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Prion protein has two isoforms including cellular prion protein (PrPC) and scrapie prion
protein (PrPSc). PrPSc is the pathological aggregated form of prion protein and it plays an
important role in neurodegenerative diseases. PrPC is a glycosylphosphatidylinositol (GPI)-
anchored protein that can attach to a membrane. Its expression begins at embryogenesis
and reaches the highest level in adulthood. PrPC is expressed in the neurons of the
nervous system as well as other peripheral organs. Studies in recent years have disclosed
the involvement of PrPC in various aspects of cancer biology. In this review, we provide an
overview of the current understanding of the roles of PrPC in proliferation, cell survival,
invasion/metastasis, and stem cells of cancer cells, as well as its role as a potential
therapeutic target.
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INTRODUCTION

Prion protein (PrP) is expressed throughout the whole body. It has two isoforms, cellular prion
protein (PrPC) and its pathogenic form-scrapie prion protein (PrPSc) (1, 2). PrPSc is well known for
its ability to cause a series of neurodegenerative diseases in human and other mammals (1, 3). It
results from post-translational conversion of the glycosylphosphatidylinositol (GPI)-anchored PrPC

(4, 5). PrPC, as a scaffold on the cell surface, recruits different partners to execute its functions being
involved in signaling pathways (6). The biosynthetic pathway of PrPC is similar to that of other
membrane-attached and secreted proteins (5) (Figure 1). It is synthesized in endoplasmic reticulum
(ER)-attached ribosomes followed by its import into ER where it is glycosylated and modified by
GPI anchor before it is transported into Golgi for further modification. Then PrPC is transported to
the cell surface where it can be internalized through endocytic pathway (7). The internalized PrPC

can be transported into the lysosome for degradation or be enclosed in exosomes and secreted
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outside the cells (7). PrPC is mainly attached to lipid rafts on the
cell surface via its C-terminal GPI anchor (8, 9). It is also located
in the cytosol and the nucleus (10–12). Interestingly, PrPC was
found in the exosomes secreted by cancer cells (13).

Cancer is the second leading cause of death worldwide.
Studies in recent years show that PrPC is involved in various
aspects of cancer biology such as cell proliferation, metastasis,
cell death, drug resistance and cancer stem cells (14–21). In this
review, we summarize the current progress in these aspects.
PrPC PROMOTES CANCER CELL
PROLIFERATION

PrPC can promote proliferation in cancer cells (22). Liang et al.
demonstrated that overexpression of PrPC promoted cell
proliferation through activation of the phosphatidylinositide 3-
kinase (PI3K) pathway and promotion of the G1/S phase
transition by upregulating cyclin D1, in gastric cancer cells
(22). PrPC is also involved in G1 to S phase transition in renal
adenocarcinoma ACHN and colon adenocarcinoma LS 174T
cells (23). Knockdown of PrPC inhibited cell proliferation and
amplified the inhibitory effect of fucoidan on cell proliferation by
Frontiers in Oncology | www.frontiersin.org 2
suppressing expression of cyclins and cyclin-dependent kinase
(CDK), in HT29 colon cancer cells (24). Interaction of PrPC with
the co-chaperone Hsp70/90 organizing protein (HOP) promoted
proliferation via activating PI3K and extracellular-signal-
regulated kinase (ERK1/2) pathways in glioblastomas (GBM)
cells (25). Furthermore, HOP-PrPC interaction promoted
proliferation of glioblastoma stem-like cells and the decrease
expression of PrPC and HOP may work as an effective therapy
for GBM in the future (26). Warburg effect refers to the event
that cancer cells preferentially use aerobic glycolysis to generate
energy and reducing power for their biosynthesis, cell survival
and proliferation (27). Overexpression of PrPC mediated
Warburg effect by increasing glucose transporter 1 (Glut1)
expression which promotes glucose uptake through epigenetic
activation of Fyn-HIF-2a-Glut1 pathway in colorectal cancer
cells (28). PrPC can also increase cell proliferation by interacting
with 37/67 kDa non-integrin laminin receptor (LR/37/67 kDa)
and activating downstream ERK1/2 and PI3K/protein kinase B
(AKT) signaling pathways in schwannoma cells (29). It
promoted proliferation by interacting with Notch1 in
pancreatic ductal adenocarcinoma (PDAC) (30). A variant of
PrPC with one octapeptide repeat deletion (1-OPRD) is widely
present in gastric cancer cell lines and gastric cancer tissues (31).
FIGURE 1 | Cellular trafficking pathway of PrPC. PrPC (green dot) is synthesized in ribosome attached to ER (endoplasmic reticulum). PrPC is imported to ER where it
will be glycosylated and modified by GPI anchor before it is transported into Golgi apparatus for further modification. Mature PrPC is trafficked to plasma membrane and
located there by its GPI anchor. Some mature PrPC could be endocytosed for degradation in the lysosome or for being contained in exosomes and secreted outside the
cell. PrPC, Cellular prion protein; GPI, glycosylphosphatidylinositol.
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Overexpression of 1-OPRD could promote the proliferation of
gastric cancer cells through transcriptional activation of cyclin
D3, which facilitated the G1-/S-phase transition in cell cycle (32).
PrPC PROMOTES CANCER CELL
INVASION/METASTASIS

Metastasis leads to more than 90% of cancer-caused death, but its
underlying mechanisms still remain poorly understood (33).
Christine L et al. divided the process of metastasis into two
phases: the first phase is physical translocation of cancer cell from
a primary tumor to other distant tissues, and the second phase is
colonization of metastatic cancer cells in their new
microenvironment (33). EMT refers to epithelial-to-mesenchymal
transition (34). Many in vitro models show that EMT act as a key
process during cancer metastasis (35, 36). Transcription of Prnp
(the gene encoding PrP) considerably increased during EMT (37).
Upregulation of PrPC and dedifferentiation of EMT-like cells were
observed in invasive colorectal cancer cells (CRC) (18, 38).
Overexpression of PrPC by transfecting pCDNA3.0-Prnp in
SW480 cells led to EMT whereas, knockdown of Prnp in
mesenchymal-like LIM2405 cells caused MET (mesenchymal-to-
epithelial transition) (18). The mechanisms underlying EMT
enhancement by PrPC are largely unclear.

SATB1 (special AT-rich sequence-binding proteins 1) is a
nuclear matrix associated protein. It can induce tumor metastasis
by altering chromatin structure and upregulating metastasis-
associated genes while downregulating tumour-suppressor genes
(39, 40). Knockdown of Prnp resulted in loss of SATB1
expression and reduction of metastatic capacity in CRC with
Fyn and specificity protein 1(SP1) being involved in this process,
indicating that PrPC may promote tumor metastasis via
upregulating the PrPC-Fyn-SP1-SATB1 axis (18). PrPC and g-
Syn are overexpressed in CRC (41, 42). They may be involved in
colorectal cancer cell metastasis by inducing an endothelial
proliferation to differentiation switch (42, 43).

PrPC is highly expressed in metastatic gastric cancer cells and
it may promote invasion and metastasis through activation of the
mitogen-activated protein kinases (MEK)/ERK pathway and
consequent transactivation of matrix metalloproteinase-11
(MMP11) (44). MMP11 can promote matrix degradation,
inflammation and tissue remodeling (20, 44). Its N-terminal
fragment is essential for transducing invasion-promoting signal
of PrPC (20, 44). Tissue Inhibitor of Metalloproteinase (TIMP) is
endogenous inhibi tor for membrane type1-matr ix
metalloproteinase (MT1-MMP). The binding of TIMP to the
GPI anchor of the prion protein generated a membrane-tethered,
high-affinity designer TIMP (named “T1Pr aMT1” hereafter)
which is expressed on the cell surface and co-localized with
cellular MTI-MMP (45). Therefore, GPI anchor of PrPC might
be used as a potential therapy for renal carcinoma (45).

It was reported that PrPC promoted EMT through the
activation of the ERK2/mitogen-activated protein kinase
(MAPK1) pathway in colorectal cancer stem cells (46). This is
consistent with the notion that the appearance of the CSC
Frontiers in Oncology | www.frontiersin.org 3
(cancer stem cell) phenotype and EMT are intimately
connected (19). Notch1 is involved in CSCs (47). It is a
downstream effector of PrPC both of which colocalizes on the
cell membrane and form an interaction network to promote
pancreatic cancer cell metastasis (30). Co-treatment with
5-fluorouracil (5-FU) and melatonin could inhibit colon CSC
marker octamer-binding transcription factor 4 (Oct4) via
downregulation of PrPC-Oct4 pathways (48). Tumor-mediated
angiogenesis will be suppressed in this process which suggests
that cancer metastasis will be inhibited (48). PrPC-containing
exosomes secreted by CRC could also promote tumor metastasis
by increasing the permeability of endothelial cells and the
secretion of angiogenic factors (49). This study also
demonstrated that the combination of anti-PrPC and 5-FU
downregulated tumor progression (49).

The immune system is one of the key pathways to control
cancer development and metastasis. Regulatory T cells (Tregs),
which have immunosuppressive activity (50), are one of the main
targets of cancer immunotherapy (51). By constructing a lung
metastatic model of melanoma in Prnp0/0 and Tga20 mice, it
was demonstrated that the increased expression of PrPC induces
the development of Tregs by upregulating transforming growth
factor-beta (TGF-b) and programmed death ligand-1(PD-L1),
thereby promoting tumor progression (52).

Many studies have demonstrated that PrPC expression
promotes cancer cell metastasis (Figure 2). However, one
study showed that knockout of Prnp (Prnp0/0) in mesenchymal
embryonic mouse cells transformed by Ras/Myc led to more
incidence of lung metastasis due to increased expression of aVb3-
integrin (53). This suggest that more studies are required to
clarify the roles of PrPC in cancer metastasis.
PrPC PROMOTES CANCER CELL
DRUG RESISTANCE

One major challenge for cancer treatment is drug resistance.
Various mechanisms can contribute to cancer drug resistance
(54). The most studied mechanisms involving the roles of PrPC

in cancer drug resistance include multi-drug resistance (MDR)
and inhibition of cell death. Multi-drug resistance (MDR) refers
to the ability of cancer cells to survive against a wide range of
anti-cancer drugs (55). Cell death can be classified into three
main types including apoptosis (Type I programmed cell death),
autophagic cell death (Type II programmed cell death) and
necrosis (56). Apoptosis is characterized by cell shrinkage,
membrane blebbing, chromatin condensation, DNA
fragmentation and caspase activation. Autophagic cell death is
induced by the over-activation of autophagy that is an
intracellular lysosomal degradation process. Necrosis is a non-
programmed cell death. It is caused by sudden results to the cells
and is characterized by breakage of plasma membrane followed
by cytoplasmic leakage.

Upregulation of PrPC can lead to drug resistance in
different types of cancers cells (57–59). In colorectal cancer
September 2021 | Volume 11 | Article 742949
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cells, PrPC is involved in 5-FU resistance by increasing cell
survival and proliferation via activating PI3K-Akt signaling
pathway and the expression of cell cycle-associated proteins
(59). PrPC overexpression led to resistance of colorectal cancer
LS174T cells to doxorubicin-induced apoptosis by upregulation
of the inhibitors of apoptosis proteins (IAPs) (60). Upregulation
of PrPC leads to increased superoxide dismutase and catalase
activities and decreased endoplasmic reticulum stress and
apoptosis, which results in oxaliplatin resistance in colorectal
cancer cells (61, 62). In gastric cancer cells, PrPC can promote
drug resistance by different mechanisms. PrPC coexists with
MGr1-Antigen/37 kDa laminin receptor precursor (MGr1-Ag/
37LRP) to promote MDR in gastric cancer cells by inhibiting
apoptosis via activation of the PI3K/AKT signaling pathway
(63). Octarepeat peptides of PrP may be involved in gastric
cancer MDR by increasing the activities of antioxidant enzymes
(64). PrPC can promote MDR by upregulating the multidrug
resistance protein (P-gp) and suppressing apoptosis in gastric
and breast cancer cells (65, 66). Overexpression of PrPC

promotes resistance to TNF-a-induced apoptosis by inhibiting
Frontiers in Oncology | www.frontiersin.org 4
Bcl-2-associated X protein (Bax) expression in renal
adenocarcinoma ACHN cells (23).

PrPC can be found on the cell surface by attaching to the cell
membrane and outside the cells being contained in exosomes
which are secreted from the cells (67, 68). The secreted PrPC in
tumor microenvironment binds to doxorubicin to prevent it
from entering the nucleus and intercalating into DNA to induce
cell death; and breast cancer patients with high levels of serum
PrPC are at high risk of relapse following doxorubicin treatment
(13). PrP synthetic peptide (amino acid residues 105 - 120 of the
human prion protein) can protect schwannoma cells from H2O2-
mediated cell death (29).

PrPC has been shown to protect cancer cells from apoptosis
and autophagic cell death (69). PrPC inhibits apoptosis in
neurons and in cancer cells (70). PrPC upregulation inhibits
apoptosis induced by Bax expression, serum starvation and anti-
cancer drug treatments (57, 70, 71). PrPC can bind to the C-
terminus of the anti-apoptotic protein Bcl-2 to form a dimer
inhibiting apoptosis (72). When PrPC is upregulated, Bcl-2/Bax
ratio increases, resulting in anti-apoptosis in breast carcinoma
MCF-7 cells (71). Tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) is a ligand for death receptors which
can induce cancer cell apoptosis (73). Downregulation of PrPC

sensitizes adriamycin-resistant human breast cancer cells to
TRAIL-induced apoptosis by increasing Bax/Bcl-2 ratio (58).
PrPC inhibited TRAIL-induced apoptosis under hypoxia in
human colon carcinoma cells (74). Akt was activated by PrPC

to prevent TRAIL-induced apoptosis (75, 76). PrPC also
activated PI3K/Akt signaling pathway contributing to its anti-
Bax function by preventing the pro-apoptotic conformational
changes of Bax at the early step of Bax activation (71). Moreover,
PrPC protected lung and pancreatic cancer cells from apoptosis
through downregulation of unfolded protein response
(UPR) (77).

Autophagy is an evolutionarily conserved catabolic process in
eukaryotic cells, in which unnecessary or dysfunctional cytosolic
components are degraded and recycled through lysosomes (78).
During autophagy (macroautophagy), cytosolic components
(cargos) are surrounded by a phagophore which will expands
and encloses to form the characteristic double-membraned
structure autophagosome. Then, autophagosome will fuse with
the lysosome to form autolysosome where cargos are degraded to
generate small molecules that can be used for biosynthesis and
energy production for cell survival, under stress conditions such
as starvation (79). However, when autophagy is over-enhanced,
it can induce cell death (autophagic cell death/autophagy-
induced cell death) (79). Barbieri et al. demonstrated for the
first time that PrPC can modulate autophagic cell death in glial
tumor cells (80). They demonstrated that PrPC silencing resulted
in inhibition of Mammalian target of rapamycin (mTOR) kinase
activity in T98G glioma cells, promoting autophagy leading to
autophagic cell death (80). Furthermore, PrPC inhibited
autophagy by activating the antioxidant enzyme SOD (81).
Since autophagy is mainly a pro-cell survival mechanism, it is
expected that PrPC may antagonize drug resistance by inhibiting
autophagy in cancer cells.
FIGURE 2 | PrPC promotes cancer cell metastasis. PrPC could promote cancer
cell metastasis through activation of the MEK/ERK pathway and consequent
transactivation of MMP11. PrPC promotes EMT through the activation of the
ERK2/MAPK1 pathway during cancer metastasis. PrPC could promote tumor
metastasis via up-regulating the PrPC-Fyn-SP1-SATB1 axis. Notch1 and PrPC

could form an interaction network to promote cancer cell metastasis. ERK,
Extracellular-signal-regulated kinase; MEK, Mitogen-activated protein kinases;
MMP11, Matrix metalloproteinase-11; MAPK, Mitogen-activated protein kinase;
EMT, Epithelial-mesenchymal transition; SATB1, Special AT-rich sequence-binding
proteins 1; SP1, Specificity protein 1.
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One study showed that tumor resistance to radiotherapy was
also associated with the increased PrPC (82). In neuroblastoma,
breast, and colorectal cancer cell lines, ionizing radiation (IR) can
increase the expression of PrPC by activating ATM-TAK1-PrPC

pathway, thereby leading to the resistance to radiotherapy of tumor
cells (82). Taken together, PrPC can modulate various signaling
pathways contributing to cancer drug resistance (Figure 3).

Although the overexpression of PrPC in cancer cells results
in therapy-resistance, researchers have taken advantage of
this characteristic to synthesize PrPC-Apt-functionalized
doxorubicin-oligomer-AuNPs (PrPC-AptDOa) which could
target PrPC-overexpressed CRC (83). PrPC-AptDOa inhibited
CRCs proliferation and induced apoptosis more significantly than
freeDox at the cellular level (83).However, PrPC is also expressed in
normal cells, such as neurons and neuroglia. Therefore, the
challenge for cancer treatment is to specifically target PrPC in
cancer cells. In addition, further studies of PrPC-AptDOa should
be conducted in an animal model and clinical trials to clarify its
therapeutic effects and side effects on individuals.
PrPC PROMOTES CANCER STEM CELL
DEVELOPMENT

Cancer stem cells (CSCs) are a small subpopulation of cancer
cells with the capacities of self-renewal, differentiation and
Frontiers in Oncology | www.frontiersin.org 5
tumorigenicity (84). PrPC is engaged in different types of stem
cells, such as hematopoietic stem cells (HSCs), gland stem cells,
bone marrow-derived human mesenchymal stem cells (MSCs)
and human embryonic stem(ES) cells (85–88). Studies have
indicated that PrPC is also involved in CSCs. PrPC protected
Oct4, a marker of colon cancer stem cells, from degradation by
inducing heat shock protein 1 like (HSPA1L) when in response
to co‐treatment with 5‐FU and melatonin (48). One study
indicated that PrPC was highly expressed in consensus
molecular subgroup (CMS4), a subtype of CRC with higher
malignancy, and affected the prognosis of CRC as an upstream
molecule in the PrPC-ILK-IDO1 axis (89). PrPC promoted EMT
of colorectal cancer stem cells via activation of the ERK2
(MAPK1) pathway to increase cell metastasis (46). CD44 is a
CSC marker and critical regulator of cancer stemness (90). PrPC

is co-expressed with CD44 in colorectal CSCs (46). PrPC

and Hsp70/90 organizing protein (HOP) acted together to
regulate self-renewal, proliferation and migration in
glioblastoma (GBM) stem-like cells (26). Downregulation of
PrPC decreased stem cell-like properties of human GBM CSCs
(91). Downregulation of PrPC in models of prion disease through
immune, genetic and other mechanisms has achieved some
progress. Application of anti-PrP antibodies have been
proposed as a promising treatment many decades ago (92, 93).
A recent study reported that transgenic mice expressing elk PrP
(TgElk) benefited from active PrP vaccination (94). Minikel et al.
FIGURE 3 | PrPC promotes cancer cell drug resistance. PrPC can promote cancer cell drug resistance by promoting cell proliferation and inhibiting apoptosis. PrPC

can also suppress autophagy inhibiting or promoting drug resistance. HOP, Hsp70/90 organizing protein; IAPs, Inhibitors of apoptosis proteins; Glut1, Glucose
transporter 1; PI3K, Phosphatidylinositide 3-kinase; AKT, Protein kinase B; Bax, Bcl-2-associated X protein; UPR, Unfolded protein response; SOD, Superoxide
dismutase; P-gp, P-glycoprotein.
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demonstrated that PrP-lowering antisense oligonucleotides
(ASOs) worked via an RNAase-H dependent mechanism and
has certain therapeutic effect on prion-infected mice (95).
Minikel et al. also proposed that loss-of-function variant of
Prnp could be potential targets for prion disease inhibitory
drugs (96). The application of these PrPC-lowering approaches
may provide novel cancer therapies by targeting CSCs.
CONCLUSION

Prion protein (PrP) is expressed in nervous system and other
organs (97). There are two forms of PrP, including normal PrPC

and disease causing PrPSc. PrPC misfolding and aggregation can
cause fatal neurodegenerative conditions (98). Studies in recent
years show that it also plays a role in cancer. PrPC can stimulate
cancer progression by promoting cancer cell proliferation,
invasion/metastasis, drug resistance, and cancer stem cell
Frontiers in Oncology | www.frontiersin.org 6
development. Therefore, targeting PrPC is a novel approach for
cancer treatment.
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