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Multi-omics prediction of immune-related adverse
events during checkpoint immunotherapy
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Immune-related adverse events (irAEs), caused by anti-PD-1/PD-L1 antibodies, can lead to
fulminant and even fatal consequences and thus require early detection and aggressive
management. However, a comprehensive approach to identify biomarkers of irAE is lacking.
Here, we utilize a strategy that combines pharmacovigilance data and omics data, and
evaluate associations between multi-omics factors and irAE reporting odds ratio across
different cancer types. We identify a bivariate regression model of LCP1 and ADPGK that can
accurately predict irAE. We further validate LCP1 and ADPGK as biomarkers in an inde-
pendent patient-level cohort. Our approach provides a method for identifying potential bio-
markers of irAE in cancer immunotherapy using both pharmacovigilance data and multi-
omics data.
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ARTICLE

mmune-related adverse events (irAEs) during anti-

programmed death 1 (PD-1) or anti-programmed death

ligand 1 (PD-L1) antibody therapy, resulting from immune
activation combined with disturbed immunologic homeostasis,
can affect any organ systems and in some cases can be lethall.
Pneumonitis, the most common fatal irAE, results in 10% death
rate, and accounts for 35% of anti-PD-1/PD-L1-related fatalities.
Myocarditis, the most lethal irAE, causes ~50% mortality>.
Therefore, the predictive biomarkers of irAEs are required to
determine the benefit/risk ratio for patients receiving anti-PD-1/
PD-L1 therapy. T-cell receptor (TCR) diversity?, CD8+ T-cell
clonal expansion®, and tumor mutational burden (TMB)® have
been suggested to potentially predict irAE albeit on the basis of a
single factor or conducted in a limited number of cases. There-
fore, a comprehensive approach to identify biomarkers of irAE is
lacking. In particular, it is challenging to obtain a patient sample
cohort with enough sample size, and the traditional approach
may require multiple years of multi-center efforts.

In this study, we investigate potential predictors for irAE risk
in patients receiving anti-PD-1/PD-L1 therapies across 26 tumor
types by integrating real-world pharmacovigilance and molecular
omics data. We identify the bivariate linear-regression model of
LCP1 and ADPGK that can accurately predict irAE, and validate
LCP1 + ADPGK model predictive potential in an independent
patient cohort. Our approach provides a method for identifying
potential biomarkers of irAE in cancer immunotherapy.

Results

Analysis of known factors in predicting irAE. To identify
potential biomarkers of irAE in anti-PD-1/PD-L1 therapy, we
retrieved from the US Food and Drug Administration Adverse
Event Reporting System (FAERS) a total of 52,282 adverse events
(AEs) from 18,706 patients for 26 different cancer types receiving
anti-PD-1/PD-L1 therapy. Among these patients, 3706 (19.8%)
had at least one irAE. We calculated the irAE reporting odds ratio
(ROR) by comparing the proportion of reporting irAEs for anti-
PD-1/PD-L1 agents with the proportion of reporting irAEs for all
other drugs in the database’. IrAE ROR varied by tumor type and
the highest irAE ROR observed for lung adenocarcinoma
(LUAD) (3.29, 95% confidence interval (CI), 2.97-3.65), while the
lowest value was observed for uterine carcinosarcoma (UCS)
(0.65, 95% CI, 0.02-4.18) (Fig. 1a and Supplementary Table 1).
We collected six factors related to irAEs, including TMB®, T-cell
receptor (TCR) diversitys, interferon (IEN) o level®, tumor
necrosis factor (TNF) a level®, eosinophils!?, and neutrophils!!.
Interestingly, these factors are also biomarkers of immune ther-
apy response based on positive associations between the incidence
of irAEs and benefit for patients treated with immune checkpoint
inhibitors!213. Indeed, we observed a marginally significant cor-
relation between irAE ROR and objective response rates!# in anti-
PD-1/PD-L1 therapy (Rs=0.44; P =0.049; Supplementary
Fig. 1). We further collected 36 factors related to immune therapy
response, including TMB!3, cytolytic activity!®, and neoantigen
load!®. We evaluated the association of these factors calculated
from molecular data of The Cancer Genome Atlas (TCGA) and
irAE risks based on the individual safety reports from FAERS. We
identified seven potential predictors, including cytolytic activity
(Spearman R, Rs = 0.64; false discover rate (FDR) = 0.01), IFN vy
signature (Rs=0.61, FDR=0.01), PD-1 expression (Rs=0.60,
FDR =10.01), TCR diversity (Rs=0.59, FDR=0.01), macro-
phages M1 (Rs = 0.55, FDR = 0.03), CD8+ T-cell abundance (Rs
=0.50, FDR =0.05), naive B cells (Rs=0.49, FDR =0.05)
(Fig. 1b, Supplementary Fig. 2, and Supplementary Table 2). To
identify more powerful predictive models, we combined these
seven factors and evaluated the performance of bivariate models

by Spearman correlation and goodness of fit by the log-likelihood
ratio test!”. The combination of CD8+ T-cell abundance with
TCR diversity or naive B cells achieved significantly improved
goodness of fit of models compared to using the single factors
(Fig. 1c and Supplementary Fig. 3). In particular, the combination
of CD8+ T cells and TCR diversity achieved maximum predictive
efficacy (Rs=0.75, FDR=8.24x10"%) (Fig. 1d and Supple-
mentary Table 3). The correlation coefficient (Rs, 0.75) suggested
that 56% (Rs2, 0.56) of observed irAE ROR was explained by this
bivariate regression model. We assessed the multicollinearity of
these seven factors by the variance inflation factor!®1%, and
observed no multicollinearity for TCR diversity and CD8+ T cells
(Supplementary Fig. 4). We also found that TCR diversity and
CD8+ T-cell abundance exhibited no significant correlation (P =
0.26), suggesting the independent prediction of irAE. We further
evaluated the performance of the combinations of other factors
with TCR diversity—CD8+ T-cell abundance bivariate model.
No trivariate models achieved higher correlation coefficients or
increased accuracy (Supplementary Table 4).

Comprehensive identification for potential irAE biomarkers.
We further sought to identify additional predictive factors for
irAE by conducting a comprehensive screening across mRNA,
miRNA, IncRNA and protein expression, and nonsilent gene
mutations across 26 cancer types. The majority of the top hits
that resulted were gene expressions (Supplementary Table 5),
which were highly enriched in immune response processes,
including T-cell activation and cell killing (Fig. 2a). This provided
further support for the T cells as the pivotal regulators in irAEs.
Of particular interest, the lymphocyte cytosolic protein 1 (LCPI),
which is involved in T-cell activation20, achieved the highest
correlation coefficient (Rs=10.82, FDR = 6.69 x 10~3, Fig. 2b).
Combinations between any two of the top ten significant irAE
correlated genes (Supplementary Fig. 5) suggested that the
combination of LCPI with most of the other genes achieved
better predictive performance (Fig. 2¢c, Supplementary Fig. 6, and
Supplementary Table 6). Among these, adding the adenosine
diphosphate dependent glucokinase (ADPGK), which is mediat-
ing metabolic shift during T-cell activation?!, to LCPI led to a
linear-regression model with the best accuracy among all the
bivariate models (Rs=0.91, FDR=7.94x 10~9, Fig. 2d and
Supplementary Table 6). We evaluated the multicollinearity of
these top ten genes by the variance inflation factor!®!° and
observed no multicollinearity for LCPI and ADPGK (Supple-
mentary Fig. 7). Combinations of the third gene did not improve
the predictive value of the LCPI and ADPGK bivariate model
(Supplementary Table 7). We further screened the combination
of significant factors and genes to identify more powerful com-
binations, and did not discover models have better performance
(Supplementary Figs. 8 and 9, and Supplementary Table 8).
Considering the straightforward estimation of LCPI and ADPGK,
this combination maybe easier to translate into clinical practice.
As far as we know, no study reported that LCPI and/or ADPGK is
associated with immunotherapy response yet. We further per-
formed correlation analysis between objective response rate!# and
LCP1/ADPGK, and observed no significant associations (Sup-
plementary Fig. 10), suggesting limited confounding effect from
efficacy, at least for LCPI and ADPGK.

Validation of LCP1 and ADPGK as irAE biomarkers. To
validate the predictive power of LCPI and ADPGK, we further
collected a validation cohort of 28 cancer patients receiving anti-
PD-1/PD-L1 inhibitors with both high-quality formalin-fixed
paraffin-embedded (FFPE) pre-treatment tumor tissues and
clinicopathological information (Supplementary Table 9 and
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Fig. 1 Evaluation of the association between irAE and related factors. a Anatomic sites of cancer types (left panel), and irAE ROR across 26 cancer types
(right panel). b Spearman correlation between irAE ROR and 36 factors for positive correlation (red lollipop) and negative correlation (blue lollipop). *
indicates significant correlation (FDR < 0.05); cytolytic activity FDR = 0.01, Interferon (IFN) y signature FDR = 0.01, PD-1 FDR = 0.01, T-cell receptor
(TCR) diversity FDR = 0.01, macrophages M1FDR = 0.03, CD8+ T cells FDR = 0.05, naive B cells FDR = 0.05; irAE and immune therapy response-related
factors are marked in orange. ¢ Comparison of performance of bivariate models in predicting irAE for all combinations of six significantly correlated
variables. Spearman R (Rs) was calculated between predicted and observed irAE ROR. The shade of the square indicates the Rs, and the size indicates the
significance of the log-likelihood ratio test. d Combined effect of TCR diversity and CD8+ T-cell bivariate model (Spearman correlation, Rs = 0.75, FDR =
8.24 x10~%). The equation of the bivariate model is 0.31x TCR diversity + 8.87 x CD8+ T cells + 0.27. irAE immune-related adverse events, ROR
reporting odds ratio, FDR false discovery rate, LUAD lung adenocarcinoma, SKCM skin cutaneous melanoma, LUSC lung squamous cell carcinoma, KIRC
kidney renal clear cell carcinoma, PRAD prostate adenocarcinoma, BLCA bladder urothelial carcinoma, MESO mesothelioma, BRCA breast invasive
carcinoma, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, UCEC uterine corpus endometrial carcinoma, SARC sarcoma, ESCA
esophageal carcinoma, PAAD pancreatic adenocarcinoma, OV ovarian serous cystadenocarcinoma, HNSC head and neck squamous cell carcinoma, STAD
stomach adenocarcinoma, THCA thyroid carcinoma, CHOL cholangiocarcinoma, ACC adrenocortical carcinoma, READ rectum adenocarcinoma, COAD
colon adenocarcinoma, LIHC liver hepatocellular carcinoma, LGG brain lower-grade glioma, GBM glioblastoma multiforme, UVM uveal melanoma, UCS

uterine carcinosarcoma.
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Fig. 2 Comprehensive identification of potential irAE predictors. a Pathway enrichment of the top ten genes significantly correlated with irAE ROR across
multiple cancer types. b Spearman correlation between LCP1 expression and irAE ROR. € Comparison of performance of bivariate models in predicting irAE
for all combinations of the top ten irAE ROR significantly correlated genes. Spearman correlation (Rs) was calculated between the predicted and observed
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ADPGK bivariate model (Spearman correlation, Rs = 0.91, FDR = 7.94 x 10~9). The equation of the bivariate regression model is 0.37 x LCP1+ 0.70 x

ADPGK - 9.10.

Supplementary Fig. 11). The median age of the patients was 56
years (range, 37-82 years), with 22 (78.6%) male patients and 6
(21.4%) female patients. In all, 26 of 28 (92.9%) patients were
diagnosed as lung cancer. The expression level of LCP1 and
ADPGK were assessed by immunohistochemistry in our valida-
tion cohort. LCP1 and ADPGK have stronger staining in the irAE
group (Fig. 3a). We quantified the immunostaining signals for the
protein expression of LCP1 and ADPGK using the Aperio Ima-
geScope software v14.3 with Positive Pixel Count v9 (PPCv9)
algorithm. Consistently, LCP1 (P value = 0.008) and ADPGK
(P value=0.010) were higher in patients with irAEs when
compared with patients without irAEs (Fig. 3b). The geometric
mean of LCP1 and ADPGK was also higher in pre-treatment
tumor samples of patients with irAEs (P value = 0.005, Fig. 3c).
The area under the receiver-operating characteristic curve (AUC)
of LCP1 and ADPGK to predict irAE was 0.78 and 0.78, while the
combination of LCP1 and ADPGK had a better AUC value as
0.80 (Fig. 3d). Furthermore, LCP1, ADPGK, and LCP1+ADPGK
successfully predicted pneumonitis in 26 lung cancer patients
with AUC as 0.74, 0.76, and 0.77, respectively (Supplementary

Fig. 12), suggesting the potential utility of LCP1 and ADPGK in
predicting a specific type of irAE in a specific cancer. We further
tested the CD8 predictive potential in our validation cohort. We
did not observe significantly increased CD8 ITHC staining signals
in pre-treatment tumors in the irAE group. In addition, we found
the AUC value of CD8 is not comparable to LCP1 and ADPGK
(Supplementary Fig. 13), suggesting that the confounding effect of
CD8 in irAE prediction is limited. Taken together, this inde-
pendent patient-level cohort validated the predictive power of
LCP1 and ADPGK for irAEs in cancer patients receiving anti-
PD-1/PD-L1 inhibitors.

Discussion

In this study, we systematically investigated potential predictors
for irAE risk in patients receiving anti-PD-1/PD-L1 therapies
across 26 tumor types by integrating real-world and molecular
data. We identified seven potential predictors, and the combi-
nation of CD8+ T cells and TCR diversity achieved higher
accuracy of prediction of irAE and decreased the unexplained
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Fig. 3 Validation of the predictive power of LCP1 and ADPGK in a patient cohort. a Representative images of patients with irAEs and without irAEs
through immunohistochemical (IHC) staining with antibodies against ADPGK and LCP1. Image size: 379 x 379 pm?; scale bar: 100 um. b Quantification of
LCP1 and ADPGK IHC staining signals. Comparison between patients with irAE or without irAE is conducted by unpaired two-sided Student's t test. ¢
Geometric mean of LCPT and ADPGK staining signals. A comparison between patients with irAE and without irAE is conducted by unpaired two-sided
Student's t test. d ROC curve of the LCP1, ADPGK, LCP1+ ADPGK in the validation cohort (n=28). The boxes indicate the median £1 quartile, with
whiskers extending from the hinge to the smallest or largest value within 1.5 interquartile range from the box boundaries. ROC receiver-operating

characteristic, AUC area under the receiver-operating characteristic curve.

variance from 0.59 (1-0.64%) to 0.44 (1-0.75%). Considering that
the unexplained variance was still 0.44, we further performed a
large-scale comprehensive screening to identify better performing
irAE ROR predictors. We identified potential irAE predictors that
are enriched in the function of T-cell activation. The linear-
regression model by the combination of LCPI and ADPGK, two
genes related to T-cell activation??!, further decreased the
unexplained variance from 0.44 (1-0.75%) to 0.17 (1-0.912). Our
results align well with the emergence of evidence of the invol-
vement of T-cell activation in irAEs. Furthermore, the AUC value
of LCP1 and ADPGK in our patient-level validation cohort
achieved 0.8, suggesting that the combination of LCP1 and
AGDPGK holds promise as biomarkers for irAEs. Meanwhile,
our proof-of-concept study set up an analytic framework to
explore irAE biomarkers and propose possible underpinning key
factors, which might have important implications for the

management of patients with immunotherapy. Our analysis
enables the study of promising signals of immune-related toxi-
cities in large sample cohorts, while collecting both molecular
data and irAE information of thousands of patients with
immunotherapy requires the collaboration of multicenter with
several years’ efforts. Future work is necessary to further study the
predictive performance of LCP1 and ADPGK in larger anti-PD-1/
PD-L1 patient cohorts. We envision that LCP1 and ADPGK
might enable a pre-risk-check of patients before receiving anti-
PD-1/PD-L1 agents with further study.

Nevertheless, our study has a limitation with a limited sample
size. Ideally, it will be promising to obtain a large number of
patient samples with or without irAEs, and then perform the
multi-omics data to identify biomarkers. However, it is challen-
ging to obtain a patient-sample cohort with enough sample size
because the percentage of clearly defined of a certain type of irAE,
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e.g., pneumonitis, is <5%2223. It may require multiple years of
multicenter efforts. Therefore, we utilize an alternative strategy to
combine the power of real-world data and omics data. A similar
strategy is also utilized to identify the potential biomarkers®1424,
suggesting this strategy is robust and powerful, especially in the
absence of a large number of patient samples. Further studies
with a larger sample size are necessary to comprehensively
identify irAE.

Methods

Data analysis of individual safety report from FAERS. We retrieved individual
safety reports from FAERS [https://fis.fda.gov/sense/app/d10be6bb-494e-4cd2-
82e4-0135608ddc13/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/
analysis] from July 1, 2014 to June 30, 2019. We collected only AE reports from
anti-PD-1 agents (nivolumab, pembrolizumab, cemiplimab) and anti-PD-L1
(atezolizumab, avelumab, durvalumab) suspected of causing AEs. We excluded
those cases also treated with anti-CTLA-4 agents (ipilimumab, tremelimumab). We
used the AE terms in peer-reviewed irAE management guidelines®? to define irAEs.
We performed disproportionality analysis’ to assess the risk of irAEs via calcu-
lating the ROR by using the full database as the comparator. Patients were cate-
gorized to irAE group when they have one type of irAEs?3.

Data analysis from TCGA and independent datasets. Molecular data, including
mRNA expression, miRNA expression, protein expression, and somatic mutations
across 26 cancer types were downloaded from TCGA data portal [https://portal.
gdc.cancer.gov/]. TCR diversity, neoantigen load, estimated immune cell abun-
dance, and intratumor heterogeneity were downloaded from the GDC PanImmune
Data Portal [https://gdc.cancer.gov/about-data/publications/panimmune]?>. TMB
was calculated by the number of nonsilent somatic mutations per sample?®. We
used GSVA R package?’ v1.3 to compute the T-cell-inflamed gene expression
profiling (GEP) level?8 in each sample based on the T-cell-inflamed GEP signature
from Ayers et al.2%. Cytolytic activity was calculated as the geometric mean of the
gene expression of two cytolytic markers (GZMA and PRF1)!¢. IFN vy signature
was obtained from Ayers et al.2%.

Identification of biomarkers by combining omics data and real-world data. In
our analysis, the number of cancer types is far less than variables (26 cancer types
with >50,000 variables, including ~20,000 mRNA expression, ~12,000 noncoding
RNA expression, ~18,000 gene mutations, ~200 protein expression, and ~2400
miRNA expression), which may result in an inflated type-I-error and subsequently
introduce more false positives>*-3% if employ other advanced algorithms, e.g.,
Lasso, Elastic net, and Ridge. Therefore, we adopted an approach as described in a
previous study!” that they evaluated the correlation between single variables and
response rate, and then added variables to obtain bivariate models to achieve better
performance. The median values of each factor were calculated for each cancer
type. The anatomic illustration was generated by R package gganatogram3®37 v1.1.
We performed leave-one-out cross-validation in predicting irAE ROR from
bivariate and trivariate linear-regression models using the R package caret v6.0.
The predictive performance was estimated using the Spearman rank correlation
coefficient (Rs) and unexplained variance (1 — Rs?). The goodness of fit of the
models was compared by the log-likelihood ratio test using the R package

Imtest v0.9. For the bivariate model fitness comparison, the log-likelihood ratio test
was performed between two-factor models and the single-factor model with the
highest Rs. For the trivariate model fitness comparison, the log-likelihood ratio test
was performed between the trivariate model and the bivariate model. We used
variance inflation factor to assess multicollinearity by vif function of the car R
package v3.0. Pathway enrichment was conducted using the R package cluster-
profiler3® v3.14. The calculation of the ROC curve was completed by pROC R
package v1.16. Multiple comparisons were Benjamini-Hochberg adjusted by p.
adjust function of the base R language, version 3.5.0. Statistical significance was
defined as two-sided P <0.05 and/or FDR < 0.05.

Immunohistochemistry in our patient cohort. The study was conducted in
accordance with ethical guidelines of U.S. Common Rule, and was approved by the
Ethics Committee of Beijing Shijitan Hospital. Written informed consent was
obtained from all patients. We performed a retrospective review of cancer patients
with lung cancer, gastrointestinal (GI) cancer, genitourinary (GU) cancer, or other
cancers receiving anti-PD-1/PD-L1 treatment from 2017 to 2019 in Beijing Shijitan
Hospital. To identify high-confidence irAE in patients, we used relatively stringent
criteria: (1) we only include patients with CT confirmed pneumonitis; (2) we only
include the pneumonitis that requires and responds to steroids, immunosup-
pressants, or endocrine therapies; (3) two investigators independently determine
the pneumonitis as immunologic etiology. Patients with incomplete demographic
and follow-up information, receiving anti-PD-1/PD-L1 in other hospitals, or a
history of anti-CTLA-4 therapy were excluded. Next, we kept patients who have
archived high-quality pre-treatment FFPE tumor samples before receiving anti-PD-
1/PD-L1 and any other treatment. In addition, the tumor tissue should contain

<30% necrosis. We collected a comparable number of anti-PD-1/PD-L1-treated
cancer patients without any overserved irAEs with matched cancer types, stage,
age, sex, and therapy of irAE group (Supplementary Fig. 11). Detailed clinical
characteristics of the patient cohort were described in Supplementary Table 9.
Immunohistochemistry (IHC) was performed on 5-pum-thick FFPE tumor tissue
sections. Slides stained with primary antibodies against LCP1 (1:200, Cell Signaling
Technology #3588), ADPGK (1:900, Novus Biologicals #NBP1-91653), and CD8
(working solution, MXB Biotechnology #RMA-0514). Slides were then washed and
incubated with horseradish peroxidase-conjugated secondary antibodies (1:200,
NeoBioscience, # ANR02-1). Immunoperoxidase staining was developed using the
DAB system according to the manufacturer’s instructions (Dako). Slides were
counterstained with hematoxylin, dehydrated, and coverslipped using a mounting
solution. Whole slides were scanned with an Aperio ScanScope system (Leica
Biosystems) and quantified using the Aperio ImageScope software v14.3 with
Positive Pixel Count v9 (PPCv9) algorithm. Areas of necrosis or artifacts in the
slides were ignored. IHC signals were enumerated in seven random 20x fields, and
averaged signals were used for each slide.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Individual safety records were downloaded from FAERS Public Dashboard [https://fis.
fda.gov/sense/app/d10be6bb-494e-4cd2-82e4-0135608ddc13/sheet/7a47a261-d58b-4203-
a8aa-6d3021737452/state/analysis]. The TCGA data were downloaded from TCGA data
portal [https://portal.gdc.cancer.gov/] and GDC PanImmune Data Portal [https://gdc.
cancer.gov/about-data/publications/panimmune]. All the remaining data are available
within the Article, Supplementary Information files, or available from the author upon
reasonable request. Source data are provided with this paper.
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