Received: 16 June 2025

Revised: 8 August 2025

Accepted: 24 August 2025

DOI: 10.1002/alz.70719

PERSPECTIVE

Alzheimer’s &Dementia

THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

An Al-first framework for multimodal data in Alzheimer’s
disease and related dementias

Varuna H. Jasodanand! |

1Department of Medicine, Boston University
Chobanian & Avedisian School of Medicine,
Boston, Massachusetts, USA

2Department of Computer Science and Faculty
of Computing & Data Sciences, Boston
University, Boston, Massachusetts, USA

Correspondence

Vijaya B. Kolachalama, Department of
Medicine, Boston University Chobanian &
Avedisian School of Medicine, Boston,
Massachusetts 02118, USA.

Email: vkola@bu.edu

Funding information

National Institute on Aging’s Artificial
Intelligence and Technology Collaboratories,
Grant/Award Numbers: P30-AG073104,
P30-AG073105; American Heart Association,
Grant/Award Number: 20SFRN35460031;
National Institutes of Health, Grant/Award
Numbers: R01-HL159620, R01-AG083735,
R01-AG062109, R01-NS142076; National
Institute on Aging, Grant/Award Number:
R01-AG083735; National Heart, Lung, and
Blood Institute, Grant/Award Number:
R01-HL159620

Matteo Bellitti?

| Vijaya B. Kolachalama®?

Abstract

Advancing the understanding and management of Alzheimer’s disease and related
dementias requires integrating and analyzing diverse data modalities. Traditional diag-
nostic tools, like neuroimaging, provide valuable insights but are limited by accessibility
and infrastructure demands. Meanwhile, emerging modalities, including wearable sen-
sors and speech analysis, enable less invasive and more continuous data collection
but introduce challenges related to standardization and privacy. The coexistence of
these heterogeneous data streams complicates multimodal integration across cohorts,
populations, and clinical settings. Current analytical approaches typically require
modality-specific preprocessing pipelines and harmonization methods that were not
designed to accommodate modern Al-based capabilities, such as multimodal fusion.
In this perspective, we propose an “Al-first” strategy for multimodal data integration
that aligns data structuring, harmonization, and modeling within a unified set of guid-
ing principles to optimize modern Al development, while remaining flexible enough to

support classical analytical approaches.
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Highlights

* Understanding and managing ADRD requires integrating biological, cognitive, and
behavioral data across multiple modalities.

* Incorporating multiple modalities requires new standards for harmonization and
interoperability.

* Current data platforms are not necessarily built to support multimodal fusion or
generalizable Al models across diverse ADRD populations.

* Modern Al models are capable of learning from messy, multimodal, and incomplete
data but require infrastructure designed for this purpose.

* We propose rethinking ADRD data systems to prioritize Al compatibility, enabling
scalable tools for early diagnosis and longitudinal care.
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1 | INTRODUCTION

Accurate diagnosis, monitoring, and management of Alzheimer’s dis-
ease and related dementias (ADRD) require the integration of mul-
timodal data spanning biological, cognitive, and functional domains
(Figure 1A). No single test or assessment can independently capture
the full complexity of the disease.! Instead, meaningful insight emerges
when diverse signals, from neuroimaging and neuropsychological test-
ing to blood-based biomarkers and real-world behavioral data, are
interpreted together. This multimodal approach reflects the insidious,
multifactorial nature of ADRD and offers a pathway toward more
precise, timely, and individualized care, particularly when enabled by
artificial intelligence (Al) systems capable of synthesizing complex
inputs. This need for integration has become more urgent as the field
enters a transformative era. The emergence of disease-modifying ther-
apies brings the possibility of slowing neurodegenerative processes,
but it also demands earlier detection, more dynamic disease monitor-
ing, and personalized intervention strategies. These advances pose a
fundamental challenge: How can we adapt our data structures and
analytical methods to support clinically meaningful and generalizable
insights?

Over the past two decades, the field has made considerable progress
in collecting and analyzing rich, clinically validated data. Neuroimaging,
cerebrospinal fluid (CSF) and plasma biomarkers, and structured cog-
nitive assessments remain central to disease staging and progression
modeling. More recently, a wave of emerging data sources, includ-
ing wearable sensors, speech and language processing, and passive
monitoring, has expanded opportunities to observe individuals in their
everyday environments.? These technologies promise to complement
traditional assessments by enabling continuous and ecologically valid
measures of cognition and function. Yet, as the diversity of data modal-
ities expands, so too does the complexity of integrating them. Each
modality differs in collection methods, granularity, missingness pat-
terns, and contextual constraints. Neuroimaging is high-resolution but
infrequent and expensive; digital sensing is longitudinal but noisy
and requires engagement from the patient; plasma biomarkers are
scalable, but their performance varies depending on the analyte and
assay technology used. Integrating these data streams for large-scale
analysis remains a non-trivial, resource-intensive task that exposes
fundamental limitations in how current data systems are designed.

Despite ongoing efforts to standardize and harmonize ADRD data,
most data infrastructure remains siloed within individual cohorts or
specific modalities and was not designed to support multimodal, mul-
ticohort analyses or modern Al-model development. Few support
tasks like multimodal fusion, prediction under partial data missing-
ness, or generalization across diverse populations and clinical settings.
As richer and more varied data types are incorporated, it becomes
insufficient to retrofit current integration solutions. In this evolving
landscape, what is needed is not simply more data but infrastructure
intentionally designed to make existing data useful. This is espe-
cially important given two realities. First, real-world data, which are
often messy, incomplete, and multimodal, vastly outnumber curated
research datasets. For instance, there were approximately one bil-

lion office-based physician visits in the United States in 2019 alone.>
This stands in stark contrast to the tens of thousands of individuals
enrolled in research cohorts, underscoring the broad reach of routine
clinical care compared to research participation. Second, modern Al
models have demonstrated a remarkable ability to learn from such
complex and imperfect data.* Translating such approaches to ADRD
populations, however, requires addressing unique ethical, technical,
and infrastructural challenges: ADRD develops over long timescales
and often without acute manifestations, in contrast to diseases in other
branches of medicine, where Al adoption has been more widespread.
For example, unlike oncology, where diagnosis and staging largely
rely on tissue biopsies and well-characterized molecular markers
that provide a clear reference standard, ADRD diagnosis relies on
neuropsychological tests and expert clinical evaluations, which are
inherently subjective. ADRD also encompasses a wide spectrum of dis-
ease subtypes and clinical presentations, often complicated by other
age-related systemic disorders, thereby making standardized data col-
lection and organization difficult. Among these considerations, the lack
of interoperable, Al-ready data infrastructure stands out as the most
actionable.

In this perspective, we introduce the tenets of an Al-first approach
to multimodal data integration for ADRD. This approach aligns data
structuring, harmonization, and modeling within a unified framework,
defined as a set of guiding principles and requirements designed from
the outset to meet the needs of modern Al systems while remaining
flexible enough to accommodate traditional analytical approaches. An
Al-first strategy emphasizes the intentional co-design of data orga-
nization, metadata annotation, and analytic workflows to ensure the
resulting infrastructure natively supports Al applications across het-
erogeneous multimodal ADRD data. Existing solutions typically focus
on either organizing and harmonizing specific data modalities or devel-
oping user-friendly platforms, often without resolving the cross-cohort
semantic and structural mismatches that hinder true integration. In
contrast, our perspective advocates for unifying these elements within
asingle, interoperable system.

Here, we explore the technical and clinical challenges of this shift
and outline how it can enable the development of scalable Al tools for
early detection, diagnosis, and long-term care in real-world settings.
We envision a future where rich ontology-driven metadata simplify
harmonization, annotated missingness allows models to reason about
data gaps, and data systems become adaptive, co-evolving with the
capabilities of Al systems themselves. To familiarize the reader with
Al-related jargon, we present a collection of terms with definitions in
Table 1.

2 | DATA LANDSCAPE IN ADRD

2.1 | Clinical practice: sequential acquisition and
pragmatic constraints

In clinical settings, ADRD diagnostic tests are typically administered

sequentially and selectively, guided by clinical judgment, the patient’s
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presentation, financial considerations such as insurance barriers, and
logistical constraints such as limited availability of specialized testing.
A primary-care provider (PCP) may first suspect cognitive impairment,
triggering areferral to a neurologist, who then determines the need for
further evaluations, including neuropsychological testing, neuroimag-
ing, and biomarker testing, as indicated. Each step is contingent on prior
findings, insurance coverage, and patient or family preferences. For
example, a patient with prior spinal surgery or significant agitation may
be unable to undergo CSF collection, while another with contraindica-
tions to magnetic resonance imaging (MRI) may forgo neuroimaging.
This pragmatic, stepwise workflow prioritizes clinical actionability over
data comprehensiveness by design. Although optimized for clinical pur-
poses, the fragmented and unstructured nature of these data typically

makes it hard to use traditional statistical techniques for analysis.

2.2 | Research cohorts: deep phenotyping versus
ecological validity tradeoffs

In contrast, large cohort studies or clinical trials, including the
National Alzheimer’s Coordinating Center (NACC),®~® the Framing-
ham Heart Study (FHS),? the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI),20-12 and the Anti-Amyloid Treatment in Asymptomatic
Alzheimer’s (A4) study, collect data through rigid, protocol-driven
workflows, designed for cohort-level data standardization and sci-
entific rigor. Participants undergo comprehensive neurological and
physical exams, neuropsychological assessments, and functional eval-
uations to establish clinical diagnoses based on the consensus of
dementia experts. High-resolution MRI scans are often collected to
quantify various neuroimaging features. Additionally, amyloid, tau,
and fluorodeoxyglucose positron emission tomography (PET) provide
insights into in vivo disease pathology.'® These modalities are often
complemented by fluid biomarkers, such as CSF and plasma measure-
ments, and multi-omic profiles, all of which offer extensive biological
characterization of disease.’*1¢ The result is deeply phenotyped
datasets that enable precise modeling of disease mechanisms. How-
ever, the tight inclusion criteria and controlled protocols that produce
these data often exclude participants with comorbidities or atypi-
cal presentations, creating “clean” datasets that poorly represent the

heterogeneity of clinical populations.

2.3 | Emerging data streams: attempting to bridge
the translational divide

Models developed on homogeneous cohorts often fail to generalize
to clinical settings where missingness is unpredictable, comorbidities
are common, and workflows are sequential. Emerging digital health
technologies (DHTs) offer an opportunity to bridge this divide, intro-
ducing continuous, real-world data streams in the research landscape.
Wearable devices can capture gait patterns, physical activity lev-
els, and physiological measures such as sleep cycles and heart rate.
Speech analysis can identify subtle changes in cognition.}”18 Self-
administered digital cognitive assessments can also allow remote,

repeated monitoring of participants,?2°

paving the way for acquir-
ing data from a broader, more diverse population that is traditionally
not well represented in research cohorts. Integrating these novel data
streams creates a multidimensional view of ADRD and bridges the
granularity of research-grade biomarkers with more ecologically valid
data. However, their promise will only be realized if models are trained
and validated on integrated datasets that reflect the diversity and

complexity of real-world populations.

3 | DATA PREPARATION APPROACHES IN ADRD

3.1 | Data pooling is useful

To address the reproducibility and generalizability limitations of siloed
datasets, pooling multimodal data across ADRD studies is essential.
Data pooling addresses these challenges through several mechanisms.
First, combining datasets increases statistical power: Studies relying
on small sample sizes are more likely to suffer from sampling vari-
ability, making the strength and direction of reported associations
difficult to replicate. Second, pooling enhances sample diversity across
demographic subgroups and medical comorbidities. Pooling is espe-
cially valuable for studying rare diseases, such as Huntington’s, and
less common presentations, such as the logogenic variant primary pro-
gressive aphasia, which would be infeasible to investigate at scale
in single-cohort analyses. Ultimately, pooled datasets better reflect
the underlying variability in ADRD, thus improving external valid-

ity and generalizability. However, pooling alone is insufficient: Naive

FIGURE 1

Framework to support Al-driven research and translation in ADRD. To develop scalable, trustworthy, and clinically actionable Al

models that reflect the multifactorial complexity of dementia, data systems must be findable, accessible, interoperable, and reusable. (A) Modern
ADRD research relies on a range of heterogeneous data types, including traditional clinical inputs (e.g., medical history, neuroimaging). Additional
insights can be captured through omics technologies and emerging data streams such as speech, sensory-derived activity metrics, and digital
cognitive assessments. Post mortem data remain essential for validation. (B) Multimodal ADRD data integration requires systematic alignment of
heterogeneous data from multiple cohorts, addressing four critical challenges: technical alignment, semantic alignment, batch correction, and QC
paired with EDA. This systematic approach transforms siloed, cohort-specific datasets into integrated, analysis-ready data structures. (C) Effective
Al systems for ADRD must accommodate varied data modalities, including tabular data, images, time-series data, and unstructured text. Classical
machine learning methods are typically modality-specific and sensitive to data missingness (SVM). Deep learning approaches enable greater
representational power, with some methods (CNN, GNN, RNN) being useful for single-modality tasks, while others can integrate multimodal and
multitask inputs (LLM, VLM). ADRD, Alzheimer’s disease and related dementias; Al, artificial intelligence; CNN, convolutional neural network;
EDA, exploratory data analysis; GNN, graph neural network; LLM, large language model; RNN, recurrent neural network; SVM, support vector

machine; VLM, vision-language model; QC, quality control.
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TABLE 1 Glossary of technical terms.

API

CNN, RNN, GNN

Data infrastructure

Data lake

Data warehouse

Deep learning

FAIR data principles

Feature engineering

Federated learning

Generalizability

Generative Al

Graphical processing unit (GPU)

Interpretable Al

Masked modeling/feature masking

Multilabel classification

Multimodal fusion

Ontology

Regularization

Scalability

Structured querying

A set of rules and communication standards that allow different software systems to communicate and share
data.

Popular deep learning architectures specialized in processing images (CNN), sequential data (RNN), or graphs
(GNN).

Systems and resources that enable the collection, storage, management, integration, processing, and accessibility
of data. This includes hardware (servers, storage devices), software (databases), standards, and governance
policies.

Storage system designed to hold large amounts of data in their native format. It allows flexible data access and
analysis without predefined organization.

Storage system designed to store and organize structured data. Unlike a data lake, it uses a predefined schema to
ensure consistency and faster querying.

A subset of ML that uses neural networks with many layers. It excels in tasks like image recognition, speech
processing, and natural language understanding.

Guidelines to make data Findable, Accessible, Interoperable, and Reusable. They ensure that data can be
effectively used by both humans and machines.

The act of building variables out of simpler ones (e.g., a risk score). A key advantage of deep learning is that it
requires only minimal feature engineering compared to traditional methods.

Computational approach where models are trained in a decentralized way without sharing source data.

Aresult is generalizable if it applies to both the sample under study and the population it is from, or similar
populations.

Collection of Al techniques capable of creating new content, such as text or images, by learning patterns from
existing data (e.g., large language models).

Specialized processor, designed for applying the same operation across multiple data elements at the same time.
Enables ML analysis of large datasets (e.g., omics, imaging) with greater efficiency.

Al systems that are designed to explain not only what their prediction is, but how they reached it.

A technique where parts of input data are hidden, and the model learns to predict the missing pieces. It helps
models learn from unlabeled data and become robust against missingness.

A type of classification where each data point can belong to multiple categories at once. For example, a medical
image might be labeled with multiple diagnoses.

The act of combining qualitatively different data (e.g., imaging and text). The fusion is “early” if the modalities are
combined before any significant processing and “late” if they undergo notable transformation independently.

A structured framework that organizes knowledge into categories and defines relationships between them. In Al,
it helps machines interpret and use complex information consistently.

ML technique that reduces overfitting by adding a penalty to a model’s complexity. It helps improve the model’s
performance on new data.

The ability of a system to handle increased workload efficiently, without prohibitive cost or waiting times.

The process of using a structured language (e.g., SQL) to retrieve and manage data from databases.

Note: This glossary outlines key technical concepts relevant to Al-powered, multimodal frameworks for ADRD.
Abbreviations: ADRD, Alzheimer’s disease and related dementias; Al, artificial intelligence; API, Application Programming Interface; CNN, convolutional
neural network; FAIR, Findable, Accessible, Interoperable, and Reusable; GNN, graph neural network; ML, machine learning; RNN, recurrent neural network.

aggregation of heterogeneous data creates new challenges that

require systematic technical and semantic alignment.

32 |

Multimodal data integration processes face foundational harmoniza-
tion challenges, ranging from simple syntax differences in cohort-
specific data dictionaries to protocol misalignments and operational-
ization differences in clinical definitions. These barriers are exacer-

bated by non-biological variability, such as site effects, and extensive

Barriers to large-scale multimodal integration

data missingness,2! particularly for biomarker and neuropsychological
tests. This presents a challenge and an opportunity: While misalign-
ment across cohorts complicates predictive modeling efforts, it also
enables researchers to innovate on methods that robustly handle
heterogeneous missingness patterns and protocol variations, yield-
ing models with greater real-world applicability. Successfully lever-
aging this opportunity, however, requires tackling the cross-cohort

) W

data’s “Tower of Babel” through carefully designed data management

strategies.

Harmonization challenges are particularly pronounced in

quantitative analyses of neuroimaging data. Scanner models,
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acquisition protocols, reconstruction algorithms, and image pro-
cessing pipelines all influence quantitative imaging measures in unique
ways.2? For instance, PET imaging is affected by variations in radio-
tracer properties, reference regions, and partial volume correction
methods. While standardization efforts such as the Centiloid and
CenTaur scales for amyloid and tau PET have improved cross-study
comparability, 2324 they still cannot fully capture non-linear biological
variation or harmonize across all technical parameters. Similarly,
methodological variability in fluid biomarker measurements affects
multicohort analyses. CSF and blood measurements, for example, are
highly sensitive to assay technology, analyte properties, and study
protocols.?>

The emergence of digital technologies introduces yet another layer
of complexity. Actigraphy devices differ in step-count algorithms,
speech analysis tools vary in sampling rates,2¢ and cognitive assess-
ments administered via tablet versus personal computer are influenced
by hardware-specific latencies. Further variability arises from differ-
ences in software versions, environmental factors, and adherence
rates, which impact data quality and performance measures. Differ-
ences in data formats and limited interoperability between digital
health platforms hinder seamless integration, making it difficult for
clinicians and researchers to access and meaningfully interpret data

from multiple sources.

3.3 | DIY data integration

Integrating multimodal, multicohort data into an analysis-ready for-
mat requires extensive preprocessing (Figure 1B). This effort demands
not only domain knowledge but also data science expertise and access
to computational resources. Broadly, the process involves two overar-
ching phases: technical alignment, which ensures data from different
sources are interoperable, and semantic alignment, which ensures that
the meaning and context of variables are consistent. In the technical
alignment phase, the goal is to address compatibility across cohorts by
unifying variable naming conventions, standardizing coding schemes,
and ensuring consistent scales and units. For instance, a researcher
might want a variable indicating cognitive status to be labeled consis-
tently, with values such as “0” always referring to normal cognition and
“1” to impairment. In contrast, semantic alignment tackles the concep-
tual definitions underlying different variables. For example, definitions
of “cognitive impairment” may vary across cohorts: Some may include
amnestic mild cognitive impairment, others non-amnestic forms or
even early dementia. These semantic mismatches extend beyond
cognitive assessments. Differences in radiological reads, biomarker
thresholds, or neuropathological grading systems can further com-
plicate integration. Without resolving such semantic inconsistencies,
model development risks generating invalid or non-generalizable find-
ings. Additionally, batch effects, defined as the artificial variability
introduced by hardware or software differences across cohorts, are
also common in neuroimaging and omics data. Statistical harmoniza-
tion methods like ComBat are frequently used to mitigate these effects

while preserving meaningful biological variation.?”

While these alignment efforts are critical, they also represent a bot-
tleneck in multicohort ADRD research. Manual mapping of taxonomies
and ontologies is time-consuming and requires collaboration between
clinicians, informaticians, and statisticians. However, once achieved,
these harmonized datasets offer a strong foundation for developing
analytical strategies that can more effectively uncover patterns related
to ADRD mechanisms and heterogeneity.

4 | MODELING APPROACHES IN ADRD
RESEARCH

4.1 | Inferential statistics

Traditional analytic approaches in ADRD research have largely relied
on inferential statistics, with separate processing pipelines developed
to extract information from each data modality independently. For
example, voxel- and surface-based morphometry have been standard
methods for quantifying brain structure and pathology from MRI
scans.2827 Genetic data are typically analyzed through genome-wide
association studies®® and calculation of polygenic risk scores,3! while
cognitive performance is often summarized using composite cognitive
domain z-scores that can abstract performance across multiple tests.32
Despite their clinical relevance, variables such as medical history and
medication use remain underutilized, with biomarker-focused analyses
dominating recent literature.

Statistical models serve as foundational tools for hypothesis test-
ing and population-level inference. Their interpretability is a strength:
Model coefficients can be tied to specific predictors, and confidence
intervals provide estimates of uncertainty. Linear and logistic regres-
sion, as well as mixed-effects models, perform well when assumptions
about variable distributions hold and data dimensionality is modest.
However, their limitations become evident when applied to modern
ADRD datasets that are high-dimensional, multimodal, and incom-
plete. They struggle to accommodate irregular longitudinal follow-ups,
non-linear associations, or dependencies among diverse data types.
Currently, there is no consensus on optimal analytic strategies for
datasets with irregular sampling and complex missingness patterns,
which underscores the need for innovative approaches. Richly anno-
tated, flexible data structures that preserve temporal granularity and
explicitly capture reasons for missingness are essential for enabling
novel analytic methods that can operate under less restrictive assump-

tions and harness the full complexity of contemporary ADRD data.

4.2 | Classical machine learning in cohort studies

Machine learning (ML) methods have increasingly been used in ADRD
research to support classification, subtyping, and disease progres-
sion modeling.3% These approaches are attractive because they can
accommodate “wide” data, which are datasets with many variables
per sample, and process heterogeneous inputs that do not meet

the assumptions of classical statistical models. This is especially



JASODANAND ET AL.

Alzheimer’s &Dementia® | 7or1a

important in ADRD, where diagnosis is complicated by symptom over-
lap across dementias, within-disease heterogeneity, and comorbid
conditions that obscure disease-specific signals.* With access to large,
deeply phenotyped cohorts like NACC, which includes hundreds of
variables ranging from neuropsychological testing to autopsy findings,
ML offers a way to integrate multifaceted data into actionable outputs.

Derived measures from imaging, cognitive, and demographic data
have been used in traditional supervised ML models to improve ADRD
classification and progression prediction. Unsupervised approaches
such as Subtype and Stage Inference (SuStaln) have also been
employed to characterize disease heterogeneity and dynamics across
patients.35 However, traditional ML models face limitations. Most are
trained on AD-centric “clean” datasets, leading to suboptimal per-
formance in real-world applications involving mixed pathologies and
frequently incomplete or missing data.3¢ Additionally, these models
are vulnerable to overfitting in high-dimensional spaces, necessitating

complex feature selection, regularization, and tuning strategies.

4.3 | Modern Al approaches

Recent Al advances, particularly deep learning (DL) and generative
Al, are helping overcome many limitations of traditional analytic
methods.3”~4% Unlike classical ML models, which rely heavily on engi-
neered features and complete datasets, DL architectures can learn
directly from raw or minimally processed inputs. Models such as convo-
lutional neural networks, recurrent neural networks, transformers, and
graph neural networks are now used to process diverse inputs, includ-
ing MRI, PET, genetic data, voice recordings, wearable device data,
and electronic health records (EHRs) (Figure 1C). A key innovation in
these approaches is their ability to handle missing data natively. Tech-
niques such as random feature masking, attention mechanisms, and
uncertainty-aware inference allow these models to learn even when
parts of the input are missing. This is crucial in ADRD, where missing-
ness may not be random, as patients with cognitive decline are more
likely to skip follow-up visits or certain assessments, making standard
imputation approaches invalid.

Generative Al, particularly large language models (LLMs), is further
expanding the landscape. LLMs are already being used in drug discov-
ery to prioritize targets, in clinical trial design for cohort matching and
safety monitoring, and in EHR systems to summarize clinical notes and
suggest differentials. For example, OpenEvidence can automatically
extract and synthesize guidelines and generate diagnostic hypothe-
ses. A new frontier is emerging with agentic Al, as semi-autonomous,
goal-oriented Al systems can plan, collaborate, and even drive scien-
tific discovery with expert human guidance. A recent example includes
Virtual Lab,*! an Al-human collaborative platform to not only perform
scientific research but also enable discovery. Such advanced Al systems
are poised to become transformative tools in ADRD research as well.

However, this potential depends critically on well-designed data
infrastructures. Despite recent Al advances in other fields, real-world
applications in ADRD remain challenging. Current cohort infrastruc-

tures in ADRD are not built for Al: Data are often fragmented, poorly

THE JOURNAL OF THE ALZHEIMER’'S ASSOCIATION

annotated, and siloed across institutions. Even the most advanced
models will underperform if trained on biased or small datasets. Thus, a
shift toward Al-first data architectures is essential, designing data sys-
tems from the ground up to support model training and the Findable,

Accessible, Interoperable, and Reusable (FAIR) principles.*243

5 | THE CASE FOR AN AI-FIRST DATA
STRUCTURE

5.1 | Past and ongoing data integration efforts

To fully realize the potential of modern Al approaches, data integration
is essential. Pooling, alignment, and harmonization are currently time-
consuming steps that researchers must complete before unlocking the
benefits of large-scale integrated datasets. Figure 2 presents the key
distinctions between these processes, illustrating how each addresses
different challenges in transforming heterogeneous data into analysis-
ready formats. Encouragingly, significant progress has already been
made in standardizing tabular and textual data through initiatives such
as the Observational Medical Outcomes Partnership (OMOP),** Med-
ical Subject Headings (MeSH), SNOMED CT,*> Logical Observation
Identifiers Names and Codes (LOINC),*¢ and Health Level 7 (HL7).
These efforts have established foundational taxonomies and ontolo-
gies that promise consistent data capture, sharing, and analysis across
clinical and research domains.

In neuroimaging, the Brain Imaging Data Structure (BIDS) repre-
sents a major advancement.*’ It provides standards for organizing and
sharing imaging data by enforcing metadata requirements and direc-
tory structures. Built upon widely adopted formats like Digital Imaging
and Communications in Medicine (DICOM) and Neuroimaging Infor-
matics Technology Initiative (NIfTI), BIDS has facilitated large-scale,
multisite collaborations and streamlined data exchange. Although
extensions of BIDS to other data types are emerging, its current
use is still largely concentrated in imaging applications. As neuro-
science research increasingly integrates diverse data types, the need
for similarly robust standardization beyond neuroimaging is apparent.

In the context of ADRD, the Uniform Data Set by NACC provides a
compelling example of clinical data harmonization® and support of lon-
gitudinal analyses at scale. Collaborations with the Alzheimer’s Disease
Sequencing Project (ADSP), the Phenotype Harmonization Consor-
tium (PHC), and the National Institute on Aging Genetics of Alzheimer’s
Disease Data Storage Site (NIAGADS) have enabled meaningful inte-
gration of clinical phenotypes with genomic and sequencing data. Still,
as data types grow in diversity and complexity, additional consid-
erations emerge, particularly when aggregating multimodal datasets
from multiple sources. For example, integrating NACC and ADNI, two
of the most widely used ADRD cohorts, presents both opportuni-
ties and challenges. Each cohort has developed its own infrastructure
for data management and access, NACC offers consolidated CSV
file downloads, while ADNI utilizes a distributed file system via the
Laboratory of Neuro Imaging. These independent systems reflect

thoughtful, long-standing design choices, but do not yet support a
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FIGURE 2 Keycomponentsin multimodal ADRD data integration. The framework illustrates four distinct but interconnected processes of
data integration: organized in concentric layers from the processes’ goals (outer ring) to specific examples (middle ring) and operational roles
(inner ring) in the data pipeline. Pooling (orange) focuses on data aggregation from multiple sources to enable centralized access. Technical
alignment (purple) addresses syntactic and structural compatibility by standardizing variable names and file formats to ensure data ingestion.
Semantic alignment (pink) ensures conceptual consistency by mapping definitions and clinical criteria to ensure consistent interpretation across
studies. Statistical harmonization (blue) removes systematic batch effects while preserving the biological signal for statistical analyses. Although
these processes are complementary, each addresses distinct challenges in transforming heterogeneous multicohort ADRD datasets into

analysis-ready formats. ADRD, Alzheimer’s disease and related dementias.

unified, cohort-agnostic data access model. These challenges are not
unique to ADRD research. Similar complexities arise in other scien-
tific domains and the private sector, where integration strategies such
as data lakes (for storing unstructured raw data), data warehouses
(for structured querying), Application Programming Interfaces (APIs),

and standardized exchange protocols have proven helpful. Such prin-

ciples are increasingly reflected in emerging research platforms in
the ADRD field. For instance, Synapse, the AD Workbench, and the
Global Alzheimer’s Association Interactive Network (GAAIN) offer
credentialed access to curated datasets and support secure, cloud-
based analysis. Another recent development is the Global Research

and Imaging Platform (GRIP), which provides a modular cloud-based
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platform for multimodal data analysis through tools such as Jupyter
Notebooks and RStudio. They offer unified access and analysis within
their respective ecosystems. Yet integrating data across platforms
and studies still requires substantial effort, as no single, overar-
ching data organization and access system has yet been widely
adopted across all modalities. As a result, researchers often work with
aggregated datasets that still necessitate cross-cohort mapping and
harmonization.

Differences in data governance models also influence integration
efforts. Each platform has varying policies on data access and usage,
which may affect where and how analyses are conducted. Some plat-
forms, like the AD Workbench, allow external dataset imports, while
others, such as GAAIN, do not, reflecting differing priorities and insti-
tutional requirements. In addition, while these platforms support tra-
ditional statistical analyses, few currently provide access to graphical
processing unit resources, which limits their utility for developing and
deploying modern Al models. Taken together, these observations high-
light the need to develop Al-first data structures that prioritize mul-
timodal integration and cross-cohort interoperability from the outset.
Finally, we acknowledge that while international collaboration is cru-
cial for an unbiased understanding of ADRD and to prevent research
fragmentation, it has challenges: Integrating data across national bor-
ders requires complying with multiple regulatory standards (i.e., HIPAA

and GDPR), which adds another layer of complexity.

5.2 | Our perspective

To support effective applications of Al in ADRD, multimodal data inte-
gration must be grounded in an Al-first design philosophy. Rather
than treating data integration and model development as separate
processes, this perspective emphasizes the need for data structures
that are co-designed with the requirements of modern Al systems in
mind. For instance, using technologies such as REST APIs layered on
traditional SQL databases allows researchers to flexibly and securely
query distinct but linked data tables with only a few SQL commands
(Figure 3). A researcher interested in examining cognitive scores and
MRI scans for specific diseases over time would pull together neu-
roimaging metrics and cognitive test results, with specified longitudinal
patterns through coordinated queries across SQL databases and object
stores. SQL databases efficiently store structured tabular data, while
object stores can handle large files, such as neuroimaging DICOMs,
actigraphy, voice recordings, and omics data. Object stores can con-
tain raw and processed data, as well as computed embeddings. By

extending concepts from the scverse8

ecosystem in single-cell biology,
we propose organizing participant data into richly annotated, multi-
modal container objects, inspired by data structures such as AnnData
and MuData.*? These objects encapsulate not only raw and pro-
cessed data across modalities, including imaging, omics, and clinical, but
also detailed participant- and feature-level metadata on provenance,
acquisition parameters, missingness reasons, and processing methods
applied, if any. This layered, machine-readable organization enhances

interoperability and supports flexible subgrouping of data based on sci-
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entific questions, while also facilitating scalable, reproducible analyses
and Al model development.

Consider a 72-year-old patient enrolled in a longitudinal ADRD
study (Figure 4): She provides a baseline MRI, plasma biomarkers,
speech samples, and intermittent actigraphy via a smartwatch but
declines lumbar puncture and misses a follow-up scan. In an Al-first
structure, this patient’s data are organized to preserve modality-
specific detail, temporal context, and reasons for missingness. As
described earlier, structured tabular data reside in SQL databases,
while neuroimaging DICOMSs, speech recordings, and actigraphy files
are stored in object stores alongside computed embeddings and pro-
cessed versions. The goal is to bridge the expanding diversity of ADRD-
related data with models that can operate across modalities, handle
partial or evolving inputs, and generalize to real-world environments.
An Al-first data structure is not merely a cleaned or standardized
dataset; it is a framework for organizing, encoding, and contextualiz-
ing information in ways that directly support learning from complex,

multimodal data. What follows is an outline of its key characteristics.

1. Privacy-aware by design. An Al-first data structure for ADRD must
incorporate privacy as a foundational design principle. As mul-
timodal data in ADRD increasingly include sensitive personal
information such as neuroimaging scans, passive behavioral met-
rics, speech recordings, actigraphy, and genomic profiles, ensuring
privacy is not just a regulatory obligation but a prerequisite for
trust, participation, and long-term scalability. Unlike traditional
data models that separate privacy controls from the structure of
the data themselves, an Al-first approach embeds privacy, con-
sent, and governance metadata directly into the data architecture.
For instance, in a MuData container, variable (var), and obser-
vation (obs) annotation fields can carry structured indicators of
sensitivity, provenance, and permissible use. Such modular, policy-
aware metadata enable dynamic control over what data can be
accessed, by whom, and for what purpose. This is especially impor-
tant in longitudinal ADRD studies, where consent may evolve as
cognitive status changes. This design also supports scalable col-
laboration: By enabling fine-grained access control through the
API layer, privacy-aware data architectures can facilitate secure
multi-institutional research. Moreover, they lay the groundwork
for future integration with privacy-preserving analytic techniques
such as differential privacy or federated learning, without requir-
ing datasets to be retrofitted or re-engineered. In practice, when a
researcher queries the system for a patient’s actigraphy and demo-
graphics data, the system should recognize their authorization level
based on their access tokens and embedded metadata to provide
streamlined approval to access the data. If their level of access
later changes through an Institutional Review Board amendment or
the patient revoking consent to sharing actigraphy data, the meta-
data should be updated to reflect such changes in the resulting
multimodal object.

2. Modality-agnostic, input-flexible, and clinically interoperable. An Al-
first data structure must be designed to accommodate the inher-

ent variability of real-world ADRD data. Rather than requiring
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FIGURE 3 Al-first multimodal data infrastructure supporting flexible access to ADRD research data. This diagram illustrates the data flow in
an Al-centric multimodal infrastructure tailored for ADRD research. User requests are routed through an API gateway with integrated identity
governance for fine-grained access control and consent management. The system retrieves structured tabular data, such as demographics, clinical
data, and derived imaging measures, from SQL databases and unstructured files, including imaging, actigraphy, speech, and omics sequencing, for
example, from object stores, preserving temporal context, missingness metadata, and semantic annotations. Data progress through raw
preparation, processed stages with algorithm application for insight extraction, and numerical embeddings (e.g., vectors for machine learning).
They are then consolidated into multimodal objects like MuData, following standard conventions: participant-level identifiers in obs, cross-modal
variable-level metadata (including provenance, protocol parameters, and privacy levels) in var, and joint embeddings (e.g., principal component
analysis- or convolutional neural network-based representations) in obsm. Modality-specific AnnData objects, such as those for cognitive and
imaging data, include measurements in X matrices (e.g., FreeSurfer brain volumes or cognitive test scores as derived measures), session metadata
in obs (e.g., scan parameters, test versions), feature annotations in var (e.g., brain regions, test domains), and processing variants in layers (e.g.,
raw, normalized, harmonized). Final serialization outputs Al-ready formats (e.g., JSON, HDF5, Parquet) that maintain temporal alignment, explicit
missingness encoding, and privacy metadata, enabling robust multimodal analysis, clinical interoperability, and scalable deployment in real-world
scenarios. ADRD, Alzheimer’s disease and related dementias; Al, artificial intelligence; API, Application Programming Interface.

complete, uniform data across all participants and modalities, the population-specific combinations of inputs. Equally important is
framework should treat each case as a flexible, modular data object clinical interoperability. To support real-world deployment, the data
with structured metadata indicating data availability and quality. structure should be compatible with standards such as HL7 FHIR or
In our example case, speech samples are available at irregularly OMOP-CDM, allowing seamless integration with EHRs. This inter-
spaced intervals, and the patient missed her follow-up MRI scan. operability is necessary to enable Al systems to not only operate in
A modality-agnostic and input-flexible design preserves all avail- research environments, but also at the point of care.

able data across both structured (SQL) and unstructured (object 3. Missingness is explicitly modeled, not hidden. In an Al-first data
stores) components, regardless of completeness, enabling Al mod- structure, missing data are not treated as a nuisance to be

els leveraging these data to learn from partial, asynchronous, and imputed away but as a meaningful signal to be modeled. Each
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FIGURE 4 A concrete example: One participant, many modalities. This figure illustrates the longitudinal, multimodal data collected from a
hypothetical 72-year-old participant in an ADRD study spanning 24 months. The participant contributes structured clinical, imaging, speech, and
wearable data at various time points, along with instances of missingness common in real-world settings. At month O and month 12, key measures
collected include demographics, APOE genotype, neuropsychological scores, and plasma biomarker levels (AB42/40 and p-tau217). A T1-weighted
structural MRl is collected at baseline but skipped at month 12 due to a scheduling conflict. Speech samples are collected at months 0, 6, and 12,
though the month 6 sample is corrupted. Daily actigraphy is captured consistently via a smartwatch with intermittent missingness, and the patient
declines lumbar puncture, resulting in missing CSF data. At month 24, the participant cannot be contacted, though she continues to wear her
smartwatch. In an Al-first approach, this patient is represented as a flexible multimodal object that includes structured inputs (e.g., actigraphy time
series, MRI-derived features), metadata on data quality, and a missingness mask with reason codes. This representation can be passed directly into
models such as multimodal transformers that learn to attend to available modalities, compensate for missing ones, and support downstream tasks
like diagnosis, stratification, and progression prediction. This example underscores how an Al-first data structure enables learning from partially
complete, heterogeneous data, rather than discarding them, thus improving robustness, inclusivity, and clinical relevance in ADRD modeling.
ADRD, Alzheimer’s disease and related dementias; Al, artificial intelligence; APOE, apolipoprotein E; CSF, cerebrospinal fluid; MRI, magnetic
resonance imaging.

data field carries structured metadata indicating the rea- provided in the variable-level metadata layer. Rather than being

son for absence, whether due to technical failure, patient
non-compliance, unavailability, or study design. This enables
downstream models to distinguish between types of missingness
and to apply appropriate strategies such as masked modeling,
attention-based weighting, or uncertainty estimation. In the
case of the 72-year-old patient introduced earlier, her data
are represented as a multimodal object with machine-readable
annotation layers that capture variable-level metadata about
reasons for missingness, such as (‘“MRI’’: ‘missing’’, ‘‘reason’’:
‘‘schedule_conflict’’) and ¢‘CSF_biomarkers’’: ‘“‘missing’’,
‘‘reason’’: ‘‘patient_preference’’). Temporal indices and data

quality indicators, such as actigraphy sampling fidelity, are also

excluded, missing instances are represented appropriately, and
models can be trained to attend to available inputs and learn to
compensate for missing ones.

. The data structure preserves temporal resolution and context. ADRD

progression unfolds gradually and non-linearly, with individuals fol-
lowing diverse and often unpredictable trajectories. To capture this
complexity, an Al-first data structure must preserve the tempo-
ral resolution and context of each data stream. It should retain
timestamps for each data element and modality independently. Al
models trained on this temporally aligned data can detect subtle
patterns such as declining sleep quality preceding measurable cog-

nitive decline or changes in speech coherence occurring before a
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drop in test performance. Either of these may be identified in our
example patient if the data are consistently timestamped using
established standards, such as ISO 8601, to maximize compatibility
and ease of collaboration. Such modeling is only possible if the tem-
poral structure is preserved from the outset, allowing Al systems to
reason not only about what was measured but also when and how it
evolved over time.

5. Co-designed with model architectures and task requirements. An Al-
first data structure is more than a container for multimodal inputs;
it is intentionally aligned with how Al models consume, inter-
pret, and learn from data. Each object is structured to match the
input interfaces of modern model architectures and common soft-
ware libraries (e.g., JSON, Apache Parquet, HDF5).°° In addition
to raw and embedded inputs, the data structure supports seman-
tic labeling, including, for example, symptom categories or disease
stages, for easier human readability and ontological alignment.
Metadata such as MRI scanner strength, blood sample process-
ing delay, or wearable device sampling rate are also encoded,
enabling models to adjust for variation in data quality through
uncertainty calibration or domain adaptation layers. By incorpo-
rating detailed and machine-readable annotations directly into the
data structure, we minimize friction between data curation and Al
deployment, supporting more robust, interpretable, and clinically

useful systems.

The foregoing points are proposed as guiding principles for design-
ing Al-first data structures, not as prescriptive solutions. The ultimate
design should be co-developed through collaboration among rele-
vant stakeholders. Although these principles can be implemented
at a small scale by individual researchers, their true value emerges
through upstream standardization. Ideally, large collaborative initia-
tives would collectively define and adopt data structures and inter-
faces aligned with these principles. This top-down alignment will
provide clear expectations for individual researchers and facilitate
broad adoption. Given the absence of a widely accepted approach to
modeling such complex data, we intentionally refrain from specify-
ing a single modeling approach, instead aiming to support a range of
methods.

6 | FUTURE OPPORTUNITIES

Despite advances in data collection and Al-driven analytics for ADRD, a
gap remains between research innovation and clinical implementation.
Bridging this divide will require the development of a resilient, scalable
datainfrastructure that can address missing data, harmonize heteroge-
neous sources, support population diversity, and improve model inter-
pretability. As the field shifts from controlled research environments
to real-world deployment, the ability of Al systems to operate under
conditions of uncertainty, partial input, and infrastructure variability
becomes critical. One area of opportunity lies in leveraging existing
large-scale infrastructures such as NACC. These resources already

serve as cornerstones for ADRD research and could be expanded to

support Al-first data integration. By layering Al-ready structures onto
these initiatives, researchers can prototype and validate models that
incorporate diverse data modalities while addressing real-world issues
such as data sparsity and inconsistent sampling. Future systems must
also be designed to integrate structured and unstructured data in ways
that reflect clinical reality. Al-first data structures make this integration
possible by embedding modality-specific detail, preserving tempo-
ral context, and explicitly modeling missingness. These capabilities
enable Al models to operate flexibly, learning from what is available,
down-weighting what is unreliable, and calibrating for what is missing,
while still delivering clinically relevant insights. Importantly, such sys-
tems must be adaptable enough to scale from high-resource research
environments to more variable settings such as primary care clinics.
Equally important is the need for reproducibility, transparency, and
alignment with FAIR data principles.*243 Incorporating these practices
into ADRD research infrastructure is essential for fostering collabora-
tion, regulatory compliance, and long-term sustainability. By grounding
future efforts in robust data infrastructures, Al-aligned data design,
and open science principles, the field is well positioned to accelerate
discovery, personalize treatment, and extend the reach of ADRD care

to more diverse and underserved populations.

7 | CONCLUSION

As the volume and complexity of ADRD data continue to grow, so does
the urgency of building systems capable of integrating this informa-
tion in meaningful ways. Existing data infrastructure efforts have laid
a strong foundation for harmonizing and analyzing multimodal data,
especially within well-curated cohorts. Building on this progress, we
offer a complementary perspective that aligns data structure design
with the unique demands of modern Al systems. An Al-first approach
treats missingness as informative, embeds privacy by design, preserves
temporal context, and supports direct ingestion of heterogeneous
inputs. It moves beyond curated datasets to embrace the full spectrum
of patient experiences, including those with partial or asynchronous
data. By structuring data for how Al learns, we can build more robust,
inclusive, and clinically useful tools capable of supporting diagnosis,

monitoring, and care across diverse real-world settings.
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