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Summary

Background: Diagnosis of nonalcoholic fatty liver disease in children and adolescents

currently requires advanced or invasive technologies.

Objectives: We aimed to develop a method to improve diagnosis, using body compo-

sition indices and liver biochemical markers.

Methods: To diagnose non-alcoholic fatty liver disease, 767 Danish children and ado-

lescents underwent clinical examination, blood sampling, whole-body dual-energy X-

ray absorptiometry scanning and proton magnetic resonance spectroscopy for liver

fat quantification. Fourteen variables were selected as a starting point to construct

models, narrowed by stepwise selection. Individuals were split into a training set for

model construction and a validation test set. The final models were applied to 2120

Danish children and adolescents to estimate the prevalence.

Results: The final models included five variables in different combinations: body mass

index–standard deviation score, android-to-gynoid-fat ratio, android-regional fat per-

cent, trunk-regional fat percent and alanine transaminase. When validated, the sensi-

tivity and specificity ranged from 38.6% to 51.7% and 87.6% to 91.9%, respectively.

The estimated prevalence was 24.2%–35.3%. Models including alanine transaminase

alongside body composition measurements displayed higher sensitivity.

Conclusions: Body composition indices and alanine transaminase can be used to esti-

mate non-alcoholic fatty liver disease, with 38.6%–51.7% sensitivity and 87.6%–

91.9%, specificity, in children and adolescents with overweight (including obesity).

These estimated a 24.2%–35.3% prevalence in 2120 patients.
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1 | INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is common among children and

adolescents with overweight or obesity. However, the reported preva-

lence varies, with estimates ranging from 1.7% to 85% depending on the

ethnicity and size of the study population and the clinical setting.1,2

Among children and adolescents, those with overweight or obesity

exhibit the highest prevalence of NAFLD, and its severity has been linked

to the degree of obesity.3,4 NAFLD is the most prevalent chronic liver dis-

ease in children and adolescents and constitutes an independent risk fac-

tor for advanced stages of liver disease and cardiovascular disease in

adulthood.4

NAFLD covers a spectrum of liver-related diseases in the absence

of high alcohol consumption, ranging from the accumulation of fat in

the liver to end-stage fibrosis.5,6 Recently, a new diagnostic criteria

framework has been proposed defining fatty liver disease due to meta-

bolic dysfunction, hence a change in name to metabolic dysfunction–

associated fatty liver disease (MAFLD).7,8 This redefinition encompasses

different metabolic phenotypes with either excess adiposity defined by

body mass index (BMI) or increased waist circumference, prediabetes or

type 2 diabetes, or evidence of metabolic dysregulation. This is in line

with studies associating visceral and centrally distributed fat with car-

diometabolic health and NAFLD in children and adolescents,9,10 empha-

sizing the importance of body fat distribution.

Whole-body dual-energy X-ray absorptiometry (DXA) scanning

can be used to measure the relative fat distribution and body compo-

sition in children and adolescents with overweight or obesity.11 It is

relatively low-cost and widely accessible.11 The current treatment

options for paediatric NAFLD primarily consist of obesity manage-

ment and monitoring of favourable changes in body composition.2

Therefore, early diagnosis is important to provide effective and timely

care for obesity management, reducing hepatic fat content and, thus,

the risk of progression to a more severe stage of NAFLD.12,13

Currently, the gold standard for diagnosing NAFLD is liver

biopsy.2,14,15 Because NAFLD presents as a heterogeneous disease in the

liver tissue, obtaining an accurate biopsy can be difficult and further chal-

lenged by its impractical, invasive nature and the risk of complications.16,17

Therefore, other surrogate markers are often used to diagnose NAFLD,

especially in the paediatric population. Other diagnostic tools include bio-

chemical measures of liver enzymes, proton magnetic resonance spectros-

copy (1H-MRS) liver evaluation and ultrasound of the liver.14 Compared

with ultrasound, 1H-MRS is more precise when estimating the degree of

liver steatosis, but it requires specialized and expensive equipment and

trained staff and is not commonly available.14 The plasma concentration

of alanine transaminase (ALT) is a widely used biomarker, and our group

has previously shown its ability to diagnose NAFLD in children and adoles-

cents, although the sensitivity is low when used as a standalone. However,

it should be noted that hypertransaminasemia can arise from multiple cau-

ses other than overweight and obesity, which should be accounted for in

the clinical assessment.14,15,18

This emphasizes the need for a NAFLD diagnosis tool that is inex-

pensive, fast, easy to use, and widely available while integrating clinical

markers of body fat distribution. This study aimed to explore whether

anthropometric and DXA-scan-derived measures of body composition

in combination with plasma ALT can be used as a diagnostic tool to

identify NAFLD in children and adolescents. By comparing with 1H-

MRS, we aimed to investigate whether the estimated diagnostic ability

and performance measures related to body composition and plasma

ALT could identify NAFLD and estimate its prevalence in a large cohort

of Danish children and adolescents with overweight or obesity.

2 | METHODS

2.1 | Study population

This study included two cohorts of children and adolescents with

whole-body DXA-scan data available: (1) a population-based cohort

recruited from 11 municipalities across Region Zealand, Denmark,

from October 2010 to February 2015 and (2) an obesity clinic cohort

recruited at The Children's Obesity Clinic, Department of Paediatrics,

Copenhagen University Hospital Holbæk, Denmark, from January

2009 to May 2020.19

Informed written consent was obtained from all the participants

above the age of 18 years, and legal guardians provided informed

written consent for participants younger than 18 years. The study was

approved by The Ethics Committee of Region Zealand (protocol no.:

SJ-104) and the Danish Data Protection Agency. Trained medical staff

performed all clinical evaluations, including measurements of height

and weight, medical examinations, and fasting venous blood samples.

2.2 | Anthropometry

Wearing light indoor clothing and no shoes, the participants had their

body weight (BC-418 Segmental Body Composition Analyser, Tanita,

Tokyo, Japan) and height measured (stadiometer) to the nearest 100 g

and 1mm, respectively. From the weight and height, a BMI–standard

deviation score (BMI-SDS) was calculated for each participant

according to the Danish BMI charts, and overweight or obesity was

defined as a BMI above the 90th percentile (corresponding to a BMI-

SDS >1.28).20

2.3 | Biochemical analysis

Analysis of plasma ALT has previously been described; in brief, the

participants had a blood sample obtained by venipuncture of the

antecubital vein between 7 and 9 am, after a fast of a minimum of

8 h.18 The plasma concentration of ALT was immediately processed

and analysed at the biochemical laboratory of Copenhagen University

Hospital Holbæk. All analyses were performed on a Cobas®6000

(Roche Diagnostics, Mannheim, Germany) until May 15, 2013, and on

a Dimension Vista®1500 (Siemens Healthcare, Erlangen, Germany)

from May 16, 2013, using the IFCC traceable enzymatic colorimetric

method, with measurements performed at 37�C and an incubation
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time of 5.6 minutes at 340 nm with an additional correction measure-

ment at 700 nm.

2.4 | DXA scan

All participants had information available from DXA scans, performed

on a GE Lunar iDXA (ME+200 179, GE Healthcare, Madison, Wiscon-

sin, USA), as previously described by our group.21 Based on this, addi-

tional derived variable-ratios were the trunk-to-extremities-fat-ratio

(as total trunk fat mass/total extremities fat mass), android-fat-ratio

(as android fat mass/total fat mass), and android-to-gynoid-fat-ratio

(as android fat mass/gynoid fat mass).

2.5 | 1H-MRS to diagnose NAFLD

Liver fat content was measured by 1H-MRS on a subset of the partici-

pants, using a 3T Achieva MR imaging system without sedation

(Philips Medical Systems, Best, Netherlands), as previously

described.18,22,23 In brief, the spectroscopy voxel (11� 11� 11mm)

was placed in the right liver lobe, avoiding major vessels and bile

ducts. The acquired spectra were fitted to obtain their areas by an

experienced senior magnetic resonance (MR) physicist using a stan-

dard postprocessing protocol with the MR imaging system. Unlike

previous studies using a 5% liver fat threshold, this study defined

using a threshold value of 1H-MRS-determined liver fat content above

1.5%, which has been found to more accurately represent the upper

normal limit of liver fat content in our cohort of children and adoles-

cents with normal weight.22

2.6 | Predictive variables

From the study data, we selected 14 variables previously associated

with NAFLD in children and adolescents.9,24–33 The clinical and bio-

chemical variables were sex, age, BMI-SDS, hip circumference, waist

circumference and ALT. The DXA-scan variables and derived ratios

were total-fat-percent, total-fat-percent-SDS, trunk-regional-fat-per-

cent, android-regional-fat-percent, gynoid-regional-fat percent,

android-to-gynoid-fat ratio, android-fat-ratio and trunk-to-extremi-

ties-fat ratio.

2.7 | Statistical analysis

Statistical analysis was performed using Stata 15.1 (StataCorp LLC,

College Station; www.stata.com) and R statistical software v.3.6.3

(R Core Team [2020], Vienna, Austria; www.r-project.org). The R

package ‘stepAIC’ was used to perform the stepwise variable selec-

tion, and the R package ‘pROC’ was used to calculate receiver operat-

ing characteristic (ROC) analyses and area under the curve (AUC).

The children and adolescents identified to have a complete set of

observations, with 1H-MRS and DXA scan performed within a maximum

of 30 days, were randomized and split into two independent sets: a train-

ing set and a test set. This was initially done to construct logistic regres-

sion models on the training set, which afterwards was used for validation

on the test set. To give sets homogeneous in outcome, division into the

training and test sets was stratified by the diagnosis of NAFLD.

Before fitting the models, all variables were checked for distribu-

tion, outliers and their joint correlation using a correlation matrix.

Based on existing literature, we selected the 14 most influential vari-

ables available in this cohort assumed to be associated with NAFLD.

This selection process was performed a priori before any analyses.

Next, logistic regression models were run with respect to the binary

NAFLD indicator of liver fat content as the outcome. To reduce the

number of variables and thereby simplify the model, a stepwise selec-

tion was performed (forward, backwards and both directions). The

models found by the stepwise selection were analysed for non-

linearity by adding quadratic terms and for sex interaction. The best-

performing variants of each model were selected based on sensitivity,

specificity, and the Akaike information criterion (AIC).

The final selected best-performing models were carried over to

the test set, where their performance in detecting NAFLD was

analysed and validated. The AUC was calculated for all models to eval-

uate prediction performance. Finally, the models were applied to esti-

mate NAFLD prevalence in the prediction cohort comprising the

children and adolescents who had not yet been included in the ana-

lyses, where a DXA scan, but no 1H-MRS, was available. For each

model, we used the sensitivity and specificity from the performance

on the test set to transform the model-predicted prevalence to proper

prevalence estimates for NAFLD based on the prediction cohort. In

this, ALT was not included as a variable. In the subsets of the training

and test sets who also had plasma ALT concentrations measured

within 30 days, a mirrored analysis was performed using the same

steps. Corresponding candidate models including ALT were addition-

ally derived, tested and applied to prevalence estimation.

To evaluate the gain from adding DXA variables to simpler models

when predicting NAFLD, mirroring the steps described, we con-

structed three additional models: first, using only basic (sex, age) and

anthropometric variables (BMI-SDS, waist and hip circumferences);

second, combining basic variables with ALT; third, using basic vari-

ables, anthropometrics, and ALT.

Based on the estimated outcome probabilities, an objective logis-

tic regression prediction model was programmed to use an estimated

probability cut-off of 0.5. Predictions above 0.5 then resulted in

predicted NAFLD, and vice versa. Alternative lower cut-offs could be

chosen to tune the performance towards higher sensitivity compen-

sated by lower specificity and vice versa (for higher thresholds). To

further evaluate the predictions, we selected the two most promising

models: one with and one without the inclusion of ALT plasma con-

centrations. For these models, we performed an ROC analysis; as a

guide, we then used the Youden index to determine the suggestive

cut-off for the outcome of the logistic regression.
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3 | RESULTS

3.1 | Study population

A total of 335 participants from the population-based cohort, and 2913

participants from the obesity clinic cohort, met the inclusion criterion of

at least one whole-body DXA scan. In total, 767 participants (412 girls)

from both cohorts had both a DXA scan and a 1H-MRS within 30 days.

We then randomized and split these 767 children and adolescents into a

training set (n = 499, 65%) and a test set (n = 268, 35%) based on strati-

fication of liver fat defined by a threshold value of 1.5%. The training

and test sets had a median age of 13.1 and 12.5 years, an NAFLD preva-

lence of 25.9% and 26.1%, and a prevalence of overweight (including

obesity) of 87.4% and 88.4%, respectively. The prediction cohort of chil-

dren and adolescents consisted of n = 2120 (1152 girls) with a median

age of 10.8 years and a prevalence of overweight or obesity of 96.0%.

TABLE 1 Baseline characteristics of children and adolescents in the test set, training set and the prediction cohort

Children with available DXA-scan
Training set Test set Prediction cohort

p-valuen = 499 n = 268 n = 2120

Girls [n (%)] 276 (55.3%) 136 (50.7%) 1152 (54.3%) 0.46

Age, years 13.09 (2.64) 12.74 (2.67) 10.84 (3.43) <0.001

BMI-SDS 2.51 (1.16) 2.50 (1.14) 2.84 (0.99) <0.001

Overweight or obesity (BMI-SDS > 1.28) [n (%)] 436 (87.4%) 237 (88.4%) 2035 (96.0%) <0.001

Hip circumference, cm 101.2 (15.8) 99.7 (16.3) 94.8 (16.3) <0.001

Waist circumference, cm 89.95 (15.20) 88.74 (16.19) 90.63 (17.02) 0.19

Total fat percent 41.26 (8.38) 41.40 (8.49) 42.84 (6.59) <0.001

Fat percent-SDS 1.29 (1.01) 1.33 (0.99) 1.57 (0.62) <0.001

Android-regional fat percent 44.35 (12.68) 44.55 (12.65) 46.59 (10.00) <0.001

Gynoid-regional fat percent 42.59 (7.96) 42.71 (8.20) 45.47 (6.53) <0.001

Trunk-regional fat percent 41.34 (10.43) 41.57 (10.46) 42.70 (8.24) 0.003

Android-to-gynoid fat ratio 0.46 (0.13) 0.47 (0.13) 0.48 (0.10) 0.003

Android-fat ratio 0.08 (0.02) 0.08 (0.02) 0.08 (0.02) <0.001

Trunk-to-extremities fat ratio 0.97 (0.23) 0.99 (0.25) 1.00 (0.24) 0.02

ALT, U/L [median (IQR)] 26 (20, 33) 25 (20, 34) 23 (18, 31) <0.001*

Liver fat percent [median (IQR)] 1.0 (0.5, 1.7) 0.8 (0.5, 2.0) NA 0.59*

NAFLD ≥ 1.5% liver fat indicator [n (%)] 129 (25.9%) 70 (26.1%) NA NA

Subset of children with ALT available
within 30 days of DXA-scan n = 386 n = 213 n = 1246

Girls [n (%)] 202 (52.3%) 105 (49.3%) 669 (53.7%) 0.48

Age, years 12.98 (2.51) 12.56 (2.57) 10.92 (3.36) <0.001

BMI-SDS 2.77 (0.90) 2.76 (0.85) 2.91 (0.82) 0.003

Overweight or obesity (BMI-SDS > 1.28) [n (%)] 369 (95.6%) 206 (96.7%) 1218 (97.8%) 0.07

Hip circumference, cm 103.4 (15.2) 101.8 (15.0) 95.7 (15.9) <0.001

Waist circumference, cm 91.9 (14.4) 90.5 (15.6) 91.1 (16.4) 0.54

Total fat percent 42.97 (6.57) 43.08 (6.77) 43.42 (6.10) 0.42

Fat percent-SDS 1.52 (0.69) 1.54 (0.71) 1.63 (0.56) 0.006

Android-regional fat percent 47.13 (9.80) 47.21 (9.74) 47.34 (9.10) 0.92

Gynoid-regional fat percent 44.10 (6.37) 44.22 (6.72) 45.77 (6.07) <0.001

Trunk-regional fat percent 43.59 (8.11) 43.73 (8.15) 43.52 (7.59) 0.93

Android-to-gynoid fat ratio 0.49 (0.11) 0.49 (0.11) 0.49 (0.10) 0.78

Android-fat ratio 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 0.998

Trunk-to-extremities fat ratio 1.00 (0.21) 1.01 (0.24) 1.01 (0.24) 0.74

ALT, U/L [median (IQR)] 26 (20, 33) 25 (20, 34) 24 (19, 31) 0.002*

Liver fat percent [median (IQR)] 1.0 (0.5, 2.0) 1.0 (0.5, 2.0) NA 0.54*

NAFLD ≥ 1.5% liver fat indicator [n (%)] 112 (29.0%) 60 (28.2%) NA NA

Note: Values are in the form of mean (standard deviation), unless where otherwise is noted. p-values are calculated using chi-square tests for categorical
variables, and either by one-way ANOVA tests (default) or Kruskal–Wallis tests (indicated by *) for continuous variables.
Abbreviations: ALT, alanine aminotransferase; BMI, body mass index; IQR, interquartile range; SDS, standard deviation score.
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Subsets based on the additional criterion of available biochemical

analysis of ALT within 30 days of the DXA scan resulted in n = 386

(202 girls) from the training set and n = 213 (105 girls) from the test

set with a median age of 13.0 and 12.6 years, NAFLD prevalence of

29.0% and 28.2%, and overweight prevalence of 95.6% and 96.7%,

respectively. Similarly, n = 1246 (669 girls) in the prediction cohort

were eligible, with a median age of 10.9 years and overweight preva-

lence of 97.8%.

Detailed characteristics of the children and adolescents constitut-

ing the DXA-based training set, test set and prediction cohort and the

corresponding ALT subsets, are shown in Table 1.

3.2 | Model building

When performing the stepwise selection of the variables for the train-

ing set, we ended up with two different models. One model was

found by backward-selection (and by the adaptive variant working in

both directions) starting with a full set of variables, A, containing BMI-

SDS, android-to-gynoid fat ratio, android-regional fat percent and

trunk-regional fat percent. The other model was found by forward-

selection (also with the corresponding variant working in both direc-

tions) starting with an empty model, B, which contained the variables

BMI-SDS and android-to-gynoid fat ratio.

Mirroring this step, but now only using individuals from the train-

ing set where ALT was available within 30 days of the DXA scan, and

including ALT as an explanatory variable, we found two different

models. These models, C and D, turned out exactly as for models

A and B when adding ALT to the former four and two variables,

respectively.

Subsequently, all four models were first checked for non-linearity

by adding quadratic terms to the variables (one at a time, and jointly

when several candidates appeared); candidate models, with or without

non-linearity, were selected and put forward. Next, all active models

were similarly checked for sex interaction (for non-linear variables,

both covariates were tested jointly). Selecting candidates in this way

resulted in four variants each of models A and C and two variants each

of models B and D. The specific variable combinations (including used

quadratic terms and/or sex interactions) for each model can be seen

in Table 2. For additional details, Table S1 shows the underlying (esti-

mated) coefficients for each variable of all the selected models.

3.3 | Predictive model performance

To test the performance of the different variants of the models to

detect NAFLD, we used the models derived from the previously

described steps on the test set. Compared with the already established
1H-MRS-derived measure of liver fat, in the variants of model A, sensi-

tivity ranged from 40.0% to 44.3%, specificity was 90.9%–91.9% and

the AUC was 81.0%–82.0%. Model B had a sensitivity of 38.6% and

specificity of 91.4% in both variants of the model and an AUC of 80.0%

and 80.6%. For model C, the sensitivity ranged from 50.0% to 51.7%,

specificity was 87.6%–90.2% and the AUC was 81.0%–83.4%. In the

variants of model D, sensitivity was 48.3% in both variants, specificity

was 89.5%–90.2% and the AUC was 82.2%–82.3%.

F IGURE 1 Receiver operating characteristic (ROC) curves for determining optimal cut-off, based on the Youden index optimality criterion, for
predicting NAFLD in models A.1 and C.4. The area under the curve (AUC) was 81.0% for model A.1 with the probability cut-off of 0.25, which
predicted NAFLD with a sensitivity of 77% and a specificity of 70%. The AUC was 83.4% for model C.4, with cut-off of 0.36, which predicted
NAFLD with a sensitivity of 72% and a specificity of 82%
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3.4 | Estimating NAFLD prevalence

NAFLD prevalence was estimated using the models on the prediction

cohort of children and adolescents. This used the model-based predic-

tions (the rate of indicated events) in combination with the estimated

sensitivity and specificity from the corresponding test set analyses. In

model A, the estimated prevalence of NAFLD ranged from 27.9% to

34.6%. Models B, C and D similarly predicted prevalence of 33.9%–

35.3%, 24.2%–29.5% and 28.5%–31.9%, respectively.

3.5 | Fine-tuning predictive model performance

ROC analyses were used on two of the best-performing models

subjectively selected based on a combination of sensitivity, specific-

ity, and AUC, one from A, A.1, and one from C, C.4, to determine

alternative cut-offs (Figure 1). In model A.1, the AUC was 81.0%

with a suggested probability cut-off of 0.25, yielding a change in

sensitivity from 44.3% to 77.1% and in specificity from 90.9% to

70.2%. Predicting the NAFLD prevalence in the prediction cohort,

the estimated prevalence changed from 27.9% to 25.2%. Model C.4

displayed an AUC of 83.4% and a suggestive cut-off of 0.36,

returning a sensitivity and specificity change from 51.7% to 71.7%

and from 88.9% to 81.7%, respectively. The estimated NAFLD prev-

alence in the prediction cohort changed from 24.6% to 16.2%. The

full-performance details of the fine-tuned models are shown in

Table 3.

3.6 | Evaluating non-DXA variables

Constructing models using all iterations of stepwise selection on only

basic and anthropometric variables yielded two variants of one model,

E, containing the variables BMI-SDS, hip circumference, and waist cir-

cumference. Using the training set including ALT, two variants of one

model, F, was constructed using basic and biochemical variables: con-

taining sex, age and ALT. Lastly, using basic, anthropometric and bio-

chemical variables yielded a single variant of one model, G, containing

BMI-SDS, waist circumference and ALT.

Model E had a sensitivity ranging from 35.7% to 37.1% and speci-

ficity from 89.4% to 89.9%, whereas the variants of Model F had a sen-

sitivity that ranged from 21.7% to 36.7% and a specificity of 92.2%–

95.4%. The single G model had a sensitivity of 45.0% and a specificity

of 89.5%. Table S2 shows detailed characteristics of models E, F and G.

4 | DISCUSSION

We constructed 12 different models for predicting NAFLD as diag-

nosed by 1H-MRS in children and adolescents using DXA- and non-

DXA-derived measurements. Our estimates of the prevalence in the

prediction cohort were 27.9%–35.3% in models A.1–4 and B.1–2, and

24.2%–31.9% in models C.1–4 and D.1–2, when taking test set sensi-

tivity and specificity into account. These prevalence estimates dis-

played good similarity with both the observed NAFLD prevalence in

this study, ranging from 25.9% to 29.9%, and earlier studies published

by our group.22,23,34,35 A systematic review and meta-analysis by

Anderson et al.36 found a 34.2% prevalence of NAFLD in children and

adolescents at obesity clinics, which agrees with the estimates found

in our study. Another recent systematic review and meta-analysis by

Liu et al.37 found an estimated 44.9% global prevalence of paediatric

MAFLD among children and adolescents from obesity clinics, regard-

less of the diagnostic method chosen. This might be a consequence of

the MAFLD diagnosis comprising aspects of metabolic dysfunction

related to both BMI and waist circumference, as well as a shift from a

diagnosis of exclusion to an independent diagnosis with inclusion

criteria. Furthermore, ethnicity and genetic susceptibility vary across

populations, impeding the comparison of the global prevalence to the

estimates of the present study, especially when differences in meth-

odology are considered.

TABLE 3 Characteristics of the ROC-optimized models' ability to predict NAFLD

Test set Prediction cohort
n = 268 n = 2120Children and

adolescents with
available DXA-scan

NAFLD prevalence, n = 70 (26.1%)

Model
ROC-determined
cut-off Sensitivity Specificity PPV NPV AUC

Predicted
NAFLD n (%)

Predicted
NAFLD n (%)

Estimated
prevalence
of NAFLD

A.1 0.245 77.1% 70.2% 47.8% 89.7% 81.0% 113 (42.2%) 885 (41.7%) 25.2%

Subset of children and

adolescents with ALT
available within
30 days of DXA scan n = 213 n = 1246

NAFLD prevalence, n = 60 (28.2%)

C.4 0.358 71.7% 81.7% 60.6% 88.0% 83.4% 71 (33.3%) 336 (27.0%) 16.2%

Note: The new ROC-determined cut-off, suggested by the Youden index, sensitivity, specificity, PPV, NPV, AIC, AUC and predictions, including

performance, is shown for the training set, test set and the prediction cohort of children and adolescents for each model.

Abbreviations: AIC, Akaike information criterion; ALT, alanine aminotransferase; AUC, area under the curve; BMI-SDS, body mass index–standard
deviation score; DXA-scan, whole-body dual-energy X-ray absorptiometry; NAFLD, non-alcoholic fatty liver disease; NPV, negative predictive value; PPV,

positive predictive value; ROC, receiver operating characteristics.
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In the initial models, excluding ALT, we investigated the predic-

tive power of a model consisting only of non-invasive and easily

accessible parameters that healthcare professionals can obtain in set-

tings where the DXA scan is the primary modality. We later added

ALT to the models to examine to what extent it would benefit

them.14,18,38 Predominantly, the models including ALT improved sen-

sitivity, and when analysing the coefficients for the variables, we

observed that an increase in ALT was linked to an increased risk of

NAFLD. This applied to all the models including ALT, emphasizing the

importance of including ALT when available. Importantly, despite its

sensitivity, using ALT alone to screen for NAFLD is not recommended

for diagnosis, as multiple causes besides overweight and obesity can

contribute to elevated ALT levels, such as viral infections, toxic dam-

age, or autoimmune diseases. Hence, it should be used in combination

with other markers linked to NAFLD.2,18,39–41 Additionally, analysing

the results from the basic models (E, F and G), we found that excluding

DXA-scan variables made them perform less well. Model F, using ALT,

age and sex, performed the poorest. This further shows that these

variables should not be used alone in this sense and that anthropo-

metrics in combination with DXA-derived body composition indices

can be valuable diagnostic tools to identify NAFLD. Because the

models developed used ALT as an explanatory variable in logistic

regression, we did not use a single upper limit normal for diagnosing

NAFLD, but rather ALT as a continuous variable.

Preferably, a diagnostic test should have high sensitivity and

specificity. However, in many settings, this is not achievable. The cur-

rent first line of the treatment for NAFLD in children and adolescents

is obesity management. Clinically, a false-positive NAFLD test for a

child with overweight or obesity has no implications in terms of the

treatment offered compared with those without NAFLD.19 However,

the child would unnecessarily be considered to be in a more severe

condition, leading to overdiagnosis, which has individual conse-

quences and, thus, cannot be overlooked. Conversely, a false-negative

result may cause NAFLD to be left untreated. This increases the risk

of developing severe hepatic impairment with fibrosis in childhood or

adulthood, which may advance to hepatic cirrhosis, an increasing

cause of adult liver transplantation, or developing other overweight-

related complications because both overweight and NAFLD are part

of systemic inflammatory processes potentially affecting all organs in

the body.5,6,17,42

Analysing the coefficients in Table S1, we found that an increase

in BMI-SDS was positively associated with NAFLD in all the models.

Similarly, an increase in android-to-gynoid fat ratio showed a positive

association in all the models (although this effect was seemingly atten-

uated for girls). This likely reflects that increased android distribution

of fat, and thereby increased visceral fat, is linked to the risk of devel-

oping NAFLD in children and adolescents.30 Furthermore, the two

variables of android-regional-fat percent and trunk-regional fat per-

cent were included in models A and C. Because both variables are

closely correlated, it is difficult to conclude in which direction the pre-

diction of NAFLD is driven in our models, since they appear in pairs in

all the variants of models A and C and indicate opposite effect-

directions (negative and positive associations with the outcome,

respectively). They both contribute to the overall predictive power of

the models, and other studies have shown that they are useful alone

in predicting NAFLD.31,32

We used 1H-MRS liver fat content to diagnose NAFLD because this

method is increasingly accepted as the gold standard for the non-

invasive quantification of liver fat content.43,44 Ideally, model perfor-

mance would have been compared with a validation set with liver

biopsy data because liver biopsy remains the gold standard for detecting

histological changes in the liver, including NAFLD, especially when esti-

mating inflammation and fibrosis is needed. However, such data were

not available, and it was found unfeasible and unethical to perform liver

biopsies in a large paediatric population due to the risk of complica-

tions.16,17 Furthermore, Martino et al. compared the ability of liver

biopsy against liver 1H-MRS to diagnose NAFLD in children and adoles-

cents and found 1H-MRS to be accurate.45 Both a tissue biopsy and

liver 1H-MRS may be useful to quantify the lipid content in the liver,

although both modalities come with a risk of sampling error due to the

histological heterogeneity that often characterizes ectopic lipid accumu-

lation. Compared with liver 1H-MRS, a biopsy may not detect small dif-

ferences in fat content and is prone to inter- and intraobserver

variability.46–48 Additionally, we did not use ultrasound as a diagnostic

tool for NAFLD. This is a limitation because ultrasound may be a more

widespread modality at obesity clinics compared with the DXA scanner.

Nevertheless, ultrasound does not reflect the fat distribution, warranting

the use of DXA-scan-derived clinical parameters. Taken together, this

justifies the use of 1H-MRS to quantify liver fat content and diagnose

NAFLD in this study population.

The 14 variables used to construct the predictive models were

selected based on reviewing existing literature that linked variables with

paediatric NAFLD. The basic variables and anthropometrics were cho-

sen because they are all easily accessible to any clinician and describe

basic body composition. The DXA-derived values were subjectively cho-

sen to quantify both the mass and total fat percentage because these

add to the risk of NAFLD. Of other variables quantifying the distribution

of fat, we chose android-to-gynoid fat ratio and trunk-regional fat per-

cent because more centrally placed fat has been shown to increase the

risk of NAFLD.9,24–33 We chose to include ALT because several studies

have shown its association with NAFLD.14,18,38

This study did not include variables such as blood pressure,

homeostatic model assessment for insulin resistance (HOMA-IR), or

lipids in the models for predicting NAFLD in children and adolescents.

In line with the new MAFLD definition, these variables are interesting

in enlarged models, and not including them is a limitation. However,

we chose not to include them because this study focused on paving

the way for a simple assessment to predict NAFLD based on body

composition indices with or without the addition of ALT. Future stud-

ies might develop more sophisticated MAFLD models, including vari-

ables covering a broader spectrum of the metabolic syndrome.

Other studies using body composition indices to predict NAFLD in

children and adolescents have found similar results. Alferinik et al.31 found

that the best predictor of NAFLD was android-to-gynoid-fat-ratio. Hsing

et al.32 and Lee et al.29 found that android-regional fat percent measured

by DXA scan in children and adolescents was the best predictor. However,
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Lee et al.29 and Ramirez et al.30 found visceral adipose tissue (VAT), mea-

sured by applying the ‘GE COREscan’ protocol to the DXA scan, to be

most important. Hence, also including the variable of VAT in our analysis

would have been ideal to improve predictions for the models. However,

this software has not yet been validated for Danish children and adoles-

cents and was not available at the time of writing.

A recent study by Atabaki-Pasdar et al.49 has shown the feasibility

of using surrogate markers in a model to predict NAFLD in adults. It

used a different statistical approach, involving machine learning and a

wider variety of data, including genetic data, proteomics and a liver fat

cut-off of 5% instead of the 1.5% used in our study. The models, when

validated, had an AUC of 82% or 84% depending on whether they only

included the clinically accessible variables. Despite the differences in

study population and methodology, the performance of the predictive

models in the present study is comparable and shows the feasibility of

using surrogate markers to identify and diagnose NAFLD. When

assessing the models' ability to predict NAFLD in children and adoles-

cents, notably, the models in our study are constructed and validated on

cohorts that primarily consist of children and adolescents with over-

weight or obesity. Therefore, applying the models' prediction to individ-

uals exhibiting overweight or obesity is important.

Clinically, our models can be used in places where advanced imag-

ing tools are not available, preferably at the primary visit at an obesity

clinic, where a NALFD diagnosis using the presented models may lead

to further diagnostic tests and more focus on obesity-related compli-

cations and early obesity management initiation. In addition, this early

identification of patients, without potentially dangerous liver biopsy,

is increasingly important due to the potential for treating severe con-

sequences of NAFLD such as NASH or liver cirrhosis when future

medication becomes approved and available for children and adoles-

cents. This may avoid severe consequences such as liver transplanta-

tion, and additional non-invasive diagnostic tests may aid in selecting

patients who might be eligible to participate in the clinical trials

needed for approving such medication.50

The predictive models presented provide a low-cost, readily avail-

able and uncomplicated way of identifying individuals at risk of

NAFLD. In some cases, where other diagnostic tools may not be avail-

able, our diagnostic models have an obvious clinical benefit.

5 | CONCLUSION

NAFLD prediction models based on BMI-SDS and DXA-scan-derived

body composition indices (android-to-gynoid fat ratio, android-

regional fat percent and trunk-regional fat percent) from 767 Danish

children and adolescents exhibited the ability to estimate NAFLD in

children and adolescents with overweight or obesity.

The sensitivity and specificity of the models ranged from 38.6%

to 44.3% and 90.9% to 91.9%, respectively. The estimates improved

in the models including the biochemical marker ALT, with sensitivity

and specificity ranging from 48.3% to 51.7% and 87.6% to 90.2%,

respectively. Still, when ALT is not available for use, models solely

using BMI-SDS and DXA-scan-derived body composition indices to

predict NAFLD in a paediatric cohort appear feasible. The estimated

prevalence of NAFLD was 24.2%–35.3% when using the models on a

cohort of 2120 children and adolescents with overweight and obesity.

The presented models use diagnostic equipment that is available

at most obesity clinics, providing an easy and accessible method of

identifying individuals at risk of NAFLD. This can aid clinicians to iden-

tify individuals who would benefit from further imaging and diagnostic

procedures, which may lead to more intensive and individual obesity

management and treatment in these children and adolescents.
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