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Abstract

Neuromuscular magnetic stimulation is a promising tool in neurorehabilitation due to its deeper 

penetration, notably lower distress, and respectable force levels compared to surface electrical 

stimulation. However, this method faces great challenges from a technological perspective. The 

systematic design of better equipment and the incorporation into modern training setups requires 

better understanding of the mechanisms and predictive quantitative models of the recruited forces. 

This article proposes a model for simulating the force recruitment in isometric muscle stimulation 

of the thigh extensors based on previous theoretical and experimental findings. The model couples 

a 3D field model for the physics with a parametric recruitment model. This parametric recruitment 

model is identified with a mixed-effects design to learn the most likely model based on available 

experimental data with a wide range of field conditions. This approach intentionally keeps the 

model as mathematically simple and statistically parsimonious as possible in order to avoid over-

fitting. The work demonstrates that the force recruitment particularly depends on the effective, 

i.e., fiber-related cross section of the muscles, and that the local median electric field threshold 

amounts to about 65 V/m, which agrees well with values for magnetic stimulation in the brain. 

The coupled model is able to accurately predict key phenomena observed so far, such as a 

threshold shift for different distances between coil and body, the different recruiting performance 

of various coils with available measurement data in the literature, and the saturation behavior 

with its onset amplitude. The presented recruitment model could also be readily incorporated 

into dynamic models for biomechanics as soon as sufficient experimental data are available for 

calibration.
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I. Introduction

Magnetic stimulation is a method for activating neurons noninvasively through 

electromagnetic induction with strong and brief magnetic pulses. At present, magnetic 

stimulation focuses nearly exclusively on the brain [1]. Administered transcranially, 

magnetic stimulation can evoke direct effects, such as motor-evoked potentials [2], [3] or 

phosphenes [4], while certain pulse rhythms or patterns can also modulate neural circuits 

and shift their excitability with respect to endogenous signals [5]. However, the development 

of magnetic stimulation has been strongly related to the periphery; even the first successful 

experiments were performed on lower motor fibers and not the brain [6]. Long straight 

axons have been used for studying the basics of excitation since then [7]–[11].

In neuromuscular applications, magnetic stimulation can serve as an almost pain-free 

alternative to transcutaneous electrical stimulation [12]–[26]. Classical rehabilitation can be 

supported by evoking muscle contraction or performing more complex tasks, such as cycling 

[27]. In rehabilitation, neuromuscular stimulation serves to counteract muscle atrophy and to 

support relearning of movement sequences. Furthermore, orthodromic signals traveling from 

the periphery back to the central nervous system seem to trigger supportive neuroplastic 

effects [29].

Particularly the earlier neuromuscular magnetic stimulation approaches stimulated the 

major nerve trunks before these enter the muscle in the hope of achieving strong muscle 

contraction [16], [17], [20]. Researchers optimized coils to increase targeting and the 

recruitable force [21]. If targeted well, the evoked forces can be reasonable, but the handling 

is substantially more complicated than in electrical stimulation and requires experienced 

operators as the operator has to locate the nerve trunk and place a focal coil very accurately. 

Targeting and coil placement are further hampered by the contraction of the muscles 

and associated shifts in the anatomy. In any case, this method easily reaches rather high 

stimulation amplitudes for effective contraction (e.g., 70% to 100%, often on machines 

with already increased base power level), and still only a small portion of subjects or 

patients reach their maximum force levels [23], [24]. These high stimulation amplitudes can 

cause distress despite the better tolerability than electrical stimulation and necessarily cause 

extreme heating problems in the coils and pulse sources when used for training purposes 

[28].

Thus, recent research and clinical efforts prefer the stimulation of the intramuscular axon 

tree instead, where the procedure is more practical [12], [18], [19], [25]. Whereas the 

activation used to be weaker initially, appropriate coil designs could improve recruitment 

and demonstrate that better technologies can overcome such weakness and surpass electrical 

stimulation [13].
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However, the design of novel technology for neuromuscular stimulation, including better 

coil geometries, requires a quantitative understanding of the recruitment. Currently, there 

is a major knowledge gap between the physics and the neurophysiology of neuromuscular 

stimulation. Consequently, it is also not clear which physical quantity is responsible for 

the neuromuscular activation. Thus, also the optimization of coils is rather ad-hoc. The 

technology for neuromuscular stimulation is therefore only improving slowly and falling 

behind the rapid developments in transcranial magnetic stimulation [30], [31].

For the brain, in contrast, recruitment of magnetic and electrical stimulation has been studied 

intensively [32]–[34] so that both experimental data sets and realistic recruitment models 

are available [35], [36]. Furthermore, such measurements allowed matching models with 

experimental data so that the dominant physical quantities could be identified [37]–[39]. 

Although the physical and neurophysiological conditions in the brain are obviously rather 

different to a peripheral muscle, the work on brain stimulation can still serve for inspiration.

Recent three-dimensional field modeling techniques and experiments provide the basis to 

study the activation problem quantitatively for the quadriceps femoris muscle and identify 

the relevant relationships between the field characteristics of the stimulation coil and 

the muscle activation [41], [43]. The experimental study tested a variety of coils that 

generate widely different field conditions in the thigh and generated further variations 

through different coil–leg distances with flexible spacers. The wide range of field conditions 

generated by the combination of both allowed to rule out that the gradient of the electric 

field plays a substantial role in the stimulation of the intramuscular axon tree, which 

pervades the muscle densely with fine branchlets, contacts each individual muscle fiber, 

winding with rather small curvature around them, and forms a high number of terminals.

However, all available analyses in the literature are mere correlation studies, which neither 

estimate muscle recruitment nor force generation. The available experimental data in the 

literature, on the other hand, form a sufficiently large data source with enough parameter 

variation to support the design of a digital twin. The combination of a realistic 3D anatomy 

model with a parametric recruitment model that estimates the force from anatomical (muscle 

and fiber anatomy) and physical (induced electric field distribution) output of the 3D 

model promises to close the gap between the physics and the force response. The data 

furthermore can serve for the calibration of free parameters to close the present gaps in the 

understanding.

The presented model estimates the recruitment behavior, which can be observed in 

isometric stimulation experiments. Appropriate mechanical descriptions are well known in 

the literature. Riener et al., for instance, propose a sophisticated implementation of Hill 

dynamics together with biomechanics and a first-order fatigue/recovery description [44]. 

However, the neuromuscular recruitment in such models is usually represented by a sigmoid 

fitting curve. This work will demonstrate that a realistic recruitment by neuromuscular 

magnetic stimulation can be estimated directly based on the field conditions to replace 

ad-hoc sigmoidal fitting curves. We will furthermore show that such a model (described in 

Section II) with as little as one individual parameter—individual maximum force per muscle 

cross-section while an optional second parameter can compensate some apparent position 
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offsets of one specific coil, APL, in the the experimental data—allows matching data to 

subjects from previous experiments in the literature (see Section III). The other parameter

—specifically the threshold electric field magnitude—could be considered rather constant 

among the subjects and might reflect the typical range of all healthy subjects.

II. Model

A. Anatomy

A high-resolution model of the human thigh was prepared based on the visible-human data 

set of the US NIH [45]. The data include 70 mm color photographs of cryosections with 1 

mm spacing in z-direction, which provide substantially higher resolution than tomography 

scans and allow a more detailed identification of tissues and particularly boundaries in 

between. Similar to other models in magnetic stimulation [46]–[48], the geometry consists 

of macroscopic regions with dedicated electrical properties and neglects microscopic 

structures, such as cell membranes. This common approach assures computability. The 

different classes of segmented tissue elements types include skin, fat, eleven muscles or 

muscle groups, the femur, blood vessels, and major extramuscular nerve branches, although 

the latter are not the stimulation target themselves.

The data were segmented with standard image processing methods in Matlab (The 

Mathworks, Natick (MA), USA). The femur and the muscles were identified by 

simultaneous three-channel analysis of the color data and segmented by thresholding 

with a manually fine-tuned tolerance band which was chosen accordingly. Furthermore, 

visible structures that delimit and adjoin the muscular tissue, such as tendons, supported 

the separation of different muscles along their boundaries and a reconstruction of their 

surface. The separation of the fat tissue was performed in two stages. A basic frame 

was obtained from thresholding. As is common in image segmentation, the threshold was 

determined in the corresponding histograms as a compromise between wrongly identifying 

other tissue types (false positive) and forming holes due to unclassified regions (false 

negative). Afterwards, the data set was cleaned by eroding and reconstructing the mask in 

order to eliminate image noise and sharp edges.

The data did not exhibit enough contrast at its boundaries for extracting the skin geometry 

from the images because the embedding gelatin diffused into the skin. As a remedy, this 

cover was generated artificially by spanning a thin layer of tissue on top of the virtual 

body which follows the shape of the surface (see Fig. 1 in the middle): The adipose 

layer was dilated with a three-dimensional Gaussian filter; thresholding that data set and 

subtracting all other segmented tissue types as well as still unclassified interior parts formed 

an approximately 2 mm surface layer.

The basis for the blood vessels was prepared by subtracting all already classified regions 

from the original raw data. From the remaining tissue, small not segmented isles which did 

not belong to any blood vessels were eliminated by a region-growing algorithm to identify 

such geometrically isolated subspaces and subsequent removal of unconnected spots. 

Remaining artifacts and noise were cancelled by three-channel thresholding. Interrupted 

connections of the grid formed by the vessels were reconstructed by cubic interpolation 
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between the unintentionally separated branches. The major nerve branches (femoral and 

sciatic nerves as well as the tibial offsprings) were segmented manually from the imaging 

data.

The boundaries of the individual regions were smoothened with a three-dimensional 

Gaussian filter in order to suppress unrealistic artifacts and moiré effects. Remaining gaps 

were filled with the tissue type of the nearest neighbor. For the simulations, likewise 

performed in Matlab, only half of the segmented geometry, namely the right thigh, was 

meshed. The model is depicted in Figure 1 with its various components.

B. Coils

We modelled four different coil types, namely a standard circular coil (RND15), the 

racetrack coil RT-120 (MagVenture, Copenhagen, Denmark), the saddle-shaped design APL 

from [13], [41], and a figure-of-eight coil (MC-B70, MagVenture, Copenhagen, Denmark). 

The former three devices are taken from the experimental study of [41]. The experimental 

performance of the figure-of-eight coil for magnetic stimulation of the intramuscular nerve 

structures is not represented in the literature, but was added to predict its force potential 

using the model calibration to the other coils. Furthermore, it generates falsifiable force 

estimates that can be tested in later experiments to stress-test the model.

The wiring of the coils was extracted from X-ray images and modeled with each individual 

turn [49], [50]. A simplification of the coils to single-turn representations as common in the 

literature was avoided here (see Fig. 5).

The smaller coils (RND15, RT-120, and MC-B70) were placed with their cross-hairs at the 

very same location in the center of the proximal third of the right thigh, which is known to 

evoke the strongest responses in neuromuscular stimulation experiments for the quadriceps 

muscle group [13]. The larger APL coil covers almost the full thigh. The upper edge of the 

coil ends at the groin. All coils are laterally rotated by 5° in outward direction, i.e., to the 

right for the right thigh in the model. The positions are visualized in Fig. 5. We additionally 

modelled the coils with data with various spacers between coil and thigh in the previous 

comparative study in lifted positions by 5 mm, 10 mm, and 15 mm perpendicularly to the 

surface.

C. Physics

Due to the low back-action of the induced currents in the tissue, the coils were implemented 

as unmeshed wires, which determined the magnetic vector potential A through the Biot–

Savart forward solution [51]. The segmented anatomy was meshed with hexahedra and 

solved with a quasi-static finite volume method (FVM) with more than 70 million volume 

cells. The FVM enables a high degree of stability and used an established decoupled 

formulation for stable simulation of eddy currents as detailed in the appendix [28], [41]. 

The electromagnetic induction was solved quasistatically for the sinusoidal current pulse 

of 5 kHz of the modeled device. The electrical characteristics were assigned according to 

established data in the literature [52] for the relevant frequency range as reported in Table I.
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D. Force Recruitment Model

To this date, 3D models have concentrated on the physical side and studied the distribution 

of the electric field because the background of eddy currents is well defined and tangible 

using Maxwell’s equations. However, for the initially requested reproduction of the 

experimentally observed effects, a physiologic description is essential. The presented model 

translates the physical data from the eddy-current simulation into experimentally accessible 

quantities, namely the isometric force level.

The muscle recruitment and the force generation with their particular features are to a large 

share sourced and caused by the physics in combination with the muscle anatomy. The 

physics model provides the local electric fields in the individual muscles and based on those 

the effective activated muscle cross section or volume as described below, which in turn feed 

a parametric mixed model (Fig. 2). The parametric mixed model contains all open degrees of 

freedom and thus calibratable components of the model, whereas the remaining parts of the 

recruitment follow from anatomy, physiology, and physics and are implemented as described 

below. The parameters were subsequently calibrated to experimental data from the literature 

[41].

We set up several parametric models with different numbers of parameters to compare 

the two plausible hypotheses for force recruitment and compensation of individuality; we 

identified the best-suiting model through Schwarz’ Bayesian information criterion, which 

serves as an analytical biascompensated estimate of the Kullback–Leibler divergence to 

trade off high-variance and high-variability in the models and identify goodness of fit [53]. 

The models are summarized in Table II.

The activation of the intramuscular nerve tree is believed to occur in the fine structure of 

the axon terminals, close to the neuromuscular junctions [41], [54]. For the physiologic 

approximation here, a microscopic threshold is defined for every junction, which in turn 

also provides the threshold of the related muscle fiber. Previous research demonstrated 

that the primary gradient of the electric field is not of greater relevance for explaining the 

force generation in neuromuscular magnetic stimulation, whereas the electric field strength 

magnitude of the various coils correlates with the response [41], [43]. The surface effects 

at the axon membrane required for an excitation are very effectively generated even in 

homogeneous fields due to the fine fiber structure with its small curvature radii. This 

phenomenon appears to reflect the situation in the cerebral cortex, where the activation 

is also triggered by the field strength rather than by any gradient thereof [55]–[57]. 

Consequently, we defined a local threshold condition at position r within each muscle, 

which is fulfilled as soon as the norm of the induced electric field E exceeds a certain 

minimum value Eth, ∥E(r)∥ > Eth. The free threshold parameter value (see Table II) 

determines the x-axis of the recruitment curve and the onset of the saturation at higher 

stimulation amplitudes.

The recruitable force in turn was treated as an individual characteristic. We set up two 

fundamental models (Models 1 vs. 2 in Table II), one volume-related, one cross-section-

area-related as follows.
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Most obvious and plausible might be estimating the force based on the activated muscle 

volume, which was used as one model alternative (Model 2). Due to the fibrous structure 

of muscles, however, the force generation is not a volume-related issue, nor does the 

innervation support such an approach [58]. Instead, the number of parallel myofibrils 

determines the peak force during the onset of a contraction in time when no fatigue effects 

(neither short-term nor endurance effects) are notable, whereas series muscle fibers is widely 

irrelevant for the tendon force [59]–[61]. This number is approximately proportional to the 

activated cross-section area perpendicular to the fiber pennation [62], [63].

For extracting the activated share of the physiologic cross-section area of a specific muscle 

which fulfills the threshold condition acts as an approximation for the force, accordingly. 

Each muscle of the quadriceps was handled separately in the model. The corresponding 

cross sections in each muscle were tilted in order to reflect the pennation axis. For the force 

evaluation, that cross section was taken into account which led to the highest supra-threshold 

area. The used individual pennation angles with respect to the femur axis were 10° for the m. 

rectus femoris, 8° for the m. vastus lateralis, −8° for the m. vastus intermedius, and 15° for 

the m. vastus medialis.

The maximum force level per physiologic muscle cross section is known to be highly 

individual due to the dependence on the training state, the blood circulation, micro-

physiology, the fiber-type composition, and the actual metabolistic conditions [63]. For both 

fundamental model designs, we assumed that the maximum force per area is similar for all 

members of the relevant extensor muscle group following earlier observations and to keep 

the model parsimonious and therefore assigned only one parameter for muscles of the group 

(fi or υi) [63].

Thus, we set up two parametric mixed model alternatives, each with several refinement 

levels to be calibrated (see Table II): A first model estimated the isometric force recruitment 

from the physics model based on the volume activated extensor muscles, i.e., with supra-

threshold electric field. The electrical field threshold was a group parameter for all subjects, 

the force to volume relation, which also determines the maximum recruitable force, 

individual (υi for individual i). As the curvature of the APL coil was too small for some 

subjects, particularly when further rubber sheet spacers were inserted, a refinement allowed 

for an individual shift of the APL distance (APL0,i). The second fundamental model used 

the share of the activated pennation-corrected muscle cross-section (Aeff). In its simplest 

form, the threshold field Eth was a group parameter (i.e., assumed to be a relatively constant 

figure, averaged out across many axon branchlets and terminals) and the force per area fi an 

individual parameter. Similarly, in another refinement, the APL coil was given freedom for 

individual distance shifts.

The force recruitment models were coupled to the 3D physics model through the electric 

field and the muscle anatomy (see Fig. 2). Each model was calibrated to experimental data 

from the literature through mixed-effects maximum likelihood regression [41]. Regression 

was performed through maximization of the logarithmic likelihood of the forward model 

(L(F = (Fij)ij ∣ M Eth, fi, vi, APL0, i ), x = (xij) ij)) generating the measured force responses 

for every sample of each subject (force Fij in response to stimulus strength xij) by 
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varying the parameters (Eth, fi, υi, APL0,i). As the experimental data set did not contain 

measurements of all coils in every subject, the regression routine was designed to allow 

for missing data but combined regression of the entire set at once with shared and 

individual parameters and one overall likelihood of a model; blanks due to missing data 

did accordingly not contribute to the likelihood but is reflected in the sample count. We 

evaluated Schwarz Bayesian information to serve as a model identification criterion that 

accounts for the different degrees of freedom of the models, particularly in the presence of 

group and individual parameters.

III. Results

Whereas the forward model is relatively fast, the calibration to the data as it is based 

on iterative optimization of the log. likelihood was computationally more demanding and 

needed more than 7,000 CPU-hours on a simulation server with 24 Xeon Cores and 256 GB 

memory for completion.

The best fitting description used threshold electric field, area-related force, and shift of the 

APL coil as parameters (Model 1B, log likelihood L = −15450); the model identification 

with Schwarz’ Bayesian information likewise selected this model (SBIC = 30919). Second 

was the model with threshold electric field and area-related force only (Model 1A, L = 

−15675, SBIC = 31363); with threshold electric field, volume-related force, and shift of the 

APL coil (Model 2B, L = −15683, SBIC = 31385); as well as the one with threshold electric 

field and volume-related force (Model 2A, L = −16261, SBIC = 32536).

The electric field threshold across the all data amounted to Eth = (70.5 ± 21.6) V/m. 

However, the large spread was caused by only one outlier (see Subject S09 in Fig. 3). This 

outlier reached 151 V/m, which may be the result of a bad fit of the curved APL coil 

during the experiments used here and a large effective coil–muscle distance due to a thick 

subcutaneous adipose layer of the specific subject, which exceeded the one in the model, 

rather than a really higher local threshold of the intramuscular innervation. The median 

threshold field was only 65 V/m.

Fig. 4 depicts the results of the calibrated model with threshold and maximum force as 

parameters for the four different coils with various distances from the thigh. Every coil, 

except the figure-of-eight device, was simulated in its initial condition and for distance 

values of 5mm, 10mm, and 15 mm between the coil and the skin surface in perpendicular 

direction to reproduce the experimental data. The figure-of-eight coil was incorporated for 

evaluating its unaltered performance only, since experimental values for the dependence 

of the distance are not available in the literature. The calibration of the threshold also 

determines the onset of the saturation for higher amplitudes which agrees well with the 

experiments and provides validation (see Fig. 4). The simulation reflects the two degrees of 

freedom, i.e., shift of the recruitment curve with the coil–body distance and slope variations 

for the different coils, which were observed in experiments [41]. This is remarkable for one 

reason as neither of them was represented by any parameters or modelled in any way but 

are purely a result of the electric field distribution generated by the different coils or their 

movement.
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The distance of the coil from the thigh shifts the threshold in an almost linear way for 

the observed range. The shift of the recruitment curves in the model is smaller than in 

experiments, particularly for the APL coil [41]. This deviation (29% for the APL coil, 12% 

for RT-120 in the depicted curves) could be caused by both the experimental setup, in which 

spacer sheets made of rubber were used. Whereas the coils in direct contact with the thigh 

ideally match the surface—not least because of the flexibility of the subcutaneous adipose 

layer—rubber spacers are rather stiff so that the distance increases to a higher extent than 

the thickness of the sheets. Off-standing edges and air-filled gaps in case of the APL design 

are difficult to be quantified and simulated correctly. In addition, the simulated model is a 

standard anatomy and does not represent any individual characteristics of the experimental 

data which are used here.

The difference in the slopes of the various coils is relatively stable in experiments as well 

as in the model. The standard circular coil is nearly coincident with the racetrack device 

RT-120. In the simulations, the APL coil presents an approximately 2.5 times higher slope in 

the linear range. The figure-of-eight coil—a device which is rarely used for neuromuscular 

stimulation of the intramuscular axon tree due to low torque but high distress compared to 

other devices—shows less than half the slope of the standard round coil. The evaluation of 

the experimental series in [41] led to a ratio of the slopes of the APL and of the standard 

circular coil of 2.6.

The different performance of the coils can be visualized lucidly by marking the specific 

subvolume which exceeds the threshold for different points on the recruiting curve. Fig. 

5 illustrates the part of the quadriceps muscle (dark) above the threshold field strength. 

Around the threshold, both coils exhibit just marginal activation. Whereas the increase is 

rather slow and locally confined for the round coil, the APL device is adjusted to the shape 

and the size of the quadriceps; the coil even reaches saturation within the output range of 

the pulse source and for reasonable power. The more homogeneous recruitment might be 

another, physiologic argument for using coil designs similar to the APL device. The round 

coil, although frequently used in neuromuscular stimulation, is not able to activate a wider 

range of fibers, but forms relatively local hot spots. However, these inhomogeneous strain 

conditions could damage relaxed fibers due to the nonphysiological strain acting on them.

Although a volume-based approach of the force estimation might be more obvious at first, 

the growth of the suprathreshold volume in the 3D figures for higher stimulation amplitude 

is much higher than the experimentally observed force increase. A direct relation of the 

suprathreshold volume and the force response overestimates the slope of the APL coil 

(factor of 3.3 instead of 2.6) and predicts a notably lower threshold for this coil compared 

to the other devices. The difference would correspond to a distance of almost 20 mm which 

was not observed in the experiments [41].

IV. Conclusion

Whereas magnetic stimulation has been too weak for daily neuromuscular applications for 

a long time, more efficient coils eradicated this flaw. A rather simplistic understanding in 

combination with heuristic trial and error were sufficient for this improvement [13] and 
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allowed the derivation of the coupling factor to estimate the maximum efficiency level 

[43], [71]. This work computationally reproduced the recruiting behavior of neuromuscular 

magnetic stimulation for the first time. The underlying model is comparably simple, but 

turned out to be very capable and predicted the different recruiting of various stimulation 

conditions correctly. If relative torques without absolute force values are sufficient, only one 

parameter has to be calibrated, i.e., the local intramuscular electrical threshold field. The 

extraction of this single parameter from measurements entails all remaining effects, such as 

the experimentally found slope differences of coils and the shift of the recruitment curve for 

increased coil–thigh distance.

It is very likely that the model can be further simplified, for instance with respect to the 

anatomic resolution, in order to provide a handy tool for coil designers. In this context, it 

could support the urgent need of experimentalists and clinicians for adequate equipment as 

the performance of a design from a drawing board can be subjected to a first, but rather 

informative quantitative evaluation without large efforts.

Furthermore, the approach was intentionally kept as simple as possible in order to 

demonstrate that neuromuscular magnetic stimulation behaves macroscopically, i.e., on 

average notably simpler than the complexity of the microscopic neuromuscular structure 

might suggest. The parsimony of the model avoids a high number of parameters and 

factors that might facilitate over-fitting. Still, the model concurs with previous experiments 

and stimulation studies (see e.g., [12], [72]). The simplicity also reflects the need of coil 

designers in academia and industry for a flexible and usable model.

The model design and calibration became possible due to experimental data of recruitment 

curves under a sufficient variety of electromagnetic conditions from the literature [41]. 

The underlying study evaluated a series of coils and identified two degrees of freedom 

for changing the magnetic (and induced electric) field conditions across individuals. The 

essential parameters of the physiologic description—given by the average threshold of the 

intramuscular axon microstructure and the force per cross section—can be calibrated using 

measurements. All further characteristics of the recruitment curve, such as the onset of 

saturation, result from it. In addition, the calibration provides a value for the local electric 

field strength at the threshold of 65 V/m in the microstructure after excluding one outlier, 

which is closely related to the microanatomic conditions of the intramuscular axon tree in 

the neighborhood of the nerve terminals. Interestingly, the threshold value is comparable 

to corresponding values reported for magnetic stimulation in the brain [64]. The model is 

able to mimic the properties of known muscle stimulation coils quantitatively. It allows 

predicting the different slopes of various coils correctly and also describes the shift of the 

threshold with increasing spacing between coil and thigh.

In addition to serving as a tool to design and test new neuromuscular stimulation equipment 

in silico, the model can replace the usually predefined sigmoid functions for the recruiting 

curve or the behavior of another contractile element in biomechanical models [44], [65], 

[66]. The incorporation into such a framework furthermore provides all temporal aspects 

of force generation, such as force onset, fatigue and pulse repetition rate, and enables the 
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incorporation into a control loop for functional magnetic stimulation [67], [68]. However, 

this step will require additional experimental data and induces further work in this field.

The quality of the underlying anatomical and geometrical model is very high and among 

the most-detailed in magnetic stimulation. However, even under isometric conditions, 

muscles change their shape during contraction. Most actual applications of neuromuscular 

stimulation, such as cycling, are not isometric but need force estimation for the entire motion 

cycle with changing knee angles and associated muscle length variations. For changing knee 

angles, the situation becomes even more complex though. The presented model neglects 

that. On the one hand, this constraint kept the model simple and was important to enable 

this after all very first available model to explain and predict recruitment of neuromuscular 

magnetic stimulation from field models and anatomy, while the predictive power of the 

model is sufficiently high after all. On the other hand, in a future generation, motion should 

be included to represent the key applications of neuromuscular stimulation in rehabilitation 

and muscle training. Such a step, however, will require an anatomical model including the 

motion and the intermittently contracted muscle or better imaging scans during such a cycle. 

The model closed the gap between the stimulation coil and the force generated by the 

muscle, which prevented systematic optimization of coils and required lengthy and costly 

experiments. Thus, an obvious next step for future research is the improvement of coils for 

neuromuscular magnetic stimulation. Due to the completeness of the model from the coil 

design to a muscle force prediction, initial more conventional heuristic search could with an 

appropriate formalism even be improved by a numerical optimization approach [73].

While the model may serve well for developing the technology further, replacing the 

macroscopic nature by a microscopic one including the intramuscular motor nerve tree 

may be another next step to improve the understanding of how and where on the local level 

magnetic stimulation activates nerve and in turn muscle fibers.

Appendix

The formulation used here and established previously is derived from applying the current 

continuity to Ampère’s circuital law and introducing the electric field E through Ohm’s 

law. After enforcing Gauß’ law with Poincaré’s lemma, resp. Helmholtz’ theorem through 

magnetic vector potential with B = curl A for the magnetic flux density B and Coulomb 

gauge, the governing equations follow

E = − ∂
∂t A − grad ϕ

div (σ grad ϕ) = − ∂
∂t A ⋅ grad σ,

(1)

with the local electrical conductivity σ and the electrical potential ϕ. The FVM turns the 

differential equation into

∬∂V i, j, k
da ⋅ σ grad ϕ = − ∭V i, j, k

d3r ∂
∂t A ⋅ grad σ, (2)
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with the volume Vi, j,k of hexahedral volume cell (i, j, k). Spatial discretization and first-

order finitization with secondorder error [75] of the integrals delivers

fi, j, k = ∂
∂t Ai, j, k

1 σi + 1, j, k − σi − 1, j, k
2Δxi, j, k

+Ai, j, k
2 σi, j + 1, k − σi, j − 1, k

2Δyi, j, k
+ Ai, j, k

3 σi, j, k + 1 − σi, j, k − 1
2Δzi, j, k

+ O Δx2, Δy2, Δz2

(3)

Δxi, j, kΔyi, j, kΔzi, j, kfi, j, k

= σi, j, k Δyi, j, kΔzi, j, k ⋅ ϕi + 1, j, k − ϕi − 1, j, k
2Δxi, j, k

+ Δxi, j, kΔzi, j, k ⋅ ϕi, j + 1, k − ϕi, j − 1, k
2Δyi, j, k

+Δxi, j, kΔyi, j, k ⋅ ϕi, j, k + 1 − ϕi, j, k − 1
2Δzi, j, k

+ O Δx2, Δy2, Δz2

(4)

for local variables with dimensions in the subscript. The vector potential for the excitation 

term fi,j,k of each cell was provided by the coil’s Biot–Savart solution. The second equation 

was amended by natural Neumann boundary conditions for ϕ on the surface and assembled 

into a matrix–vector equation [28], [74]. Equations were solved by the Gauß–Seidel method.
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Fig. 1. 
Segmented model in the resolution which was used in the simulation (in the back). In the 

middle image and in the front, the model is peeled in order to uncover the otherwise hidden 

structures.
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Fig. 2. 
Structure of the overall model with field simulation and parametric mixed recruitment 

model.
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Fig. 3. 
Regression to experimental recruitment data. Each plot displays a different subject with 

symbols representing the measurement and the lines the force output of the 3D field model 

in combination with the calibrated mixed model. The experimental data set did not include 

measurements of all coils in every subject. Since the differences in forces are predicted from 

electric field models of the coil and not influenced by any calibrated parameters, the model 

once calibrated can estimate the recruitment of any coil, which is shown in Fig. 4.
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Fig. 4. 
Recruitment curves of all studied coils and conditions as predicted by the selected model. 

Four different distances were simulated (0 mm, 5 mm, 10 mm, 15 mm). The slope ratio 

between the different coils as well as the threshold-shift effect are predicted in good 

accordance with previous reports and not generated by any of the degrees of freedom, i.e., 

calibration parameters. Instead, they arise solely from the anatomy and the electromagnetic 

conditions of the coil geometry and therefore do not vary across subjects here. The figure-of-

eight coil (MC-B70) shows a substantially lower slope, which can be quantitatively tested in 

the future to stress-test the model.
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Fig. 5. 
Recruiting for a round circular coil (a) and the APL design (b) at different stimulation 

amplitudes (20%, 35%, and 70% of maximum stimulator output): Whereas the round 

circular coil shows a rather local activation pattern, the APL device leads to suprathreshold 

stimulation in almost the whole quadriceps muscle at 70%. The amount of the muscle 

volume which fulfils the threshold condition is shaded in dark color; the blue stream lines 

illustrate the magnetic field.
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TABLE I

Physical Properties of the Individual Tissue Regions

Relative permittivity ∊r Conductivity

σ/( S
m )

Skin 1.1 · 103 2.0 · 10−4

Fat 2.8 · 103 0.024

Muscle tissue 5.2 · 104 0.34

Blood vessels 1.7 · 104 0.31

Major nerve branches 5.0 · 105 0.03

Bone 8.4 · 102 0.082
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