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Abstract

Advancing the understanding and management of Alzheimer’s disease and related

dementias requires integrating and analyzing diverse datamodalities. Traditional diag-

nostic tools, like neuroimaging, provide valuable insights but are limitedby accessibility

and infrastructure demands.Meanwhile, emergingmodalities, includingwearable sen-

sors and speech analysis, enable less invasive and more continuous data collection

but introduce challenges related to standardization and privacy. The coexistence of

these heterogeneous data streams complicatesmultimodal integration across cohorts,

populations, and clinical settings. Current analytical approaches typically require

modality-specific preprocessing pipelines and harmonization methods that were not

designed to accommodate modern AI-based capabilities, such as multimodal fusion.

In this perspective, we propose an “AI-first” strategy for multimodal data integration

that aligns data structuring, harmonization, and modeling within a unified set of guid-

ing principles to optimize modern AI development, while remaining flexible enough to

support classical analytical approaches.
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Highlights

∙ Understanding and managing ADRD requires integrating biological, cognitive, and

behavioral data across multiple modalities.

∙ Incorporating multiple modalities requires new standards for harmonization and

interoperability.

∙ Current data platforms are not necessarily built to support multimodal fusion or

generalizable AI models across diverse ADRD populations.

∙ Modern AI models are capable of learning from messy, multimodal, and incomplete

data but require infrastructure designed for this purpose.

∙ We propose rethinking ADRD data systems to prioritize AI compatibility, enabling

scalable tools for early diagnosis and longitudinal care.
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1 INTRODUCTION

Accurate diagnosis, monitoring, and management of Alzheimer’s dis-

ease and related dementias (ADRD) require the integration of mul-

timodal data spanning biological, cognitive, and functional domains

(Figure 1A). No single test or assessment can independently capture

the full complexity of the disease.1 Instead,meaningful insight emerges

when diverse signals, from neuroimaging and neuropsychological test-

ing to blood-based biomarkers and real-world behavioral data, are

interpreted together. This multimodal approach reflects the insidious,

multifactorial nature of ADRD and offers a pathway toward more

precise, timely, and individualized care, particularly when enabled by

artificial intelligence (AI) systems capable of synthesizing complex

inputs. This need for integration has become more urgent as the field

enters a transformative era. The emergence of disease-modifying ther-

apies brings the possibility of slowing neurodegenerative processes,

but it also demands earlier detection, more dynamic disease monitor-

ing, and personalized intervention strategies. These advances pose a

fundamental challenge: How can we adapt our data structures and

analytical methods to support clinically meaningful and generalizable

insights?

Over thepast twodecades, the fieldhasmadeconsiderableprogress

in collecting and analyzing rich, clinically validated data. Neuroimaging,

cerebrospinal fluid (CSF) and plasma biomarkers, and structured cog-

nitive assessments remain central to disease staging and progression

modeling. More recently, a wave of emerging data sources, includ-

ing wearable sensors, speech and language processing, and passive

monitoring, has expanded opportunities to observe individuals in their

everyday environments.2 These technologies promise to complement

traditional assessments by enabling continuous and ecologically valid

measures of cognition and function. Yet, as the diversity of datamodal-

ities expands, so too does the complexity of integrating them. Each

modality differs in collection methods, granularity, missingness pat-

terns, and contextual constraints. Neuroimaging is high-resolution but

infrequent and expensive; digital sensing is longitudinal but noisy

and requires engagement from the patient; plasma biomarkers are

scalable, but their performance varies depending on the analyte and

assay technology used. Integrating these data streams for large-scale

analysis remains a non-trivial, resource-intensive task that exposes

fundamental limitations in how current data systems are designed.

Despite ongoing efforts to standardize and harmonize ADRD data,

most data infrastructure remains siloed within individual cohorts or

specific modalities and was not designed to support multimodal, mul-

ticohort analyses or modern AI-model development. Few support

tasks like multimodal fusion, prediction under partial data missing-

ness, or generalization across diverse populations and clinical settings.

As richer and more varied data types are incorporated, it becomes

insufficient to retrofit current integration solutions. In this evolving

landscape, what is needed is not simply more data but infrastructure

intentionally designed to make existing data useful. This is espe-

cially important given two realities. First, real-world data, which are

often messy, incomplete, and multimodal, vastly outnumber curated

research datasets. For instance, there were approximately one bil-

lion office-based physician visits in the United States in 2019 alone.3

This stands in stark contrast to the tens of thousands of individuals

enrolled in research cohorts, underscoring the broad reach of routine

clinical care compared to research participation. Second, modern AI

models have demonstrated a remarkable ability to learn from such

complex and imperfect data.4 Translating such approaches to ADRD

populations, however, requires addressing unique ethical, technical,

and infrastructural challenges: ADRD develops over long timescales

andoftenwithout acutemanifestations, in contrast to diseases in other

branches of medicine, where AI adoption has been more widespread.

For example, unlike oncology, where diagnosis and staging largely

rely on tissue biopsies and well-characterized molecular markers

that provide a clear reference standard, ADRD diagnosis relies on

neuropsychological tests and expert clinical evaluations, which are

inherently subjective. ADRD also encompasses awide spectrum of dis-

ease subtypes and clinical presentations, often complicated by other

age-related systemic disorders, therebymaking standardized data col-

lection and organization difficult. Among these considerations, the lack

of interoperable, AI-ready data infrastructure stands out as the most

actionable.

In this perspective, we introduce the tenets of an AI-first approach

to multimodal data integration for ADRD. This approach aligns data

structuring, harmonization, and modeling within a unified framework,

defined as a set of guiding principles and requirements designed from

the outset to meet the needs of modern AI systems while remaining

flexible enough to accommodate traditional analytical approaches. An

AI-first strategy emphasizes the intentional co-design of data orga-

nization, metadata annotation, and analytic workflows to ensure the

resulting infrastructure natively supports AI applications across het-

erogeneous multimodal ADRD data. Existing solutions typically focus

on either organizing and harmonizing specific datamodalities or devel-

oping user-friendly platforms, oftenwithout resolving the cross-cohort

semantic and structural mismatches that hinder true integration. In

contrast, our perspective advocates for unifying these elements within

a single, interoperable system.

Here, we explore the technical and clinical challenges of this shift

and outline how it can enable the development of scalable AI tools for

early detection, diagnosis, and long-term care in real-world settings.

We envision a future where rich ontology-driven metadata simplify

harmonization, annotated missingness allows models to reason about

data gaps, and data systems become adaptive, co-evolving with the

capabilities of AI systems themselves. To familiarize the reader with

AI-related jargon, we present a collection of terms with definitions in

Table 1.

2 DATA LANDSCAPE IN ADRD

2.1 Clinical practice: sequential acquisition and
pragmatic constraints

In clinical settings, ADRD diagnostic tests are typically administered

sequentially and selectively, guided by clinical judgment, the patient’s
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presentation, financial considerations such as insurance barriers, and

logistical constraints such as limited availability of specialized testing.5

A primary-care provider (PCP) may first suspect cognitive impairment,

triggering a referral to a neurologist, who then determines the need for

further evaluations, including neuropsychological testing, neuroimag-

ing, andbiomarker testing, as indicated. Each step is contingentonprior

findings, insurance coverage, and patient or family preferences. For

example, a patientwith prior spinal surgery or significant agitationmay

be unable to undergo CSF collection, while another with contraindica-

tions to magnetic resonance imaging (MRI) may forgo neuroimaging.

This pragmatic, stepwiseworkflowprioritizes clinical actionability over

data comprehensivenessbydesign.Althoughoptimized for clinical pur-

poses, the fragmented and unstructured nature of these data typically

makes it hard to use traditional statistical techniques for analysis.

2.2 Research cohorts: deep phenotyping versus
ecological validity tradeoffs

In contrast, large cohort studies or clinical trials, including the

National Alzheimer’s Coordinating Center (NACC),6–8 the Framing-

ham Heart Study (FHS),9 the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI),10–12 and the Anti-Amyloid Treatment in Asymptomatic

Alzheimer’s (A4) study, collect data through rigid, protocol-driven

workflows, designed for cohort-level data standardization and sci-

entific rigor. Participants undergo comprehensive neurological and

physical exams, neuropsychological assessments, and functional eval-

uations to establish clinical diagnoses based on the consensus of

dementia experts. High-resolution MRI scans are often collected to

quantify various neuroimaging features. Additionally, amyloid, tau,

and fluorodeoxyglucose positron emission tomography (PET) provide

insights into in vivo disease pathology.13 These modalities are often

complemented by fluid biomarkers, such as CSF and plasma measure-

ments, and multi-omic profiles, all of which offer extensive biological

characterization of disease.14–16 The result is deeply phenotyped

datasets that enable precise modeling of disease mechanisms. How-

ever, the tight inclusion criteria and controlled protocols that produce

these data often exclude participants with comorbidities or atypi-

cal presentations, creating “clean” datasets that poorly represent the

heterogeneity of clinical populations.

2.3 Emerging data streams: attempting to bridge
the translational divide

Models developed on homogeneous cohorts often fail to generalize

to clinical settings where missingness is unpredictable, comorbidities

are common, and workflows are sequential. Emerging digital health

technologies (DHTs) offer an opportunity to bridge this divide, intro-

ducing continuous, real-world data streams in the research landscape.

Wearable devices can capture gait patterns, physical activity lev-

els, and physiological measures such as sleep cycles and heart rate.

Speech analysis can identify subtle changes in cognition.17,18 Self-

administered digital cognitive assessments can also allow remote,

repeated monitoring of participants,19,20 paving the way for acquir-

ing data from a broader, more diverse population that is traditionally

not well represented in research cohorts. Integrating these novel data

streams creates a multidimensional view of ADRD and bridges the

granularity of research-grade biomarkers with more ecologically valid

data. However, their promise will only be realized if models are trained

and validated on integrated datasets that reflect the diversity and

complexity of real-world populations.

3 DATA PREPARATION APPROACHES IN ADRD

3.1 Data pooling is useful

To address the reproducibility and generalizability limitations of siloed

datasets, pooling multimodal data across ADRD studies is essential.

Data pooling addresses these challenges through several mechanisms.

First, combining datasets increases statistical power: Studies relying

on small sample sizes are more likely to suffer from sampling vari-

ability, making the strength and direction of reported associations

difficult to replicate. Second, pooling enhances sample diversity across

demographic subgroups and medical comorbidities. Pooling is espe-

cially valuable for studying rare diseases, such as Huntington’s, and

less common presentations, such as the logogenic variant primary pro-

gressive aphasia, which would be infeasible to investigate at scale

in single-cohort analyses. Ultimately, pooled datasets better reflect

the underlying variability in ADRD, thus improving external valid-

ity and generalizability. However, pooling alone is insufficient: Naive

F IGURE 1 Framework to support AI-driven research and translation in ADRD. To develop scalable, trustworthy, and clinically actionable AI
models that reflect themultifactorial complexity of dementia, data systemsmust be findable, accessible, interoperable, and reusable. (A)Modern
ADRD research relies on a range of heterogeneous data types, including traditional clinical inputs (e.g., medical history, neuroimaging). Additional
insights can be captured through omics technologies and emerging data streams such as speech, sensory-derived activity metrics, and digital
cognitive assessments. Post mortem data remain essential for validation. (B)Multimodal ADRD data integration requires systematic alignment of
heterogeneous data frommultiple cohorts, addressing four critical challenges: technical alignment, semantic alignment, batch correction, andQC
paired with EDA. This systematic approach transforms siloed, cohort-specific datasets into integrated, analysis-ready data structures. (C) Effective
AI systems for ADRDmust accommodate varied datamodalities, including tabular data, images, time-series data, and unstructured text. Classical
machine learningmethods are typically modality-specific and sensitive to datamissingness (SVM). Deep learning approaches enable greater
representational power, with somemethods (CNN, GNN, RNN) being useful for single-modality tasks, while others can integratemultimodal and
multitask inputs (LLM, VLM). ADRD, Alzheimer’s disease and related dementias; AI, artificial intelligence; CNN, convolutional neural network;
EDA, exploratory data analysis; GNN, graph neural network; LLM, large languagemodel; RNN, recurrent neural network; SVM, support vector
machine; VLM, vision-languagemodel; QC, quality control.
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TABLE 1 Glossary of technical terms.

API A set of rules and communication standards that allow different software systems to communicate and share

data.

CNN, RNN, GNN Popular deep learning architectures specialized in processing images (CNN), sequential data (RNN), or graphs

(GNN).

Data infrastructure Systems and resources that enable the collection, storage, management, integration, processing, and accessibility

of data. This includes hardware (servers, storage devices), software (databases), standards, and governance

policies.

Data lake Storage system designed to hold large amounts of data in their native format. It allows flexible data access and

analysis without predefined organization.

Data warehouse Storage system designed to store and organize structured data. Unlike a data lake, it uses a predefined schema to

ensure consistency and faster querying.

Deep learning A subset ofML that uses neural networks withmany layers. It excels in tasks like image recognition, speech

processing, and natural language understanding.

FAIR data principles Guidelines tomake data Findable, Accessible, Interoperable, and Reusable. They ensure that data can be

effectively used by both humans andmachines.

Feature engineering The act of building variables out of simpler ones (e.g., a risk score). A key advantage of deep learning is that it

requires only minimal feature engineering compared to traditional methods.

Federated learning Computational approachwheremodels are trained in a decentralizedwaywithout sharing source data.

Generalizability A result is generalizable if it applies to both the sample under study and the population it is from, or similar

populations.

Generative AI Collection of AI techniques capable of creating new content, such as text or images, by learning patterns from

existing data (e.g., large languagemodels).

Graphical processing unit (GPU) Specialized processor, designed for applying the same operation across multiple data elements at the same time.

EnablesML analysis of large datasets (e.g., omics, imaging) with greater efficiency.

Interpretable AI AI systems that are designed to explain not only what their prediction is, but how they reached it.

Maskedmodeling/featuremasking A techniquewhere parts of input data are hidden, and themodel learns to predict themissing pieces. It helps

models learn from unlabeled data and become robust against missingness.

Multilabel classification A type of classificationwhere each data point can belong tomultiple categories at once. For example, a medical

imagemight be labeled withmultiple diagnoses.

Multimodal fusion The act of combining qualitatively different data (e.g., imaging and text). The fusion is “early” if themodalities are

combined before any significant processing and “late” if they undergo notable transformation independently.

Ontology A structured framework that organizes knowledge into categories and defines relationships between them. In AI,

it helps machines interpret and use complex information consistently.

Regularization ML technique that reduces overfitting by adding a penalty to amodel’s complexity. It helps improve themodel’s

performance on new data.

Scalability The ability of a system to handle increasedworkload efficiently, without prohibitive cost or waiting times.

Structured querying The process of using a structured language (e.g., SQL) to retrieve andmanage data from databases.

Note: This glossary outlines key technical concepts relevant to AI-powered, multimodal frameworks for ADRD.

Abbreviations: ADRD, Alzheimer’s disease and related dementias; AI, artificial intelligence; API, Application Programming Interface; CNN, convolutional

neural network; FAIR, Findable, Accessible, Interoperable, and Reusable; GNN, graph neural network;ML,machine learning; RNN, recurrent neural network.

aggregation of heterogeneous data creates new challenges that

require systematic technical and semantic alignment.

3.2 Barriers to large-scale multimodal integration

Multimodal data integration processes face foundational harmoniza-

tion challenges, ranging from simple syntax differences in cohort-

specific data dictionaries to protocol misalignments and operational-

ization differences in clinical definitions. These barriers are exacer-

bated by non-biological variability, such as site effects, and extensive

data missingness,21 particularly for biomarker and neuropsychological

tests. This presents a challenge and an opportunity: While misalign-

ment across cohorts complicates predictive modeling efforts, it also

enables researchers to innovate on methods that robustly handle

heterogeneous missingness patterns and protocol variations, yield-

ing models with greater real-world applicability. Successfully lever-

aging this opportunity, however, requires tackling the cross-cohort

data’s “Tower of Babel” through carefully designed data management

strategies.

Harmonization challenges are particularly pronounced in

quantitative analyses of neuroimaging data. Scanner models,
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acquisition protocols, reconstruction algorithms, and image pro-

cessing pipelines all influence quantitative imagingmeasures in unique

ways.22 For instance, PET imaging is affected by variations in radio-

tracer properties, reference regions, and partial volume correction

methods. While standardization efforts such as the Centiloid and

CenTaur scales for amyloid and tau PET have improved cross-study

comparability,23,24 they still cannot fully capture non-linear biological

variation or harmonize across all technical parameters. Similarly,

methodological variability in fluid biomarker measurements affects

multicohort analyses. CSF and blood measurements, for example, are

highly sensitive to assay technology, analyte properties, and study

protocols.25

The emergence of digital technologies introduces yet another layer

of complexity. Actigraphy devices differ in step-count algorithms,

speech analysis tools vary in sampling rates,26 and cognitive assess-

ments administeredvia tablet versuspersonal computer are influenced

by hardware-specific latencies. Further variability arises from differ-

ences in software versions, environmental factors, and adherence

rates, which impact data quality and performance measures. Differ-

ences in data formats and limited interoperability between digital

health platforms hinder seamless integration, making it difficult for

clinicians and researchers to access and meaningfully interpret data

frommultiple sources.

3.3 DIY data integration

Integrating multimodal, multicohort data into an analysis-ready for-

mat requires extensive preprocessing (Figure 1B). This effort demands

not only domain knowledge but also data science expertise and access

to computational resources. Broadly, the process involves two overar-

ching phases: technical alignment, which ensures data from different

sources are interoperable, and semantic alignment, which ensures that

the meaning and context of variables are consistent. In the technical

alignment phase, the goal is to address compatibility across cohorts by

unifying variable naming conventions, standardizing coding schemes,

and ensuring consistent scales and units. For instance, a researcher

might want a variable indicating cognitive status to be labeled consis-

tently, with values such as “0” always referring to normal cognition and

“1” to impairment. In contrast, semantic alignment tackles the concep-

tual definitions underlying different variables. For example, definitions

of “cognitive impairment” may vary across cohorts: Some may include

amnestic mild cognitive impairment, others non-amnestic forms or

even early dementia. These semantic mismatches extend beyond

cognitive assessments. Differences in radiological reads, biomarker

thresholds, or neuropathological grading systems can further com-

plicate integration. Without resolving such semantic inconsistencies,

model development risks generating invalid or non-generalizable find-

ings. Additionally, batch effects, defined as the artificial variability

introduced by hardware or software differences across cohorts, are

also common in neuroimaging and omics data. Statistical harmoniza-

tionmethods likeComBat are frequently used tomitigate these effects

while preservingmeaningful biological variation.27

While these alignment efforts are critical, they also represent a bot-

tleneck inmulticohort ADRD research.Manualmapping of taxonomies

and ontologies is time-consuming and requires collaboration between

clinicians, informaticians, and statisticians. However, once achieved,

these harmonized datasets offer a strong foundation for developing

analytical strategies that canmore effectively uncover patterns related

to ADRDmechanisms and heterogeneity.

4 MODELING APPROACHES IN ADRD
RESEARCH

4.1 Inferential statistics

Traditional analytic approaches in ADRD research have largely relied

on inferential statistics, with separate processing pipelines developed

to extract information from each data modality independently. For

example, voxel- and surface-based morphometry have been standard

methods for quantifying brain structure and pathology from MRI

scans.28,29 Genetic data are typically analyzed through genome-wide

association studies30 and calculation of polygenic risk scores,31 while

cognitive performance is often summarized using composite cognitive

domain z-scores that can abstract performance acrossmultiple tests.32

Despite their clinical relevance, variables such as medical history and

medication use remain underutilized,with biomarker-focused analyses

dominating recent literature.

Statistical models serve as foundational tools for hypothesis test-

ing and population-level inference. Their interpretability is a strength:

Model coefficients can be tied to specific predictors, and confidence

intervals provide estimates of uncertainty. Linear and logistic regres-

sion, as well as mixed-effects models, perform well when assumptions

about variable distributions hold and data dimensionality is modest.

However, their limitations become evident when applied to modern

ADRD datasets that are high-dimensional, multimodal, and incom-

plete. They struggle to accommodate irregular longitudinal follow-ups,

non-linear associations, or dependencies among diverse data types.

Currently, there is no consensus on optimal analytic strategies for

datasets with irregular sampling and complex missingness patterns,

which underscores the need for innovative approaches. Richly anno-

tated, flexible data structures that preserve temporal granularity and

explicitly capture reasons for missingness are essential for enabling

novel analytic methods that can operate under less restrictive assump-

tions and harness the full complexity of contemporary ADRD data.

4.2 Classical machine learning in cohort studies

Machine learning (ML) methods have increasingly been used in ADRD

research to support classification, subtyping, and disease progres-

sion modeling.33 These approaches are attractive because they can

accommodate “wide” data, which are datasets with many variables

per sample, and process heterogeneous inputs that do not meet

the assumptions of classical statistical models. This is especially
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important in ADRD, where diagnosis is complicated by symptom over-

lap across dementias, within-disease heterogeneity, and comorbid

conditions that obscuredisease-specific signals.34 With access to large,

deeply phenotyped cohorts like NACC, which includes hundreds of

variables ranging from neuropsychological testing to autopsy findings,

ML offers away to integratemultifaceted data into actionable outputs.

Derived measures from imaging, cognitive, and demographic data

have been used in traditional supervisedMLmodels to improve ADRD

classification and progression prediction. Unsupervised approaches

such as Subtype and Stage Inference (SuStaIn) have also been

employed to characterize disease heterogeneity and dynamics across

patients.35 However, traditional ML models face limitations. Most are

trained on AD-centric “clean” datasets, leading to suboptimal per-

formance in real-world applications involving mixed pathologies and

frequently incomplete or missing data.36 Additionally, these models

are vulnerable to overfitting in high-dimensional spaces, necessitating

complex feature selection, regularization, and tuning strategies.

4.3 Modern AI approaches

Recent AI advances, particularly deep learning (DL) and generative

AI, are helping overcome many limitations of traditional analytic

methods.37–40 Unlike classical ML models, which rely heavily on engi-

neered features and complete datasets, DL architectures can learn

directly from raworminimally processed inputs.Models such as convo-

lutional neural networks, recurrent neural networks, transformers, and

graph neural networks are now used to process diverse inputs, includ-

ing MRI, PET, genetic data, voice recordings, wearable device data,

and electronic health records (EHRs) (Figure 1C). A key innovation in

these approaches is their ability to handle missing data natively. Tech-

niques such as random feature masking, attention mechanisms, and

uncertainty-aware inference allow these models to learn even when

parts of the input are missing. This is crucial in ADRD, where missing-

ness may not be random, as patients with cognitive decline are more

likely to skip follow-up visits or certain assessments, making standard

imputation approaches invalid.

Generative AI, particularly large language models (LLMs), is further

expanding the landscape. LLMs are already being used in drug discov-

ery to prioritize targets, in clinical trial design for cohort matching and

safety monitoring, and in EHR systems to summarize clinical notes and

suggest differentials. For example, OpenEvidence can automatically

extract and synthesize guidelines and generate diagnostic hypothe-

ses. A new frontier is emerging with agentic AI, as semi-autonomous,

goal-oriented AI systems can plan, collaborate, and even drive scien-

tific discovery with expert human guidance. A recent example includes

Virtual Lab,41 an AI–human collaborative platform to not only perform

scientific researchbut also enable discovery. Such advancedAI systems

are poised to become transformative tools in ADRD research as well.

However, this potential depends critically on well-designed data

infrastructures. Despite recent AI advances in other fields, real-world

applications in ADRD remain challenging. Current cohort infrastruc-

tures in ADRD are not built for AI: Data are often fragmented, poorly

annotated, and siloed across institutions. Even the most advanced

modelswill underperform if trained on biased or small datasets. Thus, a

shift toward AI-first data architectures is essential, designing data sys-

tems from the ground up to support model training and the Findable,

Accessible, Interoperable, and Reusable (FAIR) principles.42,43

5 THE CASE FOR AN AI-FIRST DATA
STRUCTURE

5.1 Past and ongoing data integration efforts

To fully realize the potential ofmodern AI approaches, data integration

is essential. Pooling, alignment, and harmonization are currently time-

consuming steps that researchers must complete before unlocking the

benefits of large-scale integrated datasets. Figure 2 presents the key

distinctions between these processes, illustrating how each addresses

different challenges in transforming heterogeneous data into analysis-

ready formats. Encouragingly, significant progress has already been

made in standardizing tabular and textual data through initiatives such

as the Observational Medical Outcomes Partnership (OMOP),44 Med-

ical Subject Headings (MeSH), SNOMED CT,45 Logical Observation

Identifiers Names and Codes (LOINC),46 and Health Level 7 (HL7).

These efforts have established foundational taxonomies and ontolo-

gies that promise consistent data capture, sharing, and analysis across

clinical and research domains.

In neuroimaging, the Brain Imaging Data Structure (BIDS) repre-

sents a major advancement.47 It provides standards for organizing and

sharing imaging data by enforcing metadata requirements and direc-

tory structures. Built uponwidely adopted formats like Digital Imaging

and Communications in Medicine (DICOM) and Neuroimaging Infor-

matics Technology Initiative (NIfTI), BIDS has facilitated large-scale,

multisite collaborations and streamlined data exchange. Although

extensions of BIDS to other data types are emerging, its current

use is still largely concentrated in imaging applications. As neuro-

science research increasingly integrates diverse data types, the need

for similarly robust standardization beyond neuroimaging is apparent.

In the context of ADRD, the Uniform Data Set by NACC provides a

compelling example of clinical data harmonization8 and support of lon-

gitudinal analyses at scale. Collaborationswith theAlzheimer’sDisease

Sequencing Project (ADSP), the Phenotype Harmonization Consor-

tium (PHC), and theNational InstituteonAgingGenetics ofAlzheimer’s

Disease Data Storage Site (NIAGADS) have enabled meaningful inte-

gration of clinical phenotypes with genomic and sequencing data. Still,

as data types grow in diversity and complexity, additional consid-

erations emerge, particularly when aggregating multimodal datasets

from multiple sources. For example, integrating NACC and ADNI, two

of the most widely used ADRD cohorts, presents both opportuni-

ties and challenges. Each cohort has developed its own infrastructure

for data management and access, NACC offers consolidated CSV

file downloads, while ADNI utilizes a distributed file system via the

Laboratory of Neuro Imaging. These independent systems reflect

thoughtful, long-standing design choices, but do not yet support a
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F IGURE 2 Key components in multimodal ADRD data integration. The framework illustrates four distinct but interconnected processes of
data integration: organized in concentric layers from the processes’ goals (outer ring) to specific examples (middle ring) and operational roles
(inner ring) in the data pipeline. Pooling (orange) focuses on data aggregation frommultiple sources to enable centralized access. Technical
alignment (purple) addresses syntactic and structural compatibility by standardizing variable names and file formats to ensure data ingestion.
Semantic alignment (pink) ensures conceptual consistency bymapping definitions and clinical criteria to ensure consistent interpretation across
studies. Statistical harmonization (blue) removes systematic batch effects while preserving the biological signal for statistical analyses. Although
these processes are complementary, each addresses distinct challenges in transforming heterogeneousmulticohort ADRD datasets into
analysis-ready formats. ADRD, Alzheimer’s disease and related dementias.

unified, cohort-agnostic data access model. These challenges are not

unique to ADRD research. Similar complexities arise in other scien-

tific domains and the private sector, where integration strategies such

as data lakes (for storing unstructured raw data), data warehouses

(for structured querying), Application Programming Interfaces (APIs),

and standardized exchange protocols have proven helpful. Such prin-

ciples are increasingly reflected in emerging research platforms in

the ADRD field. For instance, Synapse, the AD Workbench, and the

Global Alzheimer’s Association Interactive Network (GAAIN) offer

credentialed access to curated datasets and support secure, cloud-

based analysis. Another recent development is the Global Research

and Imaging Platform (GRIP), which provides a modular cloud-based
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platform for multimodal data analysis through tools such as Jupyter

Notebooks and RStudio. They offer unified access and analysis within

their respective ecosystems. Yet integrating data across platforms

and studies still requires substantial effort, as no single, overar-

ching data organization and access system has yet been widely

adopted across all modalities. As a result, researchers often work with

aggregated datasets that still necessitate cross-cohort mapping and

harmonization.

Differences in data governance models also influence integration

efforts. Each platform has varying policies on data access and usage,

which may affect where and how analyses are conducted. Some plat-

forms, like the AD Workbench, allow external dataset imports, while

others, such as GAAIN, do not, reflecting differing priorities and insti-

tutional requirements. In addition, while these platforms support tra-

ditional statistical analyses, few currently provide access to graphical

processing unit resources, which limits their utility for developing and

deploying modern AI models. Taken together, these observations high-

light the need to develop AI-first data structures that prioritize mul-

timodal integration and cross-cohort interoperability from the outset.

Finally, we acknowledge that while international collaboration is cru-

cial for an unbiased understanding of ADRD and to prevent research

fragmentation, it has challenges: Integrating data across national bor-

ders requires complyingwithmultiple regulatory standards (i.e., HIPAA

andGDPR), which adds another layer of complexity.

5.2 Our perspective

To support effective applications of AI in ADRD, multimodal data inte-

gration must be grounded in an AI-first design philosophy. Rather

than treating data integration and model development as separate

processes, this perspective emphasizes the need for data structures

that are co-designed with the requirements of modern AI systems in

mind. For instance, using technologies such as REST APIs layered on

traditional SQL databases allows researchers to flexibly and securely

query distinct but linked data tables with only a few SQL commands

(Figure 3). A researcher interested in examining cognitive scores and

MRI scans for specific diseases over time would pull together neu-

roimagingmetrics and cognitive test results,with specified longitudinal

patterns through coordinatedqueries across SQLdatabases andobject

stores. SQL databases efficiently store structured tabular data, while

object stores can handle large files, such as neuroimaging DICOMs,

actigraphy, voice recordings, and omics data. Object stores can con-

tain raw and processed data, as well as computed embeddings. By

extending concepts from the scverse48 ecosystem in single-cell biology,

we propose organizing participant data into richly annotated, multi-

modal container objects, inspired by data structures such as AnnData

and MuData.49 These objects encapsulate not only raw and pro-

cesseddata acrossmodalities, including imaging, omics, andclinical, but

also detailed participant- and feature-level metadata on provenance,

acquisition parameters, missingness reasons, and processing methods

applied, if any. This layered, machine-readable organization enhances

interoperability and supports flexible subgrouping of data basedon sci-

entific questions, while also facilitating scalable, reproducible analyses

and AI model development.

Consider a 72-year-old patient enrolled in a longitudinal ADRD

study (Figure 4): She provides a baseline MRI, plasma biomarkers,

speech samples, and intermittent actigraphy via a smartwatch but

declines lumbar puncture and misses a follow-up scan. In an AI-first

structure, this patient’s data are organized to preserve modality-

specific detail, temporal context, and reasons for missingness. As

described earlier, structured tabular data reside in SQL databases,

while neuroimaging DICOMs, speech recordings, and actigraphy files

are stored in object stores alongside computed embeddings and pro-

cessed versions. The goal is to bridge the expanding diversity of ADRD-

related data with models that can operate across modalities, handle

partial or evolving inputs, and generalize to real-world environments.

An AI-first data structure is not merely a cleaned or standardized

dataset; it is a framework for organizing, encoding, and contextualiz-

ing information in ways that directly support learning from complex,

multimodal data.What follows is an outline of its key characteristics.

1. Privacy-aware by design. An AI-first data structure for ADRD must

incorporate privacy as a foundational design principle. As mul-

timodal data in ADRD increasingly include sensitive personal

information such as neuroimaging scans, passive behavioral met-

rics, speech recordings, actigraphy, and genomic profiles, ensuring

privacy is not just a regulatory obligation but a prerequisite for

trust, participation, and long-term scalability. Unlike traditional

data models that separate privacy controls from the structure of

the data themselves, an AI-first approach embeds privacy, con-

sent, and governance metadata directly into the data architecture.

For instance, in a MuData container, variable (var), and obser-

vation (obs) annotation fields can carry structured indicators of

sensitivity, provenance, and permissible use. Such modular, policy-

aware metadata enable dynamic control over what data can be

accessed, by whom, and for what purpose. This is especially impor-

tant in longitudinal ADRD studies, where consent may evolve as

cognitive status changes. This design also supports scalable col-

laboration: By enabling fine-grained access control through the

API layer, privacy-aware data architectures can facilitate secure

multi-institutional research. Moreover, they lay the groundwork

for future integration with privacy-preserving analytic techniques

such as differential privacy or federated learning, without requir-

ing datasets to be retrofitted or re-engineered. In practice, when a

researcher queries the system for a patient’s actigraphy and demo-

graphics data, the system should recognize their authorization level

based on their access tokens and embedded metadata to provide

streamlined approval to access the data. If their level of access

later changes through an Institutional ReviewBoard amendment or

the patient revoking consent to sharing actigraphy data, the meta-

data should be updated to reflect such changes in the resulting

multimodal object.

2. Modality-agnostic, input-flexible, and clinically interoperable. An AI-

first data structure must be designed to accommodate the inher-

ent variability of real-world ADRD data. Rather than requiring
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F IGURE 3 AI-first multimodal data infrastructure supporting flexible access to ADRD research data. This diagram illustrates the data flow in
an AI-centric multimodal infrastructure tailored for ADRD research. User requests are routed through an API gatewaywith integrated identity
governance for fine-grained access control and consent management. The system retrieves structured tabular data, such as demographics, clinical
data, and derived imagingmeasures, from SQL databases and unstructured files, including imaging, actigraphy, speech, and omics sequencing, for
example, from object stores, preserving temporal context, missingness metadata, and semantic annotations. Data progress through raw
preparation, processed stages with algorithm application for insight extraction, and numerical embeddings (e.g., vectors for machine learning).
They are then consolidated intomultimodal objects likeMuData, following standard conventions: participant-level identifiers in obs, cross-modal
variable-level metadata (including provenance, protocol parameters, and privacy levels) in var, and joint embeddings (e.g., principal component
analysis- or convolutional neural network-based representations) in obsm. Modality-specific AnnData objects, such as those for cognitive and
imaging data, includemeasurements in Xmatrices (e.g., FreeSurfer brain volumes or cognitive test scores as derivedmeasures), sessionmetadata
in obs (e.g., scan parameters, test versions), feature annotations in var (e.g., brain regions, test domains), and processing variants in layers (e.g.,
raw, normalized, harmonized). Final serialization outputs AI-ready formats (e.g., JSON, HDF5, Parquet) that maintain temporal alignment, explicit
missingness encoding, and privacymetadata, enabling robust multimodal analysis, clinical interoperability, and scalable deployment in real-world
scenarios. ADRD, Alzheimer’s disease and related dementias; AI, artificial intelligence; API, Application Programming Interface.

complete, uniform data across all participants and modalities, the

framework should treat each case as a flexible, modular data object

with structured metadata indicating data availability and quality.

In our example case, speech samples are available at irregularly

spaced intervals, and the patient missed her follow-up MRI scan.

A modality-agnostic and input-flexible design preserves all avail-

able data across both structured (SQL) and unstructured (object

stores) components, regardless of completeness, enabling AI mod-

els leveraging these data to learn from partial, asynchronous, and

population-specific combinations of inputs. Equally important is

clinical interoperability. To support real-world deployment, the data

structure should be compatiblewith standards such asHL7 FHIR or

OMOP-CDM, allowing seamless integration with EHRs. This inter-

operability is necessary to enable AI systems to not only operate in

research environments, but also at the point of care.

3. Missingness is explicitly modeled, not hidden. In an AI-first data

structure, missing data are not treated as a nuisance to be

imputed away but as a meaningful signal to be modeled. Each
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F IGURE 4 A concrete example: One participant, manymodalities. This figure illustrates the longitudinal, multimodal data collected from a
hypothetical 72-year-old participant in an ADRD study spanning 24months. The participant contributes structured clinical, imaging, speech, and
wearable data at various time points, along with instances of missingness common in real-world settings. At month 0 andmonth 12, keymeasures
collected include demographics, APOE genotype, neuropsychological scores, and plasma biomarker levels (Aβ42/40 and p-tau217). A T1-weighted
structural MRI is collected at baseline but skipped at month 12 due to a scheduling conflict. Speech samples are collected at months 0, 6, and 12,
though themonth 6 sample is corrupted. Daily actigraphy is captured consistently via a smartwatch with intermittent missingness, and the patient
declines lumbar puncture, resulting in missing CSF data. At month 24, the participant cannot be contacted, though she continues to wear her
smartwatch. In an AI-first approach, this patient is represented as a flexible multimodal object that includes structured inputs (e.g., actigraphy time
series, MRI-derived features), metadata on data quality, and amissingness mask with reason codes. This representation can be passed directly into
models such asmultimodal transformers that learn to attend to available modalities, compensate for missing ones, and support downstream tasks
like diagnosis, stratification, and progression prediction. This example underscores how an AI-first data structure enables learning from partially
complete, heterogeneous data, rather than discarding them, thus improving robustness, inclusivity, and clinical relevance in ADRDmodeling.
ADRD, Alzheimer’s disease and related dementias; AI, artificial intelligence; APOE, apolipoprotein E; CSF, cerebrospinal fluid; MRI, magnetic
resonance imaging.

data field carries structured metadata indicating the rea-

son for absence, whether due to technical failure, patient

non-compliance, unavailability, or study design. This enables

downstream models to distinguish between types of missingness

and to apply appropriate strategies such as masked modeling,

attention-based weighting, or uncertainty estimation. In the

case of the 72-year-old patient introduced earlier, her data

are represented as a multimodal object with machine-readable

annotation layers that capture variable-level metadata about

reasons for missingness, such as (“MRI”: “missing”, “reason”:

“schedule_conflict”) and “CSF_biomarkers”: “missing”,

“reason”: “patient_preference”). Temporal indices and data

quality indicators, such as actigraphy sampling fidelity, are also

provided in the variable-level metadata layer. Rather than being

excluded, missing instances are represented appropriately, and

models can be trained to attend to available inputs and learn to

compensate for missing ones.

4. The data structure preserves temporal resolution and context. ADRD

progression unfolds gradually and non-linearly, with individuals fol-

lowing diverse and often unpredictable trajectories. To capture this

complexity, an AI-first data structure must preserve the tempo-

ral resolution and context of each data stream. It should retain

timestamps for each data element and modality independently. AI

models trained on this temporally aligned data can detect subtle

patterns such as declining sleep quality preceding measurable cog-

nitive decline or changes in speech coherence occurring before a
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drop in test performance. Either of these may be identified in our

example patient if the data are consistently timestamped using

established standards, such as ISO 8601, tomaximize compatibility

and ease of collaboration. Suchmodeling is only possible if the tem-

poral structure is preserved from the outset, allowing AI systems to

reason not only aboutwhatwasmeasured but alsowhen and how it

evolved over time.

5. Co-designed with model architectures and task requirements. An AI-

first data structure is more than a container for multimodal inputs;

it is intentionally aligned with how AI models consume, inter-

pret, and learn from data. Each object is structured to match the

input interfaces of modern model architectures and common soft-

ware libraries (e.g., JSON, Apache Parquet, HDF5).50 In addition

to raw and embedded inputs, the data structure supports seman-

tic labeling, including, for example, symptom categories or disease

stages, for easier human readability and ontological alignment.

Metadata such as MRI scanner strength, blood sample process-

ing delay, or wearable device sampling rate are also encoded,

enabling models to adjust for variation in data quality through

uncertainty calibration or domain adaptation layers. By incorpo-

rating detailed and machine-readable annotations directly into the

data structure, we minimize friction between data curation and AI

deployment, supporting more robust, interpretable, and clinically

useful systems.

The foregoing points are proposed as guiding principles for design-

ing AI-first data structures, not as prescriptive solutions. The ultimate

design should be co-developed through collaboration among rele-

vant stakeholders. Although these principles can be implemented

at a small scale by individual researchers, their true value emerges

through upstream standardization. Ideally, large collaborative initia-

tives would collectively define and adopt data structures and inter-

faces aligned with these principles. This top-down alignment will

provide clear expectations for individual researchers and facilitate

broad adoption. Given the absence of a widely accepted approach to

modeling such complex data, we intentionally refrain from specify-

ing a single modeling approach, instead aiming to support a range of

methods.

6 FUTURE OPPORTUNITIES

Despite advances indata collectionandAI-drivenanalytics forADRD, a

gap remains between research innovation and clinical implementation.

Bridging this dividewill require the development of a resilient, scalable

data infrastructure that can addressmissing data, harmonize heteroge-

neous sources, support population diversity, and improve model inter-

pretability. As the field shifts from controlled research environments

to real-world deployment, the ability of AI systems to operate under

conditions of uncertainty, partial input, and infrastructure variability

becomes critical. One area of opportunity lies in leveraging existing

large-scale infrastructures such as NACC. These resources already

serve as cornerstones for ADRD research and could be expanded to

support AI-first data integration. By layering AI-ready structures onto

these initiatives, researchers can prototype and validate models that

incorporate diverse datamodalities while addressing real-world issues

such as data sparsity and inconsistent sampling. Future systems must

also be designed to integrate structured and unstructured data inways

that reflect clinical reality. AI-first data structuresmake this integration

possible by embedding modality-specific detail, preserving tempo-

ral context, and explicitly modeling missingness. These capabilities

enable AI models to operate flexibly, learning from what is available,

down-weighting what is unreliable, and calibrating for what is missing,

while still delivering clinically relevant insights. Importantly, such sys-

tems must be adaptable enough to scale from high-resource research

environments to more variable settings such as primary care clinics.

Equally important is the need for reproducibility, transparency, and

alignmentwith FAIR data principles.42,43 Incorporating these practices

into ADRD research infrastructure is essential for fostering collabora-

tion, regulatory compliance, and long-term sustainability. By grounding

future efforts in robust data infrastructures, AI-aligned data design,

and open science principles, the field is well positioned to accelerate

discovery, personalize treatment, and extend the reach of ADRD care

tomore diverse and underserved populations.

7 CONCLUSION

As the volume and complexity of ADRD data continue to grow, so does

the urgency of building systems capable of integrating this informa-

tion in meaningful ways. Existing data infrastructure efforts have laid

a strong foundation for harmonizing and analyzing multimodal data,

especially within well-curated cohorts. Building on this progress, we

offer a complementary perspective that aligns data structure design

with the unique demands of modern AI systems. An AI-first approach

treatsmissingness as informative, embeds privacy by design, preserves

temporal context, and supports direct ingestion of heterogeneous

inputs. It moves beyond curated datasets to embrace the full spectrum

of patient experiences, including those with partial or asynchronous

data. By structuring data for how AI learns, we can build more robust,

inclusive, and clinically useful tools capable of supporting diagnosis,

monitoring, and care across diverse real-world settings.

ACKNOWLEDGMENTS

This project was supported by grants from the National Insti-

tute on Aging’s Artificial Intelligence and Technology Collaboratories

(P30-AG073104, P30-AG073105), the American Heart Association

(20SFRN35460031), Gates Ventures, and the National Institutes of

Health (R01-HL159620, R01-AG083735, R01-AG062109, and R01-

NS142076).

CONFLICT OF INTEREST STATEMENT

V.B.K. is a co-founder and equity holder of deepPath Inc. and Cogni-

mark, Inc. He also serves on the scientific advisory board of Altoida

Inc. The remaining authors declare no competing interests. Author

disclosures are available in the supporting information.



JASODANAND ET AL. 13 of 14

REFERENCES

1. Grande G, Valletta M, Rizzuto D, et al. Blood-based biomarkers of

Alzheimer’s disease and incident dementia in the community.NatMed.
2025;31:2027-2035.

2. Kourtis LC, Regele OB, Wright JM, Jones GB. Digital biomarkers for

Alzheimer’s disease: the mobile/wearable devices opportunity. NPJ
Digit Med. 2019;2:9.

3. Ashman JJ, Santo L, Okeyode T.Characteristics of Office-based Physician
Visits by Age, 2019. National Health Statistics Reports; 2023:184.

4. Xue C, Kowshik SS, Lteif D, et al. AI-based differential diagnosis

of dementia etiologies on multimodal data. Nat Med. 2024;30:2977-
2989.

5. Frisoni GB, Festari C, Massa F, et al. European intersocietal rec-

ommendations for the biomarker-based diagnosis of neurocognitive

disorders. Lancet Neurol. 2024;23:302-312.
6. Beekly DL, Ramos EM, LeeWW, et al. The National Alzheimer’s Coor-

dinating Center (NACC) database: the UniformData Set.Alzheimer Dis
Assoc Disord. 2007;21:249-258.

7. Beekly DL, Ramos EM, van Belle G, et al. The National Alzheimer’s

Coordinating Center (NACC) Database: an Alzheimer disease

database. Alzheimer Dis Assoc Disord. 2004;18:270-277.
8. Besser L, Kukull W, Knopman DS, et al. Version 3 of the National

Alzheimer’s Coordinating Center’s Uniform Data Set. Alzheimer Dis
Assoc Disord. 2018;32:351-358.

9. Yang J, Ang TFA, Lu S, et al. Establishing cognitive baseline in

three generations: Framingham heart study. Alzheimers Dement.
2023;15:e12416.

10. Jack CR Jr, Barnes J, BernsteinMA, et al. Magnetic resonance imaging

in Alzheimer’s Disease Neuroimaging Initiative 2. Alzheimers Dement.
2015;11:740-756.

11. Mueller SG, Weiner MW, Thal LJ, et al. The Alzheimer’s disease

neuroimaging initiative. Neuroimaging Clin N Am. 2005;15:869-877,
xi-xii.

12. Mueller SG, Weiner MW, Thal LJ, et al. Ways toward an early diag-

nosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging

Initiative (ADNI). Alzheimers Dement. 2005;1:55-66.
13. Márquez F, Yassa MA. Neuroimaging biomarkers for Alzheimer’s

disease.Mole Neurodegen. 2019;14:21.
14. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal

fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol.
2010;6:131-144.

15. Teunissen CE, Verberk IMW, Thijssen EH, et al. Blood-based biomark-

ers for Alzheimer’s disease: towards clinical implementation. Lancet
Neurol. 2022;21:66-77.

16. BellenguezC, Küçükali F, Jansen IE, et al. New insights into the genetic

etiology of Alzheimer’s disease and related dementias. Nat Genet.
2022;54:412-436.

17. Karjadi C, Xue C, Cordella C, et al. Fusion of low-level descriptors

of digital voice recordings for dementia assessment. J Alzheimers Dis.
2023;96:507-514.

18. Xue C, Karjadi C, Paschalidis IC, Au R, Kolachalama VB. Detection

of dementia on voice recordings using deep learning: a Framingham

Heart Study. Alzheimers Res Ther. 2021;13:146.
19. Tsoy E, Zygouris S, Possin KL. Current state of self-administered brief

computerized cognitive assessments for detection of cognitive disor-

ders in older adults: a systematic review. J. Prevent. Alzheimers Dis.
2021;8:267-276.

20. Polk SE, Öhman F, Hassenstab J, et al. A scoping review of remote and

unsupervised digital cognitive assessments in preclinical Alzheimer’s

disease.NPJ Digital Med. 2025;8:266.
21. Hardy SE, Allore H, Studenski SA. Missing Data: a special challenge in

aging research. J AmGeriatr Soc. 2009;57:722-729.
22. Orlhac F, Eertink JJ, Cottereau A-S, et al. A guide to ComBat har-

monization of imaging biomarkers in multicenter studies. J Nucl Med.
2022;63:172-179.

23. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: stan-

dardizing quantitative amyloid plaque estimation by PET. Alzheimer’s
& Dementia. 2014;11.

24. Villemagne VL, Leuzy A, Bohorquez SS, et al. CenTauR: toward a

universal scale and masks for standardizing tau imaging studies.

Alzheimers Dement. 2023;15:e12454.
25. Giangrande C, Delatour V, Andreasson U, Blennow K, Gobom J,

Zetterberg H. Harmonization and standardization of biofluid-based

biomarker measurements for AT(N) classification in Alzheimer’s dis-

ease. Alzheimers Dement. 2023;15:e12465.
26. Germine L, Reinecke K, Chaytor NS. Digital neuropsychology: chal-

lenges and opportunities at the intersection of science and software.

Clin Neuropsychol. 2019;33:271-286.
27. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microar-

ray expression data using empirical Bayes methods. Biostatistics.
2007;8:118-127.

28. Ashburner J, Friston KJ. Voxel-Based Morphometry—the methods.

Neuroimage. 2000;11:805-821.
29. Fischl B. FreeSurfer.Neuroimage. 2012;62:774-781.
30. Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association

studies.Nat RevMeth Prime. 2021;1:59.
31. Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to perform-

ing polygenic risk score analyses. Nat Protoc. 2020;15:2759-

2772.

32. Mukherjee S, Choi S-E, Lee ML, et al. Cognitive domain harmoniza-

tion and cocalibration in studies of older adults. Neuropsychology.
2023;37:409-423.

33. Myszczynska MA, Ojamies PN, Lacoste AMB, et al. Applications of

machine learning to diagnosis and treatment of neurodegenerative

diseases.Nat Rev Neurol. 2020;16:440-456.
34. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clin-

ical diagnosis of Alzheimer disease at National Institute on Aging

Alzheimer Disease Centers, 2005-2010. J Neuropathol Exp Neurol.
2012;71:266-273.

35. Young AL, Marinescu RV, Oxtoby NP, et al. Uncovering the hetero-

geneity and temporal complexity of neurodegenerative diseases with

Subtype and Stage Inference.Nat Commun. 2018;9:4273.
36. Rahimi J, Kovacs GG. Prevalence of mixed pathologies in the aging

brain. Alzheimers Res Ther. 2014;6:82.
37. WangD,HonnoratN,Toledo JB, et al.Deep learning reveals pathology-

confirmed neuroimaging signatures in Alzheimer’s, vascular and Lewy

body dementias. Brain. 2025;148:1963-1977.
38. Romano MF, Zhou X, Balachandra AR, et al. Deep learning for

risk-based stratification of cognitively impaired individuals. iScience.
2023;26:107522.

39. Qiu S, Miller MI, Joshi PS, et al. Multimodal deep learning

for Alzheimer’s disease dementia assessment. Nat Commun.
2022;13:3404.

40. Qiu S, Joshi PS, Miller MI, et al. Development and validation of

an interpretable deep learning framework for Alzheimer’s disease

classification. Brain. 2020;143:1920-1933.
41. Swanson K, Wu W, Bulaong NL, Pak JE, Zou J. The Virtual Lab of AI

agents designs new SARS-CoV-2 nanobodies. Nature. 2025. https://
www.nature.com/articles/s41586-025-09442-9#article-info

42. Barker M, Chue Hong NP, Katz DS, et al. Introducing the FAIR

Principles for research software. Sci Data. 2022;9:622.
43. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding

Principles for scientific data management and stewardship. Sci Data.
2016;3:160018.

44. Biedermann P, Ong R, Davydov A, et al. Standardizing registry data to

the OMOP Common Data Model: experience from three pulmonary

hypertension databases. BMCMed ResMethod. 2021;21:238.
45. El-Sappagh S, Franda F, Ali F, Kwak K-S. SNOMED CT standard ontol-

ogy based on the ontology for general medical science. BMC Med Inf
Decis Making. 2018;18:76.

https://www.nature.com/articles/s41586-025-09442-9#article-info
https://www.nature.com/articles/s41586-025-09442-9#article-info


14 of 14 JASODANAND ET AL.

46. Baenziger J, Hutchins K, Tullis A, et al. Logical observation identifier

names and codes (LOINC) database: a public use set of codes and

names for electronic reporting of clinical laboratory test results. Clin
Chem. 1996;42:81-90.

47. Gorgolewski KJ, Auer T, Calhoun VD, et al. The brain imaging data

structure, a format for organizing and describing outputs of neu-

roimaging experiments. Sci Data. 2016;3:160044.
48. Virshup I, Bredikhin D, Heumos L, et al. The scverse project provides

a computational ecosystem for single-cell omics data analysis. Nat
Biotechnol. 2023;41:604-606.

49. Virshup I, Rybakov S, Theis FJ, Angerer P,Wolf FA. anndata: access and

store annotated datamatrices. J Open Source Software. 2024;9:4371.
50. WickhamH. Tidy Data. J Stat Softw. 2014;59:1-23.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Jasodanand VH, Bellitti M,

Kolachalama VB. An AI-first framework for multimodal data in

Alzheimer’s disease and related dementias. Alzheimer’s Dement.

2025;21:e70719. https://doi.org/10.1002/alz.70719

https://doi.org/10.1002/alz.70719

	An AI-first framework for multimodal data in Alzheimer’s disease and related dementias
	Abstract
	1 | INTRODUCTION
	2 | DATA LANDSCAPE IN ADRD
	2.1 | Clinical practice: sequential acquisition and pragmatic constraints
	2.2 | Research cohorts: deep phenotyping versus ecological validity tradeoffs
	2.3 | Emerging data streams: attempting to bridge the translational divide

	3 | DATA PREPARATION APPROACHES IN ADRD
	3.1 | Data pooling is useful
	3.2 | Barriers to large-scale multimodal integration
	3.3 | DIY data integration

	4 | MODELING APPROACHES IN ADRD RESEARCH
	4.1 | Inferential statistics
	4.2 | Classical machine learning in cohort studies
	4.3 | Modern AI approaches

	5 | THE CASE FOR AN AI-FIRST DATA STRUCTURE
	5.1 | Past and ongoing data integration efforts
	5.2 | Our perspective

	6 | FUTURE OPPORTUNITIES
	7 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	REFERENCES
	SUPPORTING INFORMATION


