier detection accuracy was highest for enetLTS with FPRs of < 1% and the

highest Sn among the three methods, as shown in Fig. 5. Although the Rlogreg Sn was

close to that of enetLTS, its FPR of about 8% was much higher than the enetLTS FPR.

The Ensemble FPR was very low (close to 0), but its Sn was low, especially when the

proportion of outliers was large; with 10% or 15% outliers, the Sn was < 30%.

The results show that, when the proportion of outliers was ≤5%, the outlier detection

accuracy was highest for Ensemble. However, with 10% or 15% outliers, although the

overall GM still showed that Ensemble had the highest accuracy, the Ensemble PSR

was lower than the enetLTS PSR, and some variables that affect the dependent variable

were missed. With even higher proportions of outliers, the difference between these

two methods would further increase. These results show that enetLTS had the highest
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outlier detection accuracy with FPRs < 0.05 and the highest Sn in most cases. The pre-

diction accuracy of enetLTS was higher than that of Rlogreg.
Combining two methods to improve the accuracy of variable selection

When the proportion of outliers was small, Ensemble had high accuracy of variable se-

lection; however, when the proportion of outliers was large, its accuracy was greatly re-

duced. Conversely, regardless of the proportion of outliers, enetLTS had the highest

outlier detection accuracy among the three methods.

Considering the advantages and disadvantages of the two, we combine the two

methods. That is, when the proportion of outliers is large, enetLTS was used first to

identify the outliers. Then Ensemble was applied on the subset with outliers removed.

Because the proportion of misclassified samples in the subset will be smaller, the accur-

acy of Ensemble’s variable selection will increase in this case.

With 15% outliers, enetLTS was used to identify the outliers, than Ensemble was run

on the subset. The Ensemble PSR increased from 0.533 to 0.644, and the GM increased

from 0.714 to 0.786 as a result. The results are shown in Table 1.
The computation times of the three methods

The computation times of the three methods are summarized in Table 2. The compu-

tations were performed on an Intel Core i7-6500 U @2.50GHz processor. The CPU

time was reported in seconds as an average over five repetitions. From Table 3, the

computation time of Rlogreg was considerably lower than that of the other two

methods because regularization parameterλwas determined using Bayesian

regularization, which saved the time that cross-validation would take. The

regularization parameters of Ensemble and enetLTS were both resolved by cross-

validation. However, enetLTS required much more time because cross-validation was

conducted at each iterative step of the C-step algorithm.
Results of the analysis on a TNBC dataset

We compared the application of the three methods on a TNBC dataset from the

TCGA-BRCA data collection. The BRCA RNA-Seq fragments per kilobase per million

(FPKM) dataset was imported using the ‘brca.data’ R package (https://github.com/aver-

issimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz).

A total of n = 1019 patients with solid tumors and 19,688 genes, including the three

key TNBC-associated genes, estrogen receptor (ER), progesterone receptor (PR), and

human epidermal growth factor receptor 2 (HER2), were considered for further ana-

lysis. In consideration of the impact of possible confounding, like Lopes, et al. [7], we

considered the inclusion of two variables, age and ethnicity, which are statistically sig-

nificant through univariate Logisitc regression, and the missing observations in these
Table 1 Results of Ensemble for the datasets with n = 500, p = 1,000, ε = 0.15

data Model size PSR FDR GM

Original data 16.06 0.533 0.003 0.714

Subset* 19.79 0.644 0.022 0.786

*: This subset is the universal data set after removing outliers identified by enetLTS

https://github.com/averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz
https://github.com/averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz


Table 2 The computation times of the three methods for the datasets with n = 500, p = 1,000, and
ε =0.1
Methods Mean(s)

Rlogreg 27.20

enetLTS 6489.06

ensemble 387.89
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two variables were removed. Finally, a total of 924 samples and 19690variables were

included.

The TNBC response variable Y was created based on the clinical variables ER and PR

as detected by immunohistochemistry (IHC), and HER2 as detected by IHC and/or

fluorescence in situ hybridization (FISH); Y was “1” (TNBC) when ER, PR, and HER2

were negative and “0” when at least one of the three variables was positive. There were

three variables for HER2: HER2 (IHC) level, HER2 (IHC), and HER2 (FISH). The values

of IHC level were “0” (negative), “1+” (negative), “2+” (indeterminate), and “3+” (posi-

tive); the values of IHC status were “equivocal”, “indeterminate”, “negative”, and “posi-

tive”. Thirteen individuals had discrepant labels for HER2 (IHC) level and HER2 (IHC)

status, and 15 cases had inconsistent labels in HER2 (IHC) and HER2 (FISH). These in-

dividuals were potential outliers and were referred to as “suspect individuals” by Lopes

et al. [7]. We checked whether the outliers detected by the three methods included

these suspect individuals.

The distributions of the FPKM values for ER, PR, and HER2 in the TNBC and non-

TNBC groups are presented in Table 4.

To analyze the TNBC dataset, for Rlogreg, the initial setting of the Γ matrix was

0:925 0:075
0:075 0:925

� �
and, for Ensemble and enetLTS, the parameters were set in accord-

ance with the settings used with the simulated data.

Rlogreg detected 109 outliers, all of which were non-TNBCs. They were ranked from

high to low according to the absolute values of the Pearson residuals and the top 20

outliers are listed in Table 5. The ER, PR, and HER2 genes in the 109 predicted non-

TNBC patients all had low expression values, which indicated they should have been

classified as TNBC patients. For example, individual “TCGA-AN-A0FJ” had different

HER2 labels (positive by IHC status and negative by IHC level) and was classified as

non-TNBC; however, the low HER2 (14.28), ER (0.08), and PR (0.04) expression values

indicated that this individual was more likely to be a TNBC patient. Similarly, individ-

ual “TCGA-AN-A0FX” was labeled positive by IHC status and negative by IHC level

and was classified as non-TNBC; however, the HER2 (24.02), ER (0.08), and PR (0.04)

expression values indicated that this individual might be a TNBC patient. Individual

“TCGA-LL-A5YP” also was classified as non-TNBC but had discordant HER2 labels
Table 3 Number of outliers detected and genes identified using the three methods for the TNBC
dataset

Methods Model size Number of outliers detected

Rlogreg 32 109

enetLTS 433 68

Ensemble 5 30



Table 4 Summary of FPKM values obtained for ER, PR and HER2 for the individuals under study

Class Min. 1stQu Median Mean 3rdQu Max

ER 0 0.016 16.144 36.667 47.881 69.649 272.203

1 0.019 0.160 0.351 1.530 0.828 29.979

PR 0 0.008 0.600 4.228 12.012 15.326 327.913

1 0.001 0.040 0.079 0.712 0.186 22.978

HER2 0 0.605 26.580 38.732 99.741 58.801 1668.353

1 1.561 13.964 19.776 21.991 26.058 103.68
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and HER2 (15.10), ER (0.16), and PR (0.05) expression values, which indicated that the

individual was more likely to be a TNBC patient. Among the 109 outliers detected by

Rlogreg, there were nine suspect individuals with discordant HER2 labels.

The relatively low HER2, ER, and PR expression values of the individuals who were

ranked 3, 4, 5, 7, 12, 16, and 19 indicated they were more likely to be TNBC patients,

whereas the very high HER2 expression values (819.76 and 240.24) of the individuals

who were ranked 13 and 14 indicated they were likely labeled correctly as non-TNBC.

These results suggest that Rlogreg may produce false positives for outlier detection.

EnetLTS detected 68 outliers and 433 associated genes as shown in Tables S4–1 and

Table S4–6 of Additional File 1, respectively. The 68 outliers included 3 TNBC and 65

non-TNBC individuals. The top 20 outliers with the highest Pearson residuals are listed
Table 5 Top 20 outliers detected using Rlogreg for the TNBC dataset*

ID Rank ER PR HER2 y HER2 HER2 HER2 Perres**

level _status _FISH

TCGA-A8-A07U 1 1.74 (−) 0.21 (+) 31.96 non-TNBC – – 1.36

TCGA-E9-A22G 2 0.44 (−) 0.02 (−) 15.32 non-TNBC + 1.32

TCGA-AN-A0FJ 3 0.08 (+) 0.04 (−) 14.28 non-TNBC 1+ + 1.29

TCGA-AR-A251 4 1.57 (+) 0.10 (−) 14.02 non-TNBC 2+ Equiv – 1.23

TCGA-BH-A5IZ 5 5.12(+) 0.03(−) 28.08 non-TNBC – – 1.22

TCGA-D8-A1XW 6 0.32 (−) 0.11 (+) 21.03 non-TNBC 1+ – 1.22

TCGA-AR-A1AJ 7 1.47(+) 0.07(−) 9.74 non-TNBC – 1.19

TCGA-D8-A1JM 8 5.00(+) 0.008(−) 21.85 non-TNBC 1+ – 1.19

TCGA-E2-A1II 9 0.14(−) 0.19(+) 10.73 non-TNBC 1+ – 1.18

TCGA-A8-A07R 10 0.07 (−) 0.02 (−) 28.53 non-TNBC 2+ + 1.17

TCGA-A7-A13E 11 0.82 (+) 0.06(−) 46.08 non-TNBC 2+ Equiv – 1.17

TCGA-B6-A0IJ 12 1.18(+) 0.56(+) 11.12 non-TNBC 1.17

TCGA-A2-A1G1 13 0.53 (−) 0.17 (−) 819.76 non-TNBC 2+ Equiv + 1.16

TCGA-A2-A0YJ 14 0.09 (+) 0.03(−) 240.24 non-TNBC 0 – 1.15

TCGA-AO-A0JL 15 0.63 (−) 0.08(−) 63.6 non-TNBC 1+ – + 1.15

TCGA-AN-A0FX 16 1.13(−) 0.64(−) 24.02 non-TNBC 1+ + 1.15

TCGA-AR-A1AH 17 0.03 (+) 0.03 (−) 34.12 non-TNBC – 1.14

TCGA-LL-A6FR 18 0.33(−) 0.044(+) 32.23 non-TNBC 2+ Equiv + 1.12

TCGA-LL-A5YP 19 0.16(+) 0.051(−) 15.09 non-TNBC 1+ – + 1.11

TCGA-A7-A13D 20 0.52 (−) 0.81 (+) 42.28 non-TNBC 2+ Equiv – 1.07

*:including the expression values, IHC, and FISH tests of ER, PR, and HER2(individuals highlighted in bold are suspect
individuals). **: Rank, the rank of outlierness by the abstract value of Pearson residual. Perres, the abstract value of
Pearson residual
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in Table 6. Seven of the 68 outliers were suspect individuals with inconsistent HER2 la-

bels. The HER2, ER, and PR expression values for suspect individuals “TCGA-A2-

A04U”, “TCGA-AN-A0FX”, “TCGA-LL-A5YP”, and TCGA-AN-A0FJ were relatively

low, which indicated they were more likely to be TNBC patients.

Many outliers, including individuals “TCGA-E9-A22G”, “TCGA-AR-A0TP”, “TCGA-

AR-A251”, and “TCGA-B6-A0IJ”, were labeled as non-TNBC patients, but the low ex-

pression values of the three genes indicated they were more likely to be TNBC patients.

However, some outliers, including individuals “TCGA-A2-A0YJ”, “TCGA-A7-A13E”,

and “TCGA-A7-A13D”, had high expression values for one or more of the three genes,

which indicated they were likely labeled correctly as non-TNBC patients.

Ensemble identified 30 outliers and 5 genes. Ten patients with TNBC and 20 patients

with non TNBC were found in 30 abnormal patients. Table 7 lists the 20 outliers with

the minimum q-values. All outliers are listed in Table S5-1 of Additional File 1.

There were 28 suspect individuals in the TNBC dataset. Among the 30 outliers iden-

tified by Ensemble, three were suspect individuals; among the 68 outliers detected by

enetLTS, seven were suspect individuals; and among 109 outliers detected by Rlogreg,

nine were suspect individuals. Because the true labels of the individuals the TNBC

dataset are not known, we regarded these 28 suspect individuals as true mislabeled in-

dividuals and compared the outlier detection accuracy of three methods. we used Sn_

Ref and FPR_Ref as references for the true Sn and FPRs, which is shown in Table 8. For

suspect individuals, the enetLTS and Rlogreg Sn_Ref values were high, whereas they

were low for Ensemble. However, because Rlogreg identified a large number of outliers,
Table 6 Top 20 outliers detected using enetLTS for the TNBC dataset*

ID ER PR HER2 HER2_level HER2_status HER2_FISH y Perres**

TCGA-E9-A22G 0.44 (−) 0.02 (−) 15.32 + non-TNBC 37.22

TCGA-A2-A0YJ 0.09 (+) 0.03 (−) 240.24 0 – non-TNBC 35.66

TCGA-A7-A13E 0.82 (+) 0.06 (−) 46.08 2+ Equiv – non-TNBC 33.23

TCGA-A2-A04U 0.02 (−) 0.02 (−) 9.64 1+ – + non-TNBC 32.24

TCGA-AR-A0TP 0.04 (+) 0.03 (−) 13.39 – non-TNBC 32.15

TCGA-AN-A0FX 1.13 (−) 0.64 (−) 24.02 1+ + non-TNBC 30.70

TCGA-AR-A251 1.57 (+) 0.10 (−) 14.02 2+ Equiv – non-TNBC 30.23

TCGA-LL-A6FR 0.33 (−) 0.04 (+) 32.13 2+ Equiv + non-TNBC 30.12

TCGA-AC-A62X 0.19 (+) 0.02 (−) 28.53 non-TNBC 30.11

TCGA-BH-A5IZ 5.12 (+) 0.03 (−) 28.08 – – non-TNBC 29.99

TCGA-OL-A5S0 0.09 (+) 0.06 (−) 31.92 + non-TNBC 29.50

TCGA-LL-A5YP 0.16 (+) 0.05 (−) 15.10 1+ – + non-TNBC 29.05

TCGA-LL-A8F5 1.08 (+) 0.04 (−) 11.86 1+ – non-TNBC 27.77

TCGA-B6-A0IJ 1.18 (+) 0.46 (+) 11.12 non-TNBC 27.74

TCGA-A7-A13D 0.52 (−) 0.81 (+) 42.28 2+ Equiv – non-TNBC 27.59

TCGA-AR-A24Q 1.00 (+) 0.36 (−) 20.67 – non-TNBC 27.44

TCGA-S3-AA0Z 16.67 (+) 0.07 (+) 33.07 1+ Equiv – non-TNBC 27.31

TCGA-AN-A0FJ 0.08 (+) 0.04 (−) 14.28 1+ + non-TNBC 27.29

TCGA-AR-A1AH 0.03 (+) 0.03 (−) 34.12 – non-TNBC 27.04

TCGA-D8-A1JM 5.00 (+) 0.01 (−) 21.85 1+ – non-TNBC 26.93

*:including the expression values, IHC, and FISH tests of ER, PR, and HER2(individuals highlighted in bold are suspect
individuals.). **:Perres, the abstract value of Pearson residual



Table 7 Top 20 outliers detected using Ensemble for the TNBC dataset*

ID ER PR HER2 HER2_level HER2_status HER2_FISH y qvalues

TCGA-E9-A1ND 1.44 (−) 0.05 (−) 13.05 + non-TNBC 8.90E-06

TCGA-AR-A1AJ 1.47 (+) 0.07 (−) 9.74 – non-TNBC 8.46E-06

TCGA-A2-A04U 0.02 (−) 0.02 (−) 9.64 1+ – + non-TNBC 1.65E-05

TCGA-E9-A22G 0.44 (−) 0.02 (−) 15.32 + non-TNBC 2.76E-05

TCGA-OL-A97C 16.25 (−) 8.56 (−) 24.04 – TNBC 7.43E-05

TCGA-AC-A62X 0.19 (+) 0.02 (−) 28.53 non-TNBC 4.24E-05

TCGA-A7-A13D 0.52 (−) 0.81 (+) 42.28 2+ Equiv – non-TNBC 6.89E-05

TCGA-BH-A42U 9.19 (−) 1.83 (−) 38.37 – TNBC 7.16E-05

TCGA-OL-A5S0 0.09 (+) 0.06 (−) 31.92 + non-TNBC 7.07E-05

TCGA-E2-A1II 0.14 (−) 0.19 (+) 10.73 1+ – non-TNBC 1.50E-04

TCGA-A2-A0EQ 2.13 (−) 0.04 (−) 30.15 3+ + – TNBC 1.62E-04

TCGA-B6-A0IJ 1.18 (+) 0.46 (+) 11.12 non-TNBC 1.55E-04

TCGA-C8-A26Y 0.12 (−) 0.05 (−) 22.92 1+ – TNBC 1.53E-04

TCGA-A2-A1G6 23.90 (−) 21.45 (−) 29.74 1+ – TNBC 2.24E-04

TCGA-BH-A5IZ 5.12 (+) 0.03 (−) 28.08 – – non-TNBC 2.18E-04

TCGA-A2-A0YJ 0.09 (+) 0.03 (−) 240.24 0 – non-TNBC 3.42E-04

TCGA-AR-A1AH 0.03 (+) 0.03 (−) 34.12 – non-TNBC 2.68E-04

TCGA-BH-A0DL 6.99 (+) 0.04 (−) 9.92 – non-TNBC 3.23E-04

TCGA-E9-A1NC 0.11 (−) 0.07 (+) 15.91 + non-TNBC 2.76E-04

TCGA-AO-A03U 0.56 (−) 0.12 (−) 17.06 0 – – TNBC 2.97E-04

*:, including the expression values, IHC, and FISH tests of ER, PR, and HER2(individuals highlighted in bold are
suspect individuals)
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its FPR_Ref also was high. These results are similar to those obtained with the simu-

lated data. Although 3% of the samples in the TNBC dataset had inconsistent labels,

nearly 300 individuals were tested using only one method for the detection of HER2,

and IHC was the only method used for ER and PR detection in all the individuals. Be-

cause false positives and false negatives will appear in the IHC test, the actual propor-

tion of misclassified samples in the TNBC dataset may be higher. Therefore, Sn_Ref

will likely underestimate the true Sn, and FPR_Ref may overestimate the actual FPR.

To test the robustness of outliers selected by the three methods, 5000 genes were se-

lected randomly from the 19,690 variables to form a random gene set. A total of 66

outliers were identified in the random gene set using enetLTS, 62 of which coincided

with those in the original TNBC dataset, and seven suspect individuals with inconsist-

ent labels also were included. A total of 33 outliers were identified in the random gene

set using Ensemble, 25 coincided with those in original TNBC dataset, including four

suspect individuals with inconsistent labels. A total of 125 outliers were identified in

the random gene set using Rlogreg, 92 coincided with the original TNBC dataset,
Table 8 Comparison of outliers detected by the three methods for the TNBC dataset

Methods Num of outliers identified Sn_ref(%) FPR_ref(%)

Ensemble 30 3/28 (10.7) 27/896 (3.0)

enetLTS 68 7/28 (25.0) 36/896 (6.8)

Rlogreg 109 9/28 (32.1) 100/896 (11.2)

Notes: Sn_Ref and FPR_ref, which computed when the 28 suspect individuals were taken for true outliers, are as
references of true sensitivity and FPR. Num of outlier, Number of outliers detected



Table 9 Genes selected by Rlogreg for the TNBC dataset

Up-regulated UTS2(0.23), IGF2BP2(1.70), PGC(0.41), CALCA(0.17), SLC16A10(0.93), PRKAG3(0.23), PIK3CA(0.09),
SEMG2(0.26), FUT5(0.21), DNMT3L(0.22), PLA1A(0.31), HIST1H2BA(0.079), FAM171A1(2.17), ADGR
F1(0.26), RNF168(0.53), FABP7(0.18), TRPV6(0.49), SLC6A5(0.09), KCNJ4(0.28), FAM107A(1.03),
GUSB(0.28), KISS1(0.12), C1QTNF4(0.45), OR4C5(0.24), OTOG(0.10), PRR9(0.11), PAGE3(0.24),
ENSG00000273047(0.39), ENSG00000279126(0.23)

Down-
regulted

IGSF11 (− 0.16),INSYN2B (− 0.14), ANHX(− 0.12)
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including nine suspect individuals with inconsistent labels. Therefore, the results for

the random gene set mostly coincided with the results for the original TNBC dataset.

The results for the random gene sets are described in detail in Additional File 1.

The 32 genes selected by Rlogreg are listed in Table 9. Among them, the gene encod-

ing the fatty acid protein FABP7 was reported to be up-regulated in the TNBC dataset

by [15], and elevated FABP7 expression levels have been associated with poor progno-

sis. Other genes selected by Rlogreg, namely KISS1 [16], IGF2BP2 [17], CALCA [18],

PLA1A [19], and FAM171A1 [20], have been reported to be related to breast cancer or

other types of cancer. However, the three key TNBC-associated genes ER, PR, and

HER2 were not among the genes selected by Rlogreg.

The five genes selected by Ensemble are shown in Table 10. ESR1 (i.e., ER), one of

the three key genes of TNBC, was among them. The other four, CA12 [21], AGR2 [22],

TFF1 [23], and AGR3 [24] have been reported to be up- or down-regulated in TNBC.

A total of 433 genes were selected by enetLTS. The 40 genes with the largest absolute

value of the coefficient are listed in Table 11 and details of all the selected genes are

provided in Table S4–6 Additional File 1. The five genes selected by Ensemble were

among the 433 genes. Two key genes of TNBC, ER and PR, were among the genes se-

lected by enetLTS. Other genes selected by enetLTS, FOXA1 [25], GATA3 [25], SPDEF

[26], FOXC1 [27], EN1 [28], HORMAD1 [29], KRT16 [30], and CT83 [31], have been

reported to be related to TNBC.

We did not know the true genes associated with TNBC, nor the true outliers in the

TNBC dataset. The results showed that when the proportion of outliers was > 5%, the

Ensemble PSR was lower than the enetLTS PSR, and the larger the proportion of out-

liers, the greater was the gap between the two. Ensemble selected only five genes, and

some genes that have been reported to be related to TNBC were missed, probably be-

cause of the relatively large proportion of misclassified samples. Although only 3% of

the samples in this study had inconsistent labels, nearly 300 individuals were tested

using only one method to detect HER2, and only one method, IHC, was used to detect

ER and PR in all the individuals in the TNBC dataset. It has been reported that up to

20% of IHC test for ER and PR worldwide might be inaccurate (false negative or false

positive), mainly due to variations in preanalytic variables, thresholds for positivity, and

interpretation criteria [32]. Therefore, there may be more misclassified individuals in

the TNBC dataset.

The results showed that when the proportion of outliers was relatively large, enetLTS

had high outlier detection accuracy, and when the proportion of outliers was low, En-

semble had high variable selection accuracy. We combined the advantages of these two
Table 10 Genes selected by Ensemble for the TNBC dataset

CA12, ESR1, AGR2, TFF1, AGR3



Table 11 Top 40 Genes selected by enetLTS for the TNBC dataset

Up-regulated VGLL1(0.245), PPP1R14C(0.232), RGMA(0.213), CT83(0.207), EN1(0.184), UGT8(0.182), FOXC1(0.178),
SMOC1(0.173), HORMAD1(0.17), SFT2D2(0.161), CA12(− 0.155), C19orf47(0.147), MSLN(0.138),
PRSS16(0.129), RCOR2(0.12), FGD1(0.12), MIA(0.119), FAM171A1(0.116), KRT16(0.115), KRT23(0.111),
KCNK5(0.109), COL9A3(0.097), TMSB15A(0.096)

Down-
regulted

FOXA1(− 0.276), SPDEF(− 0.264), GPR160(− 0.197), GATA3(− 0.171), CA12(− 0.155), CAPN13(−
0.143), DNALI1(− 0.142), SLC40A1(− 0.135), AGR2(− 0.129), TFF3(− 0.121), RND1(− 0.118), PGAP3(−
0.11), SNCG(− 0.11)HSPB8(− 0.108), SLC44A4(− 0.1), SIDT1(− 0.097), MMP19(− 0.094), AGR3(− 0.093)
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methods and removed 68 outliers identified by enetLTS, then run Ensemble on a sub-

set of 856 samples, which further improved the accuracy of gene selection.

The prediction index MR of the three models in Ensemble was much lower on the

TNBC subset with 68 outliers removed than it was on the original TNBC dataset as

shown in Table 12; the EN MR decreased from 0.012 to 0, the SPLS-DA MR decreased

from 0.064 to 0.008, and the SGPLS MR decreased from 0.059 to 0.015. Figures 6 and

7 show the intersection of the three Ensemble models for screening genes on the ori-

ginal TNBC dataset and on the subset with outliers removed. With the subset, all the

genes screened by SGPLS overlapped with the genes screened by the other two models.

The intersection of the genes screened by EN and SPLS-DA also increased from eight

in the original TNBC dataset to 26 in the subset. These results show that the

consistency of gene screened by the three Ensemble models was greatly increased after

removing outliers.

The intersection of variables selected using the three Ensemble models increased

from five to nine genes, namely CA12 [9], GABRP [33], VGLL1 [34], AGR2 [35],

GATA3 [25], FOXA1 [25], TFF3 [36], AGR3 [24], and KRT16 [30] in Table 13, all of

which have been reported to be related to TNBC.

Because the prediction accuracy of the three Ensemble models was very high, the

genes selected by pairs of models were also listed in Table 14. Among the genes se-

lected by both EN and SPLS-DA, ESR1, one of three key variables, and PHGDH [37],

RARRES1 [38], SPDEF [26], PSAT1 [37], and FABP7 [15] have been reported to be re-

lated to TNBC. Among the genes selected by both SPLS-DA and SGPLS, SLPI [39],

TFF1 [23], and KRT6B [40] have been reported to be related to TNBC. Other selected

genes, SLC40A1 [41], ADAMTS15 [42], THSD4 [43], GREB1 [44], and SLC44A4 [45]

have been reported to be related to breast cancer, and ZG16B [46], FDCSP [47], and

SRARP [48] have been associated with other types of tumors. The correlation between

these genes and TNBC should be verified by further experiments.
Table 12 Results of Ensemble three models for the original TNBC data and subset with outliers
removed

Dataset EN SPLS-DA SGPLS

Model size** MR# Model size MR Model MR

Original data 248 0.012 22 0.064 31 0.059

Subset* 83 0.000 87 0.008 16 0.015

*: This subset is the original data set after removing 68 outliers identified by enetLTS.**: Model size, number of variables.
#:MR, Misclassification Rate



Fig. 6 The intersection of genes selected by Ensemble’s three models on the original TNBC dataset
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Discussion
Mislabeled samples in omics data lead to two main problems: how to identify associ-

ated biomarkers accurately and avoid the influence of mislabeled samples, and how to

detect mislabeled samples accurately.

Rlogreg had the lowest variable selection accuracy among the three methods tested,

and lower outlier identification accuracy than enetLTS. The computation time for
Fig. 7 The intersection of genes selected by Ensemble’s three methods on the subset with
outliers removed



Table 13 Genes selected by Ensemble for the TNBC subet*

CA12,GABRP, VGLL1, AGR2, GATA3, FOXA1, TFF3, AGR3, KRT16

*: This subset is the original data set after removing 68 outliers identified by enetLTS
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Rlogreg was considerably lower than those of the other two methods because the

regularization parameter λ is determined using Bayesian regularization, which is faster

than cross-validation. However, this way of determining λ affected the accuracy of vari-

able selection, which was worse than that of enetLTS, which uses cross-validation to

determine the regularization parameter. Additionally, because Bootkrajang et al. [4] set

the misclassified samples predicted by Rlogreg as outliers, many outliers were detected

and the FPR was high.

Ensemble and enetLTS both use cross-validation to determine the regularization pa-

rameters. However, enetLTS required much more time than Ensemble because cross-

validation is conducted at each iterative step of the C-step algorithm in enetLTS. For

outlier detection, individuals with significant Pearson residuals more than Φ(0.9875)

were regarded as outliers in enetLTS. The outlier detection accuracy of enetLTS was

better than that of Rlogreg, and enetLTS was stable when the proportion of outliers in-

creased. Least trimmed square (LTS) is an effective method to solve the masking

phenomenon in which many outliers are located close together in a low-dimensional

dataset [49]. The results showed that enetLTS also was an effective method to detect

outliers in a high-dimensional dataset. For variable selection, enetLTS is equivalent to

EN when EN was applied on the subset with outliers removed. EN tends to include all

relevant variables, so more variables are selected, resulting in high PSRs and FDRs for

enetLTS. We ran Ensemble on the TNBC dataset after removing the outliers identified

by enetLTS. And one of the three ways that Ensemble includes is EN. Therefore, using

Ensemble is equivalent to running three methods on this subset, so by keeping the vari-

ables with strong correlation with dependent variables through their intersection, the

FDR can be reduced.

The EN model in Ensemble also was compared with enetLTS by Kurnaz et al. [11].

The results showed that on contaminated data, enetLTS performed better than the EN

for variable selection with a lower FPR and better precision of coefficients. However, as-

sociated genes with substantial effects were not influenced by outliers and were de-

tected by all three Ensemble models. Then, by finding the intersection of variables

selected by the three Ensemble models, the genes with the strongest effects are selected.

Because the intersection contained few genes, Ensemble had a very low FDR and a

lower PSR than enetLTS. When the proportion of outliers was relatively large, we

found that the variable selection accuracy of Ensemble decreased, especially the PSR.

This may be because, without considering robustness, when the original datasets with
Table 14 Intersection of genes selected by two methods of Ensemble for the TNBC subset*

EN and SPLS-
DA

ESR1, PHGDH, RARRES1, PI3, SPDEF, PSAT1, SLC40A1, ZG16B, CMBL, FABP7, ADAMTS15, PRR15,
SRARP, THSD4, GREB1, PPP1R14C, SLC44A4

SPLS and
SGPLS

SLPI, TFF1, CALML5, FDCSP, KRT6B, KRT81, age

*: This subset is the original data set after removing 68 outliers identified by enetLTS. After removing the intersection of
the three methods, outliers identified by EN and SGPLS had no intersection
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outliers were used, the variable selection of the three Ensemble models may have been

influenced by the outliers. EnetLTS performs the EN estimation after removing outliers,

so the enetLTS PSR is less affected by the outliers.

All the results showed that the variable selection accuracy of Ensemble on high-

dimensional data was high. Ensemble is a way of modeling using a variety of different

basic models, so, as long as the basic model has diversity and independence, Ensemble

will usually have low error rates. Many researches on Ensemble models have combined

multiple machine learning methods to improve the accuracy of predictions [50]. Be-

cause the different models “look” at the data from different angles, they are not flexible

enough to make changes in the training set to more accurately summarize new data

and improve the generalization ability of the model. Rather, the Ensemble approach

aims to seek the wisdom of the group to build a model that is closer to reality [51].

Overall, the outlier detection accuracy of Ensemble was worse than that of enetLTS.

Ensemble achieved consensus with rank product statistics corrected by multiple testing,

which led to fewer outliers detected by Ensemble and a lower Sn than enetLTS. Fur-

ther, Cook’s D derived from EN, SPLS-DA, or SGPLS may have been influenced by

outliers. Conversely, the Pearson residual of enetLTS was derived from the subset with-

out outliers, which may explain why enetLTS detected more outliers with a higher Sn

than Ensemble.

When the proportion of outliers was relatively low, such as ≤5%, the results showed

that Ensemble had high variable selection accuracy. Although none of the three Ensem-

ble models considered robustness, they were less affected by the proportion of outliers,

so the FDR of variable selection was reduced by intersection. When the proportion of

outliers was large, such as > 5%, the results showed that using enetLTS first to identify

outliers and then using Ensemble improved the overall variable selection accuracy. In

practice, the proportion of outliers can be determined according to the inaccuracy rate

of the diagnostic methods used; for example, the inaccuracy rate of IHC detection is

about 20%. EnetLTS is the recommended method for the identification of misclassified

samples regardless of the proportion of outliers in a dataset.

The identified misclassified samples need to be further checked using more accurate

tests or multiple tests so that experimental or diagnostic errors can be corrected to

avoid subsequent treatment failure caused by the wrong treatment. If, after verification,

the identified misclassified samples were found not to be caused by such errors, it may

mean that the disease classification of these samples had different response patterns

compared to their covariate combinations. Taking the TNBC data for example, if the

identified misclassified sample is labeled TNBC, and it is not a diagnostic error after

verification, it indicates he/she should be labeled non-TNBC based on the genes

screened from the vast majority of individuals. For these heterogeneous samples, we

suggest that further analysis can be done in this way. The propensity score [52] can be

used to match these heterogeneous TNBC individuals according to the gene expression

values of genes (screened from the vast majority of individuals) among non-TNBC indi-

viduals. In this way, specific genes related to TNBC can be found in these heteroge-

neous TNBC individuals, and these specific genes are different from associated genes

screened from the vast majority of individuals. Further research may find suitable indi-

vidualized treatment for these heterogeneous TNBC patients. The analysis of identified

heterogeneous samples needs further research.
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Conclusions
When the proportion of outliers is relatively low and ≤ 5%, Ensemble can be used for vari-

able selection. When the proportion of outliers is > 5%, Ensemble can be used for variable

selection on a subset of data after removing outliers identified by enetLTS. For outlier

identification, enetLTS is the recommended method. In practice, the proportion of outliers

in a dataset can be estimated according to the inaccuracy of the diagnostic methods used.
Methods
Design of Simulation study

Simulation settings

We generated n = 100 and n = 500 observations from a p-dimensional multinormal dis-

tribution N(0, Σp) with p = 200 and p = 1000. The (i,j) element of Σp was set to 0.9∣i − j∣,

1 ≤ i, j ≤ p. We assumed high correlation coefficients among variables because the close

correlation among genes is frequently observed.

We fixed the coefficient vector as βT =(1, …, 1,0, …, 0). The first 30 βi were set to

one and the others were set to zero. The response variable was generated according to

a Bernoulli distribution with yi~B(1, πi), where logitðπiÞ ¼ xTi β for i = 1,2, …,n.

We considered the following two scenarios for outliers. (1) Outliers in the response:

We set 1
3 ε of the observations selected randomly from the class yi = 0 to one, and 2

3 ε

for which selected randomly from the class yi = 1 to zero. Asymmetric mislabeled sam-

ples were set because they are usually more harmful and harder to be detected than

symmetric ones. ε =0.01, 0.02, 0.05, 0.10 and 0.15 were considered. (2) Outliers in both

the response and predictors: This was the same as scenario (1); however, ε of observa-

tions with outliers in the response also contained outliers in the predictors following an

independent N (3,1) distribution.(3) To make the simulation scenario closer to the real

data, we set up the simulation based on the TNBC data set . The new datasets were

simulated with sample size N = 1000, of which 500 observations had y value of 1

(TNBC class), and 500 samples have y value of 0 (non-TNBC class). A subset with the

dimension p = 5000 was randomly selected from the TNBC data set. The mean vector

and covariance matrix corresponding to the TNBC group and the non-TNBC group

were obtained respectively from the subset, and then the normally distributed random

variables were generated.

For each setting mentioned above, we compared the performance of Rlogreg, Ensem-

ble, and enetLTS. For Rlogreg, the initial gamma matrix was set to
0:85 0:15
0:15 0:85

� �
,

which means that the initial probability that the label was flipped from the true label

one to the observed label zero, or the true label zero to the observed label one was 0.15

for both cases. Following Kurnaz et al. (2018), for enetLTS, parameter h was chosen as

[0.75n]. Other parameters were the default settings in the R package enetLTS. Following

Lopes et al. (2018), the optimization of the model parameters of EN, SPLS-DA, and SGPL

S based on the mean squared error (MSE) was performed by 10-fold cross-validation.
Performance measures

The evaluation criteria were divided into three categories. The first category concerns

the variable selection accuracy.
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(1) Model size: the number of non-zero coefficients in the estimated model.

(2) Positive Selection Rate (PSR) and false discovery rate (FDR):

PSR ¼ TP
TP þ FN

;

FDR ¼
FP

TP þ FP
;TP þ FP > 0

0;TP þ FP ¼ 0

(
;

where true positive TP is the number of coefficients that are non-zero in the true

model and were estimated as non-zero. In the true model, false positive FP represents

the zero coefficients that were estimated as non-zero. False negative FN represents the

number of non-zero coefficients that were estimated as zero. PSR represents the pro-

portion of TP in non-zero coefficients in the actual model. Additionally, FDR repre-

sents the ratio of FP in non-zero estimated coefficients.

(3) The geometric mean of PSR and (1-FDR) (GM): We calculated the geometric

mean of PSR and (1-FDR) to evaluate the selection performance of the methods

comprehensively.

The second category of indicators evaluates the accuracy of outlier detection.

(1) The number of outliers (Num): Number outliers detected by a method.

(2) Sensitivity (Sn) and false positive rate (FPR):

Sn ¼ TP�

TP� þ FN� ;

FPR ¼ FP�

FP� þ TN� ;

where true positive TP∗ represents the number of actual outliers that were also detected

as outliers. False positive FP∗ represents the number of individuals with correct labels

that were detected as outliers. False negative FN∗ represents the number of actual out-

liers that were misclassified as individuals with the correct labels. True negative TN∗

represents the number of individuals with actual correct labels that were also identified

as those with correct labels.

Sn represents the proportion of actual outliers that were correctly identified. FPR rep-

resents the proportion of individuals with correct labels that were wrongly categorized

as outliers.

The third category of indicators evaluates the prediction accuracy.

(1) Misclassification rate (MR): MR represents the fraction of misclassified observa-

tions that correspond to their prediction probability by the fitted model.

We set

ŷi ¼
1 if p̂i≥0:5
0 if p̂i < 0:5

�
;

where predicted probability p̂i ¼ expðx0i β̂Þ
1þ expðx0i β̂Þ

and ŷi is the predicted response. Misclassi-

fied observations are samples with response y = 1 that are predicted as zero, or ones

with y = 0 but predicted as 1.

Training data and test data were generated according to the above sampling schemes.

Training data were generated to fit the model and test data to evaluate the model. The

test data were generated without outliers. For each setting, we calculated the average of
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the performance measures over 100 simulation replicates implemented in MATLAB

[53] (for Rlogreg only) and R software [54, 55].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03653-9.

Additional file 1.
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