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Post-transcriptional regulation is involved in the regulation of many inflammatory genes.
Zinc finger protein 36 (ZFP36) family proteins are RNA-binding proteins involved in
messenger RNA (mRNA) metabolism pathways. The ZFP36 family is composed of
ZFP36 (also known as tristetraprolin, TTP), ZFP36L1, ZFP36L2, and ZFP36L3 (only in
rodents). The ZFP36 family proteins contain two tandemly repeated CCCH-type zinc-
finger motifs, bind to adenine uridine-rich elements in the 3’-untranslated regions (3’ UTR)
of specific mRNA, and lead to target mRNA decay. Although the ZFP36 family members
are structurally similar, they are known to play distinct functions and regulate different
target mRNAs, probably due to their cell-type-specific expression patterns. For instance,
ZFP36 has been well-known to function as an anti-inflammatory modulator in murine
models of systemic inflammatory diseases by down-regulating the production of various
pro-inflammatory cytokines, including TNF-a. Meanwhile, ZFP36L1 is required for the
maintenance of the marginal-zone B cell compartment. Recently, we found that ZFP36L2
reduces the expression of Ikzf2 (encoding HELIOS) and suppresses regulatory T cell
function. This review summarizes the current understanding of the post-transcriptional
regulation of immunological responses and inflammatory diseases by RNA-binding ZFP36
family proteins.

Keywords: tristetraprolin, zinc finger protein 36, zinc finger protein 36-like 1, zinc finger protein 36-like 2, RNA-binding
protein, untranslated region, AU-rich element
INTRODUCTION

For many years, the importance of post-transcriptional regulation of mRNAs has not been fully
recognized in the immune system. However, with the advance in functional analyses of RNA-
binding proteins (RBPs), the importance of post-transcriptional regulation in immune system
regulation has come to the fore. RBPs are critical effectors of gene expression of many genes and
form regulatory networks to maintain cell homeostasis. RBPs recognize target RNA with the RNA-
recognition domain (1). RBPs also have binding domains with other proteins, and these interactions
enable them to fulfill their regulatory functions (2).
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Recent analyses have shown that RBPs are remarkably
involved in regulating various cell type-specific functions
(3). Among RBPs, ZFP36 family proteins including ZFP36,
known as tristetraprolin (TTP), are characterized by the presence
of one or more CCCH-type zinc finger domain(s) that contain
three cysteines (C) and one histidine (H) residues. ZFP36 family
proteins bind to adenylate-uridylate-rich elements (AREs) in the
3’-untranslated region (3’ UTR) of a target mRNA, leading to the
decay of the mRNA (4). Although the ZFP36 family members are
structurally similar, they play different roles and regulate different
target mRNAs, probably due to their cell type-specific expression
patterns (5). For instance, ZFP36 plays a significant role in
regulating immune responses and inflammatory diseases by
inhibiting the production of various inflammatory cytokines such
as TNF-a in macrophages (6).

ZFP36L1 is known to be required for the maintenance of the
marginal zone B cell compartment by limiting the expression of
the transcription factors such as Kruppel-like factor 2 (KLF2)
and interferon regulatory factor 8 (IRF8) (7). We have recently
reported that ZFP36L2 down-regulates the expression of Ikzf2
(encoding HELIOS) and suppresses the function of induced
regulatory T cells (iTregs) (8). In this review, we discuss our
current understanding of post-transcriptional regulation in
immune responses by RNA-binding ZFP36 family proteins. We
also discuss the control of those protein expressions as potential
therapeutic strategies for human inflammatory diseases.
RNA-BINDING PROTEINS ARE INVOLVED
IN POST-TRANSCRIPTIONAL
REGULATION

RBPs recognize cis-elements or specific structures in the 5’ UTR,
3’ UTR, or intron of mRNA at each step of RNA metabolism
(9). Adenylate-uridylate-rich elements (AU-rich elements;
AREs) characterized by AUUUA nucleotide repeats are present
in the 3’ UTRs of many cytokines, chemokines, and proto-
oncogenes (3), and ARE-binding RBPs, including ZFP36,
human antigen R (HuR)/ELAVL1, AU-rich RNA binding factor
1 (AUF1), T-cell interleukin-1 (TIA-1)/TIA-associated protein
(TIAR), and KH-type splicing regulatory protein (KSRP),
regulate the degradation and translation of target mRNA (3). In
contrast, several other RBPs such as Roquin, regulatory RNase
(Regnase), and AT-rich interactive domain-containing protein 5a
(Arid5a) recognize the stem-loop structure of the 3’ UTR (3).
Thus, RBPs can interact with specific RNA sequences and
structures and interact with them to regulate target mRNAs
positively or negatively (3).
ZFP36 FAMILY MEMBERS ARE CRITICAL
FOR POST-TRANSCRIPTIONAL
REGULATION

ZFP36 family is composed of three proteins (ZFP36 (TTP),
ZFP36L1, and ZFP36L2) in humans and most other mammals,
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while the fourth subtype, ZFP36L3, is expressed in the yolk sac and
placenta of rodents (10). The ZFP36 family members are known
to have three essential domains: An N-terminal nuclear export
sequence (NES), a central tandem Cys-Cys-Cys-His (CCCH) zinc
finger domain, and a C-terminal CNOT1 binding domain (9).
Although ZFP36 family members are structurally similar to each
other, each ZFP36 family member is thought to have different
functions, as it has been shown in both immune and non-immune
cells that each ZFP36 family member is expressed in different cell-
type and is differently controlled upon stimulation (8, 11).

Among ZFP36 family members, the molecular mechanisms
of the post-transcriptional regulation are most intensively
investigated for ZFP36 (9). The C-terminal motif of ZFP36
binds directly to the central domain of CNOT1, which is the
core subunit of the CCR4-NOT complex, and the ZFP36-CCR4-
NOT complex plays a crucial role in ZFP36-mediated
deadenylation of target mRNAs (12). The deadenylation is
thought to be important for rapid mRNA degradation and to
be induced in small nests of the cytoplasm (called processing
bodies) containing many enzymes (13). Under stress conditions,
ZFP36-bound mRNAs are recruited to stress granules, and the
translation repressor, TIA-1, prevents translation in stress
granules (14). In addition, ZFP36 has been shown to facilitate
the degradation of selected mRNAs by transporting them from
stress granules to processing bodies (15, 16). Taken together,
although the precise mechanism of mRNA turnover by ZFP36 is
still unclear, various factors such as the CCR4-NOT complex
seem to be essential for the regulation of ZFP36-mediated decay
of mRNAs (Figure 1).
REGULATION OF THE EXPRESSION AND
FUNCTION OF ZFP36

With respect to the molecular mechanisms to regulate ZFP36
expression, it has been shown that ZFP36 autoregulates its
expression via interaction with AREs in 3’ UTR of its mRNA
(17). Experimental deletion of ARE from Zfp36 mRNA has been
shown to free ZFP36 from autoinhibition or repression by other
ARE-binding proteins and increase the abundance of ZFP36
(18). Regarding the second mechanism to regulate ZFP36
function, phosphorylation is reported to be involved in the
stabilization and inactivation of ZFP36. ZFP36 is phosphorylated
by multiple kinases such as ERK, p38 MAPK, JNK, and AKT (19).
MAPK-activated protein kinase 2 (MK2) is activated by p38MAPK
and phosphorylates ZFP36 at two serine residues (S60 and S186 in
humans, and S52 and S178 inmice) (20, 21). Phosphorylated ZFP36
is more stable than unphosphorylated ZFP36, and the
phosphorylated ZFP36 accumulates until p38 MAPK activity is
reduced (22, 23). Moreover, the phosphorylation of ZFP36
promotes its binding to 14-3-3 proteins, and the resultant ZFP36-
14-3-3 complex does not recruit the CNOT deadenylase complex
(21, 22). Therefore, phosphorylated ZFP36 seems to lose its ability
to degrade mRNA.

Dual-specificity phosphatase 1 (DUSP1) is known to
dephosphorylate and inactivate MAPK superfamily members
July 2021 | Volume 12 | Article 711633
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such as JNKs, p38a, and p38b MAPKs, and then DUSP1 and
ZFP36 cooperate to regulate inflammation (23). The loss of
DUSP1 leads to ZFP36 phosphorylation and accumulation of
inactive ZFP36, and the production of TNF-a and IL-10 is
enhanced in Dusp1-deficient bone marrow-derived
macrophages (23). Moreover, protein phosphatase 2A (PP2A)
activation has been shown to induce dephosphorylation and
activation of ZFP36 (21).

In terms of the other mechanisms preventing ZFP36
function, HuR competes with ZFP36 for the AREs in the 3’
UTR of Il6 mRNA and stabilizes it (24). In addition, ZFP36 is
polyubiquitinated by TNF receptor-associated factor 2 (TRAF2),
and the polyubiquitination appears to be specifically necessary
for its function for JNK activation (25). These studies suggest
that multiple mechanisms in immune responses regulate the
expression and function of ZFP36, and various kinases affect the
Frontiers in Immunology | www.frontiersin.org 3
activation and stability of ZFP36 in response to different
environmental cues (Figure 1).
ZFP36 CONTROLS VARIOUS
IMMUNE RESPONSES

It is well known that mRNAs encoding cytokines such as TNF-a
have short half-lives and decay via AREs (26). ZFP36 down-
regulates TNF-a production by directly binding to the ARE in
the 3’ UTR of Tnf mRNA and promoting Tnf mRNA decay by
recruiting the CCR4-NOT deadenylase complex (6). Meanwhile,
ZFP36 expression is induced by TNF-a-mediated signaling.
Thus, ZFP36 acts as one component of a negative feedback
loop that regulates TNF-a production by destabilizing Tnf
FIGURE 1 | Typical post-transcriptional regulation by ZFP36. When LPS activates TLR4, the downstream NF-kB kinase (IKK) complexes (IKKg, IKKa, IKKb) are
activated. Subsequently, IkBa is phosphorylated and degraded. The released NF-kB migrates to the nucleus and activates the expression of genes such as TNF.
ZFP36 binds to the ARE in the 3’ UTR of Tnf mRNA and promotes the decay of the target mRNA by recruiting the CCR4-CAF1-CNOT1 complex. ZFP36 binds
directly to the central domain of CNOT1, the core subunit of the CCR4-NOT complex. Conversely, the binding of stabilizing proteins such as human antigen R (HuR)
that compete with destabilizing factors inhibits ARE-mediated RNA degradation. p38 MAPK activates MK2, which phosphorylates two serine residues of ZFP36 (S60
and S186 in humans, S52 and S178 in mice). Dual-specificity phosphatase DUSP1 dephosphorylates p38 MAPK. Phosphorylation of ZFP36 promotes its binding to
14-3-3 proteins, resulting in stabilization of target mRNAs. Serine/threonine PP2A dephosphorylates ZFP36 and releases 14-3-3 proteins from ZFP36.
July 2021 | Volume 12 | Article 711633
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mRNA (27). In accordance with this finding, ZFP36-deficient
mice develop a complex syndrome of inflammatory arthritis,
dermatitis, cachexia, autoimmunity, and bone marrow
hyperplasia, which resemble the phenotypes due to excessive
TNF-a production in vivo just like the phenomena observed in
TNF-transgenic mice (28, 29).

Not only TNF-a but also IL-6 is well-known to be a
multifunctional pro-inflammatory cytokine that plays a critical
role in various diseases, and its expression is tightly regulated at
both the transcriptional and post-transcriptional levels (4). There
are five AREs in the 3’ UTR of murine Il6 mRNA, and ZFP36 is
shown to bind to ARE2, ARE3, and ARE4 in the 3’ UTR region
to promote Il6 mRNA degradation (30).

Surprisingly, the mRNA of IL-10, which is one of the
representative anti-inflammatory cytokines, was also identified
as a target of ZFP36. Consistent with studies regarding TNF-a
and IL-6, Il10mRNA degradation was induced by the binding of
ZFP36 to ARE in its 3’UTR (31). Furthermore, IL-10 induces the
ZFP36 expression in macrophages by activating STAT3 (32).
Thus, IL-10-mediated ZFP36 induction seems a part of the
negative feedback loop to regulate IL-10 production to terminate
anti-inflammatory signals. Interestingly, Schaljo et al. have
reported that IL-10 reduces TNF-a expression in LPS-activated
bone marrow-derived murine macrophages in part through the
induction of ZFP36 (33). Together, it is suggested that ZFP36-
mediated post-transcriptional regulatory mechanisms control
both the initiation and resolution of inflammatory responses in
multiple mechanisms.

With respect to the roles of ZFP36 in T cell-mediated immune
responses, Moore et al. have recently shown that using a
lymphocytic choriomeningitis virus (LCMV) infection model,
virus-specific expansion and recession of T cells is accelerated,
and LCMV clearance is enhanced by the absence of ZFP36 (34),
suggesting that ZFP36 restrains T cells and slows down the
immune responses.

Taken together, ZFP36 regulates immune responses in
various immune cells through many mechanisms.
THE ROLES OF ZFP36L1 AND ZFP36L2
IN IMMUNE RESPONSES

Similar to ZFP36, ZFP36L1 interacts with AREs in the 3’ UTR of
mRNAs to attenuate the expression of the corresponding genes
(35). Regarding the role of ZFP36L1 in post-transcriptional
regulation, it has recently been demonstrated that ZFP36L1
expressed in B cells has an essential function in maintaining a
population of marginal zone B cells by limiting the expression of
KLF2 and IRF8 (7). Although the precise roles of ZFP36L1 in
germinal center responses and immune memory remain unclear,
it has been reported that ZFP36L1 expressed in B cells promotes
the migration of antibody-secreting cells from secondary
lymphoid organs to survival niches in the bone marrow by
restricting the expression of G protein-coupled receptor kinase
2 (GRK2) and integrin chains a4 and b1, facilitating the long-
term establishment of antibody-secreting cells (36).
Frontiers in Immunology | www.frontiersin.org 4
In developing B cells, because the expression of recombination
activating gene 2 (RAG2) protein is restricted to the G0-G1 phase
of the cell cycle (37–39), quiescence is essential for promoting
variable-diversity-joining (VDJ) recombination. Recently,
Galloway et al. have shown that in developing B cells, both
ZFP36L1 and ZFP36L2 are important for maintaining
quiescence before expressing pre-B cell receptor (pre-BCR) and
for the re-establishment of quiescence after expansion by the pre-
BCR (40). Importantly, double-deficiency of ZFP36L1 and
ZFP36L2 in T-cell lineage in mice causes the arrest of
thymopoiesis at the double-negative stage and develops T cell
acute lymphoblastic leukemia (T-ALL) due to aberrant activation
of Notch signaling (41). In contrast, the single deletion of ZFP36L1
or ZFP36L2 in T-cell lineage does not result in T-ALL (41). These
findings suggest that ZFP36L1 and ZFP36L2 play both redundant
and non-redundant roles in lymphocyte differentiation.

How ZFP36L2 alters the function of T cells is not fully
understood yet. We have recently shown that ZFP36L2 is highly
expressed in naive CD4+ T cells, and ZFP36L2 expression in CD4+

T cells is rapidly reduced by the stimulation via the T cell receptor
(8). In addition, we found that ZFP36L2 expression levels in iTregs
are significantly lower than those in naive CD4+ T cells (8).
Moreover, we found that ZFP36L2 directly binds to AREs in 3’
UTR of Ikzf2 mRNA, resulting in its degradation of Ikzf2 mRNA
and down-regulation of iTreg function (Figure 2) (8). These
results indicate that ZFP36L2 also promotes post-transcriptional
regulation of immune responses and regulates immune
cell function.
CLINICAL IMPLICATION OF ZFP36
FAMILY PROTEINS IN HUMAN
INFLAMMATORY DISEASES

Genome-wide association studies (GWAS) have highlighted the
association of ZFP36 family members with pathogenic
mechanisms in various autoimmune diseases. Twenty-eight
single-nucleotide polymorphisms (SNPs) in the ZFP36 gene
were found in patients with autoimmune disorders such as
rheumatoid arthritis (RA), psoriasis, multiple sclerosis (MS),
and juvenile idiopathic arthritis (JIA) (42).

Interestingly, one SNP called ZFP36*8 variant has been
shown to be significantly associated with RA in African
Americans (42). Suzuki et al. have reported that compared with
AA/AG genotypes, GG genotype in ZFP36 promoter region SNP,
in which promoter activity is lower than that with AA/AG
genotypes, is associated with age at onset, duration, disease
progression, and infliximab usage in Japanese RA patients (43).

It is not yet clear how ZFP36 is involved in the pathogenesis
of human diseases.　It has been reported that ZFP36 is highly
expressed in synovial tissues of RA patients and inflamed
mucosal tissues of inflammatory bowel disease (IBD) (44–46).
In the rheumatoid synovium, ZFP36 is detected in macrophages,
vascular endothelial cells, and fibroblasts (45). Interestingly,
ZFP36/TNF gene expression ratio in synovial tissues correlates
inversely with CRP (44). These findings suggest that
July 2021 | Volume 12 | Article 711633
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inappropriate TTP production in response to increased TNF-a
may be one factor that contributes to the pathogenesis of RA.

GWAS have also revealed that the ZFP36L1 region is
significantly associated with RA, JIA, Crohn’s disease, celiac
disease, and type 1 diabetes (47, 48). In addition, ZFP36L2 is
identified as a susceptibility gene of MS, and its expression is
decreased in MS patients compared to healthy subjects (49).
Similarly, gene expression levels of ZFP36L2 in peripheral blood
mononuclear cells are significantly lower in SLE patients than those
in healthy controls (50). Therefore, the variants of ZFP36, ZFP36L1,
and ZFP36L2 or dysregulation of those expressionsmay be involved
in developing various inflammatory diseases in humans.

Regarding the association with allergic diseases, a comprehensive
transcriptome analysis has shown that ZFP36 expression in
peripheral blood leucocytes is lower in persistent asthma children
than in healthy children (51), suggesting that the reduction
of ZFP36 gene expression may be associated with asthma in
children. Moreover, Leigh et al. have reported that budesonide
inhalation induces various gene expressions including ZFP36 in
bronchial tissues and whole blood cells in healthy subjects (52),
indicating that inhaled corticosteroids may provide anti-
inflammatory effects by inducing ZFP36 expression in both
immune cells and non-immune cells. On the other hand, the
expression of ZFP36L1 in bronchoalveolar lavage cells is higher in
patients with steroid-resistant asthma than that in patients with
Frontiers in Immunology | www.frontiersin.org 5
steroid-sensitive asthma (53). Hansel et al. have reported that
ZFP36L2 expression in peripheral blood CD4+ T cells is
significantly higher in severe asthma patients than in mild asthma
patients (54). Although further studies are required, these findings
suggest that ZFP36 family proteins in immune cells and bronchial
structural cells may contribute to the development of allergic
airway inflammation and the sensitivity to inhaled corticosteroids.
CLINICAL POTENTIAL OF ZFP36 FAMILY
PROTEINS IN INFLAMMATORY DISEASES

The forced expression of ZFP36 family proteins in peripheral
tissues or immune cells could be novel therapeutic approaches
for inflammatory diseases in humans (55). It has been reported
that adenoviral overexpression of ZFP36 results in protection
against bone loss and reduced inflammatory cell infiltration in
experimental periodontitis in rats (56). Consistent with these
findings, ZFP36-delta ARE mice, in which the stability of ZFP36
mRNA is enhanced by the deletion of a 136-base instability motif
in the 3’ UTR of ZFP36 mRNA, show the increased levels of
ZFP36 expression in tissues (57) and are protected from anti-
type II collagen antibody-induced arthritis, imiquimod-induced
dermatitis, and experimental autoimmune encephalomyelitis
FIGURE 2 | Suppression of HELIOS expression by ZFP36L2. ZFP36L2 is highly expressed in naïve CD4+ T cells and can degrade Ikzf2 mRNAs by binding ARE in
the 3’ UTR. Upon TCR stimulation, ZFP36L2 expression is rapidly reduced. Consequently, the transcribed Ikzf2 mRNA is stabilized, HELIOS is firmly produced, CD4+

T cells differentiate and mature into iTregs possessing sufficient suppressive capacity.
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(57). These findings suggest that sustained ZFP36 expression or
activation is helpful in developing therapeutic strategies against
inflammatory diseases.

As discussed in this review, the p38 MAPK pathway inactivates
ZFP36 via the phosphorylation of two serine residues in mice and
humans (20), while ZFP36 is dephosphorylated and activated by
PP2A (58). Importantly, Ross et al. have reported that in vivo
administration of PP2A agonists such as COG1410 (an
apolipoprotein E peptide mimetic) or AAL(s) (a lipid derivative
of the immunosuppressant FTY720 (Fingolimod)) activates ZFP36
through the dephosphorylation and ameliorates experimental
murine arthritis models (45). Although the precise roles
of ZFP36L2 in T cell function and inflammatory diseases remain
to be elucidated, we have reported that ZFP36L2 reduces HELIOS
expression in iTregs and suppresses iTreg function (Figure 2) (8).
Thus, the reduction of ZFP36L2 expression in iTregs could be an
attractive strategy for developing adoptive antigen-specific
iTreg therapy.
CONCLUDING REMARKS

RBPs, including ZFP36 family proteins, are essential for post-
transcriptional regulation in RNA metabolism. Recent studies
have uncovered that gene polymorphism of ZFP36 family
members is associated with various autoimmune diseases and
Frontiers in Immunology | www.frontiersin.org 6
that the dysregulation of stabilization or inactivation by
phosphorylation of ZFP36 family proteins could be involved in
the pathogenesis of inflammatory diseases. However, it remains
to be elucidated if there is functional redundancy and interaction
among these family molecules for post-transcriptional regulation
of immune responses. Therefore, a better understanding of the
post-transcriptional processes mediated by each of the ZFP36
family members will be necessary to develop a novel therapeutic
strategy for chronic inflammatory diseases.
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