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Abstract: There is a continuous search for more reliable and effective alternatives to control
phytopathogens through different strategies. In this context, indole-containing phytoalexins
are stimuli-induced compounds implicated in plant defense against plant pathogens. However,
phytoalexins’ efficacy have been limited by fungal detoxifying mechanisms, thus, the research
on bioisosteres-based analogs can be a friendly alternative regarding the control of Fusarium
phytopathogens, but there are currently few studies on it. Thus, as part of our research on antifungal
agents, a set of 21 synthetic indole-containing phytoalexin analogs were evaluated as inhibitors against
the phyopathogen Fusarium oxysporum. Results indicated that analogs of the N,N-dialkylthiourea,
N,S-dialkyldithiocarbamate and substituted-1,3-thiazolidin-5-one groups exhibited the best docking
scores and interaction profiles within the active site of Fusarium spp. enzymes. Vina scores
exhibited correlation with experimental mycelial growth inhibition using supervised statistics, and
this antifungal dataset correlated with molecular interaction fields after CoMFA. Compound 24
(tert-butyl (((3-oxo-1,3-diphenylpropyl)thio)carbonothioyl)-l-tryptophanate), a very active analog
against F. oxysporum, exhibited the best interaction with lanosterol 14α-demethylase according to
molecular docking, molecular dynamics and molecular mechanic/poisson-boltzmann surface area
(MM/PBSA) binding energy performance. After data analyses, information on mycelial growth
inhibitors, structural requirements and putative enzyme targets may be used in further antifungal
development based on phytoalexin analogs for controlling phytopathogens.
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1. Introduction

Fungi from the genus Fusarium are very important because they have wide cosmopolitan-type
geographic distribution and high relevance for agriculture and economy [1]. Their diversity is quite
common in soils and many of them have the capacity to cause infectious diseases in different types
of crop plants. Additionally, some species can cause opportunistic infections in animals due to the
production of toxins that can affect them [1]. Genus Fusarium gathered phytopathogenic-behaved
species causing necrosis-associated diseases in several plants around the world. This fungus can
survive in the soil in mycelial or conidial forms during host absence. When a host is present,
the mycelium penetrates its roots, enters the vascular system (xylem) to move and multiply itself,
causing wilt symptoms. Soil-borne fungi Fusarium spp. can infects the host by using different
sets of genes for early host-plant signaling, as well as the binding and enzymatic decomposition of
antifungal compounds produced by plant for defense, in order to inactivate and kill host cells by
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fungal toxins [2]. In this context, some control strategies based on chemical, physical and cultural
methods have arisen to mitigate the negative effects of this phytopathogen to host plants. Chemical
treatments include formaldehyde applications to avoid disseminations as well as dazomet, sodium
methan, methyl isothiocyanate and systemic fungicides as benomyl, thiabendazon, carbendazim and
methylthiophanate [3]. Fusarium-caused diseases treatment by systemic fungicides, although it has
good effectivity, is also problematic, since these kind of treatments can become mutagenics for several
plants and these agents can also generate high degrees of resistance [3,4].

Plants involve a systemic defense mechanism involving some metabolites such as phytoalexins.
These metabolites are synthesized in adjacent areas of healthy cells to those damaged cells and they
are accumulated both in necrotic and susceptible resistant tissues [5]. In other words, they are strictly
produced in a site around the place where infection needs to be controlled. Thus, the resistance
occurs when one or more phytoalexins reach a high enough concentration to inhibit the pathogen
development [5]. However, some phytopathogens are recently described to exhibit strategies to invade
the plant tissues and obtain necessary nutrients for its growing and reproduction [1,2,4]. Despite
that plants are capable to synthesize specific antifungal metabolites, the fungi are capable to produce
particular enzymes in order to detoxify quickly and inhibit the phytoalexin activity. This detoxifying
capacity is described by Pedras et al. [6] as an “arms race” that advantaged the pathogen, causing
adverse effects in the crop. An example of the previous fact is the case of brassinin (an important
phytoalexin for crucifers due its dual potential as an antimicrobial defense and a biosynthetic precursor
of phytoalexin variety), since if this metabolite is inhibited by a fungal enzyme, the plant become
possibly more susceptible to be attacked by the phytopathogen [6]. Thus, the cruciferous invader L.
maculans (a devastating pathogen) can generate itself a detoxification defense against phytoalexins.
The mechanism is based on brassinin oxidase production, which catalyzes the brassinin oxidation
through the dithiocarbamate transformation into an aldehyde. This mechanism depends on direct
brassinin recognition by this enzyme. Therefore, exploration of brassinin analogs acting as bioisosteres
can be adopted as an important approach for the development of novel antifungals [7]. In this sense,
bioisosterism is generally a chemical strategy for the rational design of bioactives from structural
modifications of leads, whose action mechanism and chemical structure is therefore known. From
the above fact, it is possible to develop novel compounds with chemical and/or physical similarities
but producing identical or even better biological properties [7]. Therefore, as part of our research
on antifungals discovery and development, the present work was initially focused on the in silico
exploration, by molecular docking, on the interaction of a set of indole-containing phytoalexin
analogs within the active site of 25 enzymes reported to Fusarium spp. Subsequently, the integration
of the experimental antifungal activity (i.e., Fusarium oxysporum mycelial growth inhibition) and
docking scores datasets (by supervised multivariate statistics) as well as the three-dimensional (3D)
molecular descriptors and antifungal activity datasets (on the basis of 3D quantitative structure-activity
relationship (3D-QSAR) by comparative molecular field analysis (CoMFA)) led to recognize some
important hits, enzyme targets and structural requirements to be stated for the further development
of antifungals for controlling phytopathogens using phytoalexin-like analogs. Finally, some insights
into the binding mode of a 3-oxo-1,3-diphenylpropyl N-alkyldithiocarbamate-type analog and the
homology model of the transmembrane F. cerealis lanosterol 14-demethylase were also determined in
order to rationalize the antifungal activity of this type of synthetic phytoalexin analogs.

2. Results and Discussion

2.1. Test Indole-Containing Phytoalexin Analogs and Docking Protocol Validation

A set of 25 synthetic indole-containing compounds (1–25) (Figure 1) were obtained by our
previously reported reaction route from l-tryptophan [8] (Figure S1). Their IUPAC names are displayed
in the complementary material (Table S1). Such compounds were then chosen as test compounds owing
to their antifungal activity by inhibiting mycelial growth of F. oxysporum [8,9]. Thus, in order to explore
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and outline a further information related to the potential and putative targets of these compounds at in
silico level, docking simulations were therefore performed with 25 fungal enzymes (E1–E25) (Table A1
(Appendix A)), which were selected due to their significant associations on pathogenic and metabolic
performance of Fusarium spp.
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Figure 1. Structural classification of the test indole-containing phytoalexin analogs:
2-alkyl aminoesters (1–4), N,N-dialkylthioureas (5–8), 2-cyanoethyl N-alkyldithiocarbamates
(9–12), 3-methoxy-3-oxopropyl N-alkyldithiocarbamate (13–16), 2-methyl-4-oxopentan-2-yl
N-alkyldithiocarbamate (17–20), 2-oxo-1,3-diphenylpropyl N-alkyldithiocarbamates (21–24),
4-[(1H-indol-3-yl) methylene]-2-sulfanilidene-1,3-thiazolidin-5-one (25), brassinin (26).

Among the several in silico approaches for the study of active chemical agents from public
or in-house libraries [10], molecular docking was then selected due to the capacity to simulate the
binding mode of low-molecular weight compounds within the active site of enzymes and binding
pocket of receptors. This is a very important procedure for the prediction of putative targets, as the
first-line step in the search for plausible mechanism of action of active compounds [11]. However,
some problems/issues can arise and they should be taken into account for caution and concern during
structure-based screening [12], as well as the selection of suitable protocol for sampling and scoring
procedure to discriminate potential binders from non-binders using accurate parameters [13]. In this
regard, the molecular docking of the co-crystalized ligands (CCL) for each enzyme let us evaluate
the good performance of the docking protocol used, since this re-docking calculations resulted into
conformational root-mean-square deviation (RMSD) values < 1.0, indicating that our parameters were
suitable for docking. Additionally, this performance was also evaluated through a benchmarking
strategy using a set of decoys (n = 1125) and active compounds (n = 55) against five enzymes within test
set (i.e., isocitrate lyase, aspartate kinase, sereine esterase, lanosterol 14α-demethylase and trichothecene
acetyltransferase) having known inhibitors, retrieved from literature and databases. The sensitivity
and specificity of the docking protocol was assessed by calculation of the area under curve (AUC) from
receiver operating characteristic (ROC) curves [14]. This assessment of our docking protocol reached
true positive identification over 90% of the active compounds involving a recognition within 10% of the
test compounds (Figure 2a). Therefore, the validation of the docking protocol was considered successful,
since the AUC and the Boltzmann-enhanced discrimination of the receiver operating characteristic
(BEDROC) fell into 0.931–0.961 and 0.819–0.886 ranges, respectively (Figure 2b). Previously, such a kind
of validation let to the discovery of new chemotypes for inhibition of homoserine dehydrogenase [15],
as an indication of the importance of validating the docking protocols.
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Figure 2. Benchmarking of the docking protocol using a set of active compounds decoys against test
enzymes (red line = isocitrate lyase; green line = aspartate kinase; black line = serine esterase; purple
line = lanosterol 14α-demethylase; dark orange line = trichothecene acetyltransferase). (a) Receiver
operating characteristic (ROC). (b) Enrichment curve.

Once the parameters were adequately validated, each Merck molecular force field
(MMFF)-optimized structure 1–26 was docked into the active site of each enzyme using AutoDock/Vina.
The calculated affinities (as Vina scores, expressed in kcal/mol) of the resulting enzyme-ligand
complexes, for each enzyme and compound, were compiled as a data matrix summarized
in Table S2. This dataset revealed some trends around the affinity values as a result of
the simulated molecular interaction between analogs and enzyme targets, through the use of
descriptive and multivariate analysis. For this purpose, test compounds 1–25 were subdivided
into seven classes according to their moieties: alkyl 2-aminoesters (AAE) 1–4, N,N-dialkylthioureas
(NNDATU) 5–8, 2-cyanoethyl N-alkyldithiocarbamates (CE-DTC) 9–12, 3-methoxy-3-oxopropyl
N-alkyldithiocarbamate (MOPr-DTC) 13–16, 2-methyl-4-oxopentan-2-yl N-alkyldithiocarbamate
(MOPe-DTC) 17–20, 2-oxo-1,3-diphenylpropyl N-alkyldithiocarbamates (ODP-DTC) 21–24 and
4-[(1H-indol-3-yl)-methylene]-2-sulfanylidene-1,3-thiazolidin-5-one (IST) 25, along with brassinin
(26) as the reference phytoalexin [6].

2.2. Vina Scores-Related Trends

The affinity values for each ligand-enzyme complexes were compiled into a full data matrix.
A reduced dataset expressed as mean Vina scores ± standard deviation (SD)—after 10 independent
calculations—is exposed in Table S2. The SD for Vina scores exhibited good performance between
replicates, having coefficient of variation into the 5–15% range, although with some outliers. The
root-mean-square deviation (RMSD) of atomic positions for the best-ranked poses between replicates
exhibited excellent convergence (<1.0 Å). The lowest scores per enzyme and ligand were highlighted
in red. From these data, ODP-DTC, NNDATU and IST-type ligands were found to generate more
stable ligand-enzyme complexes with 13, eight and four enzymes, respectively. These resulting
Vina scores were analyzed by Pearson’s correlation (Table 1). Thus, the respective coefficients were
independently calculated between test compounds as well as among docked enzymes. Firstly, the
Pearson’s coefficients (Pc) for some pair of compound classes, according to their complete dataset of
Vina scores for all enzymes, exhibited values above 0.9. This correlation indicated a similar interaction
profile with the enzyme group.



Molecules 2020, 25, 45 5 of 19

Table 1. Values of Pearson correlation for subsets of test compounds.

CC a C1 C2 C3 C4 C5 C6 C7

C1 1.00
C2 0.699 1.00
C3 0.872 0.832 1.00
C4 0.926 0.731 0.901 1.00
C5 0.921 0.747 0.886 0.985 1.00
C6 0.647 0.626 0.627 0.678 0.724 1.00
C7 0.928 0.704 0.886 0.912 0.888 0.636 1.00
C8 0.728 0.444 0.670 0.693 0.671 0.446 0.694

a Compound classes: C1: alkyl 2-aminoesters (AAE); C2: N,N-dialkylthioureas (NNDATU); C3: 2-cyanoethyl
N-alkyldithiocarbamates (CE-DTC); C4: 3-methoxy-3-oxopropyl N-alkyldithiocarbamate (MOPr-DTC),
C5: 2-methyl-4-oxopentan-2-yl N-alkyldithiocarbamate (MOPe-DTC); C6: 2-oxo-1,3-diphenylpropyl
N-alkyldithiocarbamates (ODP-DTC), C7: 4-[(1H-indol-3-yl)-methylene]-2-sulfanylidene-1,3-thiazolidin-5-one
(IST); C8: brassinin.

Therefore, AAE exhibited similar performance with MOPe-DTC and IST, whereas MOPr-DTC
with AAE, CE-DTC, MOPe-DTC and IST. NNDATU and ODP-DTC exhibited coefficient values below
0.75 and 0.65, respectively, suggesting different trends in the molecular docking results in comparison
to the other compound classes. Regarding the Pc across enzymes (Table S3), 13 paired correlations were
detected with values above 0.8, which implies similar interaction profile according to the structural
variations of test compound set and therefore depending possibly by the size, shape and/or chemical
behavior of the active site of each enzyme and even enzyme family. For instance, the pairs E2–E3 and
E18–E19 were found to be correlated (Pc = 0.879 and 0.812, respectively) and they belong to the same
enzyme families, i.e., glycosyl hydrolase and nitroalkane oxidase families, respectively. This outcome
suggested good performance of the docking calculations in accordance with the good convergence
found in the output data. Additionally, E5 showed good correlation with E2 and E3 (Pc > 0.75), but E5
is part of a different enzyme family, i.e., transferase that catalyzes the transfer of an acetyl group to the
hydroxyl at C3 of several trichothecene-type mycotoxins [16]. In this sense, it is reasonable to consider
that such a tendency is owing to the presence of similar docking interactions between residues from
active site of different enzymes and the compound set. In Table S3 are highlighted those correlated
enzyme pairs from resulting Vina scores after docking that support these observations.

In order to observe the particular variation/distribution of Vina scores between enzymes and test
ligands, the respective box plots were also constructed using the whole dataset (Figure 3). Thus, 12
enzymes exhibited good reproducibility and low dispersion in the docking calculations for six types of
ligands, whereas AAE and CE-DTC showed more data scattering.

The best behavior was exhibited by ODP-DTC-type phytoalexin, excepting for E24, because two
outliers were produced for 21 and 22. A similar dispersion was also observed for other compound
type on interacting with specific enzymes, indicating precise structural requirements to interact
depending on the alkyl group at ester moiety. Concerning the best-docked complexes, MOPe-DTC and
CE-DTC-type ligands were associated to a best interaction with E18, whereas MOPr-DTC-type analogs
might inhibit putatively the enzymes E18 and E24. ODP-DTC-type compounds showed the best Vina
scores with E2, E17, E18 and E25. Regarding brassinin, its behavior was found to be comparable to
that of IST. These facts led to infer that significant differences in the structural interactions between
enzymes and test ligands would influence the capacity to form a stable complex.
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Figure 3. Boxplots for affinity values (as Vina scores in kcal/mol) after molecular docking
for test phytoalexin analogs. (a) 2-alkyl aminoesters (AAE), (b) N,N-dialkylthioureas
(NNDATU), (c) 2-cyanoethyl N-alkyldithiocarbamates (CE-DTC), (d) 3-methoxy-3-oxopropyl
N-alkyldithiocarbamate (MOPr-DTC), (e) 2-methyl-4-oxopentan-2-yl N-alkyldithiocarbamate
(MOPe-DTC), (f) 2-oxo-1,3-diphenylpropyl N-alkyldithiocarbamates (ODP-DTC), (g) 4-[(1H-indol-3-yl)
methylene]-2-sulfanilidene-1,3-thiazolidin-5-one (IST), (h) brassinin.

2.3. Unsupervised and Supervised Multivariate Statistics

The plausible relationships, from a holistic point-of-view, were studied through multivariate
analysis using the Vina scores dataset for each enzyme (as variables) and test compounds/natural
ligands (as observations). Hence, an unsupervised exploration through principal component analysis
(PCA) was firstly started and the resulting PC1 versus PC2 was obtained (Figure S2). As expected, the
docking results of natural ligands (NL) showed a different behavior to that of those Vina scores of all
test analogs (Figure S2a); thus, they were excluded in order to start an additional PCA. Figure S2b,c
show the resulting score plot (uncolored and colored by compound type, respectively), which exhibits a
clustering depending on the different classes of compounds within dataset. This examination was then
refined using a supervised examination by means of Orthogonal Partial Least Squares-Discriminant
Analysis (OPLS-DA) using the compound type as categorical variable, in order to observe the
particular connection of the docking scores related to the structures of test analogs. In summary, the
OPLS-DA-derived score plot defined more clearly that NNDATU, IST and ODP-DTC were clustered
as independent groups in comparison to the other compound type (Figure 4a) as evidenced in Pearson
correlations and box plots distributions.
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X) using a coefficient as multiplicative factor (*).

The respective loadings plot (Figure 4b) exposed those variables (i.e., enzymes) that influence
the observations (i.e., test analogs) discriminations across the Vina scores. In this regard, NNDATU,
IST and ODP-DTC were reasonably influenced by the resulting docking scores with the E14, E21,
E24 and E25, which are related to the lyase, dehydrogenase, and oxidoreductase enzyme families,
respectively. The influence contribution of variables across dataset within the OPLS-DA model [3+3+0]
was estimated by the variable importance in projection (VIP) scores. E25 showed the most deviated VIP
score, indicating probable good selectivity on the contribution particularly due to lowest docking scores
for some specific compound types (such as ODP-DTC), whereas E21 exhibited the highest one, i.e.,
poorest selectivity by some compound dataset (such as NNDATU). Particularly, NNDATU possessed
several chemical and biological properties that are directly related to their molecular structure. Their
observed differences are due to their substitutions and such specific conformations they can adopt
around the thioamide moiety [17].

In order to estimate such tendencies experimentally and compare them with the performance
of the present docking study, the mycelial growth inhibition was evaluated for all compound set
against F. oxysporum. Such evaluation was built on our prior study to expand the search for promising
antifungal agents [8] and the resulting half-maximal inhibitory concentrations (IC50) are exposed in
Table S4. Test compounds exhibited mycelial growth inhibition at different levels, but some NNDATU,
OPD-DTC and CE-DTC exhibited the lowest IC50 values (<0.8 mM), thus, they can be considered
as the best antifungals within the experimental dataset. A clear structure-activity relationship was
not noticeably evidenced; thus, the antifungal data was then used for supervised analysis in order
to integrate the docking and biological activity datasets. Hnece, the supervised analysis for docking
scores by single-Y OPLS regression, using the experimental IC50 values as continuous variables (i.e.,



Molecules 2020, 25, 45 8 of 19
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Once again, the well-defined, separated groups were NNDATU, OPD-DTC and IST. These results
can rationalized since NNDATU and OPD-DTC exhibited similar docking profile between them,
whereas IST was slightly different; however, these three kind of compounds were very distinct from the
others. This fact represented a clear trend between docking scores performance and the experimental
IC50 values based on compound type, justifying conceivable structure-activity and structure-affinity
relationships. Furthermore, the differential variables (i.e., enzymes) were identified through the
loadings. The respective loadings plot (Figure 5c) showed a remarkable influence of E14, E17, E18, E20
and E21 for the separation of NNDATU-based clusters, while IST and OPD-DTC were most influenced
by E24 and E25, respectively. Therefore, these results are in accordance with the respective box-plots
(Figure 2) using only the Vina scores performance for each compound type. Twelve enzymes revealed
VIP scores ≥ 1.0 under IC50 supervision, thus, they can be considered important in the given model to
integrate in silico docking scores and in-vitro antifungal activity (Figure 5d). In this regard, E18 was
the most influencing variable, and E25 persisted as the most deviated influencing enzyme. This last
fact is an indicative of a particular selectivity of some compounds (i.e., OPD-DTC-type) to interact
with this enzyme (E25).

N,S-dialkyl dithiocarbamates have already been described as potential fungicides, specifically as
mycelial growth inhibitors of several pathogenic fungi [9,18], but N-alkyl dithiocarbamate salts are
largely commercialized as fungicides, since they have multi-site action [19]. In general, dithiocarbamates
become toxic when they are metabolized by the target fungus, especially on producing the isothiocyanate
radical. It can be captured, e.g., by sulfhydryl groups in amino acids and enzymes; thus, the enzymatic
activity is inhibited together with subsequent biological disruptions, such as lipid metabolism, cell
membrane permeability and respiration and ATP production, among others [20].
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2.4. Comparative Molecular Field Analysis (CoMFA)

Owing to the trend observed in supervised multivariate statistics (i.e., single-Y OPLS), a
three-dimensional quantitative structure-activity relationship (3D-QSAR) study (through a comparative
molecular field analysis (CoMFA)) was implemented to correlate structural features and antifungal
activity, in order to explain and understand consistently the antifungal activity for test compounds
according to steric and electrostatic properties [21]. For this, the best-docked pose of compound 24 was
used as template scaffold to define tethers and superimpose the test compounds 1–24. Experimental
antifungal data (as logarithmic half-maximal inhibitory concentrations (pIC50)) and aligned structures
were subdivided into a training set (70%) to generate the CoMFA model and a test set (30%) for
subsequent external validation [21]. The molecular interaction fields (MIF) were then calculated using
probes (steric and electrostatic ones), and, after several steps of data pretreatment, partial least squares
(PLS) regression was carried out (using up to five PLS components) in order to build linear relationships
between variations in the MIF values as a function of changes in the experimental pIC50. After that,
the best model required three PLS components, suggesting good correlation between MIF values and
experimental pIC50 of test compounds. The resulting regression also afforded the following parameters:
correlation coefficient r2 = 0.855, a cross-validated leave-one-out (LOO) coefficient q2 = 0.779, a
cross-validated leave-many-out (LMO) coefficient q2 = 0.709 and F-test = 178.489, demonstrating
excellent determination coefficient for a statistically predictive, robust model [22]. Observations were
randomly organized to perform a Y-scrambling protocol [23] using 30 scramblings and 10 runs. The
resulting model declined severely (Rscr

2 and Qscr
2 < 0.4), and no correlation was then evidenced,

indicating the model was not achieved as a result of a chance correlation. Thus, according to this
comparative analysis, experimental and CoMFA-based predicted activity for all the compounds,
expressed as pIC50 (Table S4), were used to plot the predicted versus the experimental pIC50 values
for all the test compounds, indicating good correlation for both training and test datasets (Figure 6d).
Additionally, this CoMFA model resulted into the electrostatic (35.3%) and steric (29.2%) fields outputs
(stdev*coeff), whose translated contour surfaces of the corresponding field contributions, including
aligned test compounds, are displayed in Figure 6a–b.
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and negative charges, respectively, will enhance the antifungal activity; (c) schematic representation
of the steric and electrostatic contributions according to CoMFA using 24 as model compound; (d)
CoMFA predicted as experimental pIC50 values.
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Regarding the electrostatic field contour map (Figure 6a), the positive effect of positively and
negatively-charged regions on antifungal activity can be depicted as blue and red contours, respectively.
In the present analysis, electron-deficient substituents were found to be not crucial for the antifungal
activity, because any significant blue contour was obtained after the PLS regression. Thus, the activity
can be therefore enhanced by the presence of electron-rich groups attached at sulfur in dithiocarbamate
moiety, as the electron-withdrawing groups (EWG), and other typical electronegative groups (i.e.,
heteroatoms). In the case of the contour map of steric field (Figure 6b), unfavorable and favorable
zones by steric effects were then symbolized as yellow and green contours, respectively. Thus, the
antifungal activity can be enhanced if a bulky steric group is located on the alkyl group (as a large
n-alkyl substituent) at ester moiety as well as on the EWG, especially in the (3-oxo-1,3-diphenyl)propyl
moiety of ODP-DTC-type compounds. In contrast, the antifungal activity is disfavored if a bulky
group is placed as a ramification at C2 in the n-alkyl group at ester moiety. These results demonstrated
that a bulky group with electron-withdrawing nature at sulfur site in dithiocarbamate moiety (such
as a chalcone precursor) can improve the antifungal activity. From these facts, a two-dimensional
scheme, involving the respective representations of electrostatic and steric effects of test compounds,
is exposed in Figure 6c. Accordingly, the resulting model suggested the presence of both bulky and
electronegative substituents adequately oriented at the sterically and electrostatically favorable regions,
respectively. Both sterically bulky and electron-rich substituents are therefore required together to
increase the mycelial growth inhibitory action in test compounds. In this context, compound 24 fitted
very well to the above-mentioned structural prerequisites to be a promising antifungal agent. Similar
trends were observed from a CoMFA model obtained with close related N,S-dialkyl dithiocarbamates
using other aminoacids (i.e., l-alanine, l-phenylalanine, and l-tyrosine) [9] instead l-tryptophan.

2.5. Binding Mode and Residual Interactions

As mentioned above, the behavior of docking scores per enzyme within dataset was found to be
different. These differences were found to be depending on the particular enzyme and ligand involved
into the docking simulation. Thus, Table S5 exhibited the information of the best-docked phytoalexin
analog for each enzyme, which compiles the interacting residues of the respective enzymatic active
site and the interacting moieties for the ligands, according to individual two-dimensional residual
interaction diagrams (Figure S3). After the analysis of these diagrams to outline some insights into the
binding mode of the simulated complexes, several types of interactions were evidenced, involving
hydrogen (H)-bonds and hydrophobic contacts, common Van der Waals interactions as well as π-π,
π-sulfide, π-cation and π-anion interactions. These interactions were taken as the key contacts and
an indicative of the importance of the presence of sulfur (as thione) and aromatic rings (indole and
EWG) as crucial moieties for interacting with the respective residues of active site and stabilizing
the resulting enzyme-ligand complexes. In this regard, compounds 5 and 24 were the best-docked
phytoalexin analogs for the corresponding calculation with enzyme E25. The respective complexes
(i.e., E25:5 and E25:24) exhibited the lowest Vina scores into the whole dataset (−11.68 ± 0.19 and
−13.25 ± 1.02 kcal/mol, respectively), although other good Vina scores were also obtained with these
compounds and other enzymes, as previously mentioned (see Figure 3 and Table S2).

E25 is a lanosterol 14α-demethylase (LDM or CYP51), an important enzyme target for several
human fungal pathogens. It is a cytochrome P450 enzyme that catalyzes the conversion of lanosterol to
4,4-dimethylcholesta-8(9),14,24-trien-3β-ol (through the C-14α demethylation) [24]. This is a critical
step in the sterols biosynthesis, because is the early waypoint in the lanosterol conversion to other
important sterols to the cell. Selective inhibition of LDM produces lanosterol accumulation as well as
other 14-methyl sterols (often toxic to the fungus), causing fungal growth inhibition [24]. Within the
arsenal of fungicides, azoles are reported as selective inhibitors of fungal LDM, such as fluconazole,
ketoconazole voriconazole, and itraconazole, frequently used for systemic and topical mycoses [25].
However, the examination of the ergosterol depletion in several, different phytopathogens is still a
topic to be explored and extended in order to develop selective inhibitors of this fungal vital pathway.
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In the case of Fusarium spp., the crystal structure of LDM has not been reported yet. Therefore, a
homology model was then built using the reported enzyme sequence of the transmembrane LDM
from F. cerealis (Uniprot entry: I6ZLS0). The resulting homology model of the apoenzyme of F.
cerealis lanosterol 14α-demethylase (FcLDM) (Z-score = 2.191) was embedded in a 266-lipids bilayer of
1-palmitoyl-2-oleoylphosphatidylethanolamine (OPPEA) and SPC water molecules, and chloride and
sodium ions, was then optimized through a 5-ns conventional molecular dynamics (MD) simulation.
Final optimized model of E25, i.e., FcLDM (Figure 7a), was subsequently used for the above-mentioned
molecular docking calculations and further molecular dynamics simulations. Compound 24 exhibited
the best Vina score with this enzyme (as above-mentioned) and it exhibited one of the lowest IC50

value, indicating its promising behavior as antifungal. Molegro virtual docking (MVD) was also used
to simulate this intermolecular interaction as rescoring strategy, and compound 24 exhibited the best
score (MVD score = −167.16). Both best-docked poses of 24, from Autodock/Vina and MVD, exhibited
an RMSD below 1, which confirms the good performance of our molecular docking results.
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solvent-accessible surface area (SASA) of FcLDM with the lowest-energy docked pose of 24 within its 
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This compound fitted adequately within the active site of FcLDM (Figure 7d), located over the 
membrane for the catalytic action of this transmembrane enzyme (Figure 7a). The H-bond 
interacting surface of the enzyme (Figure 7b) indicated that FcLDM residues can be oriented to have 
a role as acceptor, but the complex exhibited important non-polar interactions with Tyr126, Phe241, 
Phe286, His381 and Phe384 residues (Figure 7c). The respective two-dimensional (2D)-residual 
interaction diagram (Figure 8a) indicated that these key contacts are related to π-sulfur (with His381 
and Phe241), π-π stacked (with Tyr126 and Phe236), π-π T-shaped (with Phe384) interaction types. 

Figure 7. (a) F. cerealis lanosterol 14α-demethylase (FcLDM), E25, model, embedded in a 266-lipids
bilayer of 1-palmitoyl-2-oleoylphosphatidylethanolamine (OPPEA) and docked with compound 24;
(b) Interaction surface of E25 and best-docked pose of 24 (contour related to the donor (pink) and
acceptor (green) zones with the interface); (c) three-dimensional (3D) model of lowest-energy docked
pose of 24 within active site of FcLDM (selected residues at active site of FcLDM are marked in gray
light sticks; remaining enzyme polycolored cartoon; ligand 24 in gray bold sticks; (d) 3D model of
solvent-accessible surface area (SASA) of FcLDM with the lowest-energy docked pose of 24 within its
active site (ligand 24 in yellow sticks).

This compound fitted adequately within the active site of FcLDM (Figure 7d), located over the
membrane for the catalytic action of this transmembrane enzyme (Figure 7a). The H-bond interacting
surface of the enzyme (Figure 7b) indicated that FcLDM residues can be oriented to have a role as
acceptor, but the complex exhibited important non-polar interactions with Tyr126, Phe241, Phe286,
His381 and Phe384 residues (Figure 7c). The respective two-dimensional (2D)-residual interaction
diagram (Figure 8a) indicated that these key contacts are related to π-sulfur (with His381 and Phe241),
π-π stacked (with Tyr126 and Phe236), π-π T-shaped (with Phe384) interaction types. Heme group
did not interact with compound 24, although it is located close to a phenyl group, which implies
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an advantage in terms of a plausible transformation of the test ligand. In this sense, a successful
interaction can be produced, avoiding a posterior catalytic conversion by this HEME group. The ligand
interaction plot (Figure 8b) confirms the previous information, indicating Phe241, Phe236, Phe384 and
Tyr126 as crucial residues to interact in order to stabilize the ligand-enzyme complex. According to the
above analysis, it is possible to conclude that the E25 is a plausible target to be inhibited by 24, due to
its satisfactory in silico interaction profile with this phytoalexin analog. However, this information had
to be extended computationally through a molecular dynamics simulation.
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to the interaction type as indicated in LID legend: hydrophobic (green), polar (aquamarine), positive
charge (purple)].

2.6. Molecular Dynamics Simulations

Lanosterol 14α-demethylase (LDM) from F. cerealis was selected as test enzyme for 90-ns molecular
dynamics simulations due to its better molecular docking behavior with the test phytoalexin analogs,
specifically compound 24. The 3D structure of this enzyme was built through homology modeling
using Yasara Structure [26], since no crystal data is available, embedded in a 266-lipids OPPEA bilayer.
This simulation was implemented as the next step to expand the information about the binding mode
of this promising candidate.

Ligand:protein trajectories for those complexes between 24 and FcLDM were monitored by means
of geometric properties over the time. Thus, root mean square deviations (RMSD) were used to evaluate
the structural stability of the receptor frame by measuring the time-dependent distance between
different positions (in Å) of the set of atoms (Figure 9a). For this, separately 90-ns molecular dynamics
simulations for the FcLDM (E25) alone (apoenzyme) and docked distinctly with 24, lanosterol (Lan)
and brassinin (Bra) were recorded for comparing purposes. As result, the apoenzyme exhibited a
normal evolution during the initial part of the simulation but revealed a slight perturbation at 20 ns and
then a good stabilization over the remaining simulation. Lanosterol avoid such a perturbation and the
complex FcLDM:lanosterol reached stability at 15 ns, whereas brassinin displayed the most-perturbed
profile. However, the FcLDM:24 complex achieved early the stability and it is maintained over entire
simulation. In addition, the fluctuations of the atomic positions for each residue of the enzyme, the
root mean square fluctuation (RMSF) were also considered to scrutinize the flexibility and secondary
structure of the FcLDM enzyme under interaction with the above-mentioned test ligands. All examined
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complexes showed different behavior (Figure 9b), with explicit differences in some regions, fluctuating
significantly along the MD simulations trajectory between 0.2 and 1.0 nm. In this regard, test ligands
(i.e., brassinin, lanosterol and 24) exhibited different RMSF profiles, specifically through fluctuations by
the particular interacting residues, but a common fluctuating zone was observed (Arg375–Asp385). In
the specific case of FcLDM:24 complex, fluctuations were found to be around the previously identified
crucial contacts (i.e., Tyr126, Phe241, Phe286, His381 and Phe384), but the association of 24 did not
obviously affect the flexibility of those important fragments to maintain overall system stability (such
residues with RMSF > 0.2 nm) in comparison to the apoLDM; thus, the inhibition mode may be achieved
by stabilizing the system. These results indicated the excellent in silico interaction profile of 24 with
the FcLDM enzyme over the time.
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Figure 9. (a) Root mean square deviations (RMSD), along the trajectories simulated by molecular
dynamics during 90 ns, for the FcLDM (E25) (apoenzyme), and docked separately with 24, lanosterol
(Lan) and brassinin (Bra); (b) root mean quadratic fluctuations (RMSF) along the trajectories simulated
by molecular dynamics during 90 ns, for the FcLDM (E25) (apoenzyme), and docked separately with
24, lanosterol (Lan) and brassinin (Bra).

2.7. Binding Free Energy

The binding free energy for compound 24, lanosterol and brassinin during interaction of
FcLDM for the last 20 ns of MD trajectory was estimated by MM/PBSA approach, using the MD
simulations. All three ligands exhibited negative binding energies, but compound 24 showed lower
binding energy to that of brassinin (−121.6 ± 7.1 kJ/mol versus −39.7 ± 5.4 kJ/mol, respectively) and
lanosterol (−101.3 ± 6.5 kJ/mol), which rationalize the observed best docking performance and the
best experimental antifungal activity of 24. The main contribution to the binding energy was due
to vdW energies (> −90 kJ/mol). This fact was then confirmed after binding energy decomposition
on the residues of FcLDM:24 complex, since the most binding energy contributing residues were
found to be Phe241 (−9.2 kJ/mol), Phe384 (−4.3 kJ/mol), Phe236 (−3.5 kJ/mol), His381 (−3.2 kJ/mol) and
Tyr126 (−2.8 kJ/mol). These results suggested that non-polar electrostatic interactions are the main
driving force for molecular recognition of FcLDM by 24. However, considering the MD simulations
and binding affinity calculations, the resulting simulated data should be contemplated carefully, since
they were extracted from a single trajectory analysis and the convergence could be hardly obtained for
a highly fluctuating system.

3. Materials and Methods

3.1. Design and Synthesis of Indole-Containing Phytoalexin Analogs

Twenty-one indole-containing phytoalexin analogs and four L-tryptophan alkyl esters (1–25) were
synthesized through the previously reported protocol [8] (Figure S1) and they were chosen as test
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compounds (Figure 1). These structures were 3D-sketched and organized according to close-related
moieties affording seven substituted groups such as 2-alkyl aminoesters (1–4), N,N-dialkylthioureas
(5–8), 2-cyanoethyl N-alkyldithiocarbamates (9–12), 3-methoxy-3-oxopropyl N-alkyldithiocarbamate
(13–16), 2-methyl-4-oxopentan-2-yl N-alkyldithiocarbamate (17–20), 2-oxo-1,3-diphenylpropyl
N-alkyldithiocarbamates (21–24) and 4-[(1H-indol-3-yl)-methylene]-2-sulfanylidene-1,3-thiazolidin-5-one
(25). Brassinin (26) was included into the study and used as reference compound. A previous MMFF
geometry minimization for each ligand was carried out in Spartan’14 (Wavefunction, Irvine, CA, USA)
without any geometrical restrictions, prior to the docking and dynamics simulations.

3.2. Enzymes

Twenty-five fungal enzymes were searched and selected due to their important implications for
Fusarium spp. in metabolic processes or invasive properties (Table A1). The crystallographic structure of
twenty of these enzymes with an inhibitor or substrate was retrieved from the RCBS Protein Data Bank
(PDB) (http://www.rcsb.org/). The three-dimensional (3D) structures of the remaining five enzymes were
obtained by homology modeling using the standard protocol included into the Yasara Structure package
(http://www.yasara.org/) [26]. Water molecules, ligands and other heteroatoms were removed from the
protein molecule. Hydrogen atoms were added to the protein. These crystallographic structures were
retained without any processing for molecular docking. The co-crystallized inhibitors/substrates were
thus employed to define the corresponding active site, the flexible residues within this active site and
as a validation criterion of docking calculations (re-docking). PDB-files were then effectively prepared
using the AutoDock Vina plugin under PyMOL, and saved as pdbqt-files. The structural information
of the employed enzymes is shown in Table A1.

3.3. Molecular Docking

Molecular docking was carried out using Autodock/Vina (Molecular Graphics Lab, The Scripps
Research Institute, La Jolla, CA, USA) using the AMBER force field with PyMOL 2.3 (Schrödinger
LLC, New York, NY, USA) as molecular graphics system. The protein and ligand molecules were
prepared as described above. The active site for each enzyme was located into a grid and the flexible
residues were selected according to those interacting with co-crystallized inhibitors or substrates at
4.0 Å. All molecular docking calculations were carried out using flexible residues and performed
between the optimized ligand into the active site through a cube at the geometrical center of the
native ligand present in the evaluated PDB structure, with the dimensions 24 × 24 × 24 Å, covering
the ligand binding site with a grid point spacing of 0.375 Å. Each calculation involved ten replicates
starting from separated pdb-files of each enzyme and ligand to evaluate convergence. Molecular
docking for the co-crystallized inhibitors/substrates was also carried out as a reference to evaluate the
docking performance through re-docking. Additionally, the specificity and sensitivity of the docking
protocol, 25 compounds of diverse chemical nature, having IC50 < 5 µM, against five test enzymes
(isocitrate lyase, aspartate kinase, sereine esterase, lanosterol 14α-demethylase and trichothecene
acetyltransferase) were compiled from the literature and available databases such as ChEMBL [27] and
pubchem [28]. Forty-five decoys per each active compound were compiled from the directory of useful
decoys (DUD-E) [29] and CheMBL databases. Thus, decoys and bioactives were processed using the
docking process. The resulting data was then assessed through a receiver operating characteristic (ROC)
and scores enrichment using the screening explorer webserver [30]. Once the docking parameters
were validated, the docking simulations of test indole-containing phytoalexin analogs were performed.
The resulting binding modes were firstly analyzed in PyMOL 2.3 and the docking poses were ranked
according to their docking Vina scores (as affinities in kcal/mol). Molegro Virtual Docker 6.0 (CLC
Bio Company, Aarhus, Denmark) was also used to evaluate secondly the best-poses of best-docked
compounds as a rescoring strategy. Both the ranked list of docked ligands and their corresponding
binding poses were exported as a CSV file for further analysis. Moreover, two-dimensional (2D)
residual interactions diagrams and 3D figures of these enzymes were obtained using Discovery Studio

http://www.rcsb.org/
http://www.yasara.org/
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Client 16.1 (Biovia, San Diego, CA, USA) and Maestro Elements 8.3 (Schrödinger, Cambridge, MA,
USA) from the Vina outputs (pdbqt-files) for compounds that exhibited highest affinity. All calculations
were performed in a Dual Intel Xeon® processor CPU @ 2.6 GHz of Intel system origin, with 64 GB
DDR3 RAM on an Ubuntu 12.04 server.

3.4. Statistical Analysis

Descriptive and inferential statistics tests were carried out such as principal component
analysis, significance tests and partial least-square (PLS) regression. Orthogonal partial least
squares-discriminant analysis (OPLS-DA) and single-Y OPLS were carried out in SIMCA 14.0 software
(Umetrics, Umeå, Sweden) using the docking affinity values and the reported IC50 values in order to
observe feasible relationships.

3.5. Molecular Dynamics Simulations of F. Cerealis Lanosterol 14α-demethylase (FcLDM)

The resulting homology model of the apoenzyme of F. cerealis lanosterol 14α-demethylase (FcLDM)
were embedded in a 1-palmitoyl-2-oleoylphosphatidylethanolamine (OPPEA) bilayer of 266 lipids
covering an area of 125 × 125 Å2, using a cell box with size of 125 × 125 × 200 Å3 filled with SPC water
molecules for solvation. The net protein charge was neutralized by 60 chloride and 54 sodium ions.
This membrane-FcLDM model was built using the standard protocol included into the Yasara Structure
package [26]. The most plausible model was identified through steepest descent method-based
energy minimization until 100 kJ/(mol·nm) energy convergence, followed by a 250-ps restrained
equilibration simulation and a 5-ns conventional molecular dynamics (MD) simulation. The same
protocol was carried out on the simulation systems of FcLDM+lanosterol, FcLDM+brassinin and
FcLDM + 24 (obtained after molecular docking), which were individually subjected to an additional
90-ns conventional MD simulation for exploring the performance of these ligands within the active site
of the enzyme. These MD simulations were run in Gromacs 5.0.5 (open source, http://www.gromacs.org)
on an Ubuntu 12.04 server, using NPT and periodic boundary conditions, as previously reported [31].
Hence, docked ligands were prepared by adding hydrogen atoms in UCSF Chimera (UCSF, CA, USA)
and the resulting pdb-file was uploaded to the atb server (http://compbio.biosci.uq.edu.au/atb/) to add
the respective Gromo53a6 force field and get the itp-type topology file. Membrane-FcLDM topologies
were obtained in Gromacs using the Gromos53a6 force fields, owing to the presence of Heme group.
The SPC water model was then implemented for solvation, in a triclinic box using a 1.0-nm margin
distance. 0.10 M NaCl was added to the simulation systems and water molecules were randomly
replaced until neutrality. An energy minimization through 2000-steps steepest descent method was
then used. NVT equilibration at 310 K during 500 ps, followed by NPT equilibration during 1000 ps
using the Parrinello-Rahman method at 1 bar as reference were done on the systems using position
restraints. Finally, solute position restraints were released and a production run for 90 ns was performed.
Temperature and pressure were kept constant at 310 K and 1 bar, respectively. Coordinates were
recorded in a 1 fs time step. Electrostatic forces were calculated using the particle-mesh Ewald (PME)
method. Periodic boundary conditions were used in all simulations and covalent bond lengths were
constrained by the LINCS algorithm.

3.6. Binding Free Energy Analyses

Binding free energy was calculated using the g_mmpbsa tool [32](open source drug discovery
consortium (OSDD), New Dehli, India). This tool calculated components of the free energy of the
protein–substrate binding (∆GBind), using the molecular mechanic/poisson-boltzmann surface area
(MM/PBSA) method [33,34]. In this method, ∆Gbind calculation between a protein and a ligand is
carried out by ∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsol − T∆S, ∆EMM = ∆Einternal + ∆Eelectrostatic − ∆EvdW,
∆Gsolv = ∆Gelec

solv + DGvdW
solv. Here, the total gas phase energy on the binding of MM energy is

∆EMM, the free energy of solvation is ∆Gsolv and the entropy contribution is T∆S. Poisson-Boltzmann
model was used to compute the electrostatic solvation energy in a continuum solvent. The derivation

http://www.gromacs.org
http://compbio.biosci.uq.edu.au/atb/
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of non-polar solvation energy term was computed as solvent-accessible surface area (SASA). ∆EMM

were calculated using the Lennard-Jones and Coulomb potential [33,34]. ∆GBind was used to analyze
the binding associations between FcLDM and selected ligands (i.e., lanosterol, 24 and brassinin) by
decomposing the total binding free energy into each residue. The binding energy calculations of the
selected ligands were performed for 100 snapshots taken at an interval of 200 ps during the last sTable
20-ns MD simulations.

3.7. Antifungal Assay

Compounds 1–25 were evaluated for their antifungal activity against F. oxysporum following the
previously reported amended-medium protocol to assess the in-vitro mycelial growth inhibition [8].
The activity was expressed as half-maximal inhibitory concentrations, IC50 (in mM), obtained after
non-linear regression using the program GraphPad Prism version 5.00 (GraphPad Software, San Diego,
CA, USA).

3.8. Comparative Molecular Field Analysis (CoMFA)

Best-docked poses of test ligands were merged and aligned by means of particular tethers placed
on indole, sulfur and aromatic rings moieties, using the molecular overlay tool included in the software
Discovery Studio Client 16.1 (Biovia, San Diego, CA, USA). The best-scored compound (i.e., 24) was
selected as template to select tethers. The aligned molecules set (in a sdf-file) was randomly divided
into two subsets (training and test sets, corresponding to 70 and 30%, respectively), and CoMFA
analysis was then performed using Open3DQSAR, using the standard protocol [35]. The experimental
antifungal activity evaluated as F. oxysporum mycelial growth inhibition (expressed as IC50 in M) were
was converted into negative logarithmic form (pIC50) and then used as independent variable. The
models were validated by leave-one-out (LOO) and leave-many-out (LMO) methods. The quality of
the models after validation was evaluated, predicting the independent variable for the test set.

4. Conclusions

Twenty-one indole-containing phytoalexin analogs and four L-tryptophan alkyl esters (1–25) were
docked within the active site of a set of 25 enzymes of Fusarium spp. through Autodock/Vina. NNDATU,
ODP-TDC and IST-type analogs exhibited the best docking scores and interaction profile with several
enzymes, especially nitroalkane oxidases (E17 and E18) and FMN-dependent dehydrogenase (E24) and
14-lanosterol demethylase (E25), respectively, according to the distribution and correlation analyses as
well as discriminant analysis by OPLS. Computational results were also integrated to experimental
in vitro (IC50) mycelial growth inhibition against F. oxysporum, exhibiting good correlations between
docking scores and antifungal data (by single-Y OPLS) as well as among structures and antifungal data
(on the basis of a robust CoMFA model). The CoMFA-derived PLS-regression indicated that sterically
bulky and electron-rich substituents are jointly required to increase the mycelial growth inhibitory
action in test compounds, indicating ODP-TD-type compounds can be considered as candidates
for phytoalexin bioisosteres. E25 (a homology model of a F. cerealis 14-lanosterol demethylase)
was taken as study model owing to the well-behaved interaction with compound 24 (tert-butyl
(((3-oxo-1,3-diphenylpropyl)thio)carbonothioyl)-L-tryptophanate). The binding mode was examined,
and some residues were found to be important to stabilize the FcLDM:24 complex, which was extended
over the time by 90-ns molecular dynamics simulations. In this regard, the non-polar electrostatic
interactions can be considered as the main driving force for the molecular recognition of FcLDM by 24.
From all of the obtained results, compound 24 can be considered as a putative inhibitor of this enzyme,
rationalizing the good experimental antifungal activity through in vitro mycelial growth inhibition
(IC50 = 0.44 mM). Such a mode of action will be further explored by in vitro enzymatic inhibition
over purified enzyme, which is currently ongoing. Thus, after data analyses, some important hits,
putative enzyme targets and structural requirements were established, indicating the potential of
indole-containing phytoalexin-based bioisosteres as an alternative for the control of Fusarium spp.-like
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phytopathogens. Hence, this information will be preserved during our further studies focused on the
development of antifungals based on phytoalexin analogs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/1/45/s1,
Table S1: IUPAC names of test phytoalexin analogues. Table S2: Calculated Vina scores for compounds 1–26
docked with enzymes E1–E25. Table S3: Values for the Pearson correlation of the enzymes set. Table S4:
Antifungal activity against Fusarium oxysporum through amended-medium assay. Table S5: Recorded interactions
according to the best-docked pose of test phytoalexin analogs. Figure S1: Reaction route for obtaining the
test indole-containing phytoalexin analogs. Figure S2: Principal component analysis (PCA)-derived score
plot. Unsupervised multivariate analysis from affinity dataset. Figure S3: 2D-residual interactions for the test
indole-containing phytoalexin analogs.

Author Contributions: Conceptualization, D.Q. and E.C.-B.; methodology, A.A.-R., D.Q. and E.C.-B.; software,
A.A.-R. and E.C.-B.; validation, A.A.-R. and E.C.-B.; formal analysis, A.A.-R., D.Q. and E.C.-B.; investigation,
A.A.-R., D.Q. and E.C.-B.; resources, D.Q. and E.C.-B.; data curation, E.C.-B.; writing—original draft preparation,
A.A.-R.; writing—review and editing, A.A.-R., D.Q. and E.C.-B.; project administration, D.Q. funding acquisition,
D.Q. and E.C.-B. All authors have read and agreed to the published version of the manuscript.

Funding: The present work is a product derived by the Project INV-CIAS-1787 financed by Vicerrectoría de
Investigaciones at UMNG—Validity 2015.

Acknowledgments: Authors thank UM Nueva Granada for the financial support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A

Table A1. Data of test enzymes.

ID Enzyme (Type) PDB Code Source

E1 endoglucanase I (glycosyl hydrolase) [NAG cavity] a 1OVW F. oxysporum
E2 endoglucanase I (glycosyl hydrolase) [native binding site cavity] a 1OVW F. oxysporum
E3 endoglucanase I (glycosyl hydrolase) 4OVW F. oxysporum
E4 endoglucanase I (cellobiohydrolase) 3OVW F. oxysporum
E5 acetyltransferase (transferase) 2ZBA F. sporotrichioides
E6 thrichodiene synthase (synthase) 2PS8 F. sporotrichioides
E7 endoglucanase I (cellobiohydrolase) 2OVW F. oxysporum
E8 trichodiene synthase (synthase) 1YYQ F. sporotrichioides
E9 serine esterase (cutinase) 1XZM F. solani subsp. pisi
E10 serine esterase (hydrolase-cutinase) 1XZL F. solani subsp. pisi
E11 serine esterase (cutinase) 1OXM F. solani subsp. pisi
E12 isocitrate lyase (lyase) 5E9G F. sporotrichioides
E13 trichothecene 15-O-acetyltransferase (transferase) 3FP0 F. sporotrichioides
E14 isocitrate lyase (lyase) 5E9H F. graminearum
E15 trichodiene synthase (synthase) 1JFG F. oxysporum
E16 trichothecene 3-O-acetyltransferase (transferase) 3B30 F. graminearum
E17 nitroalkane oxidase (NAO) (oxidoreductase) 2REH F. oxysporum
E18 nitroalkane oxidase (NAO) (oxidoreductase) 2C0U F. oxysporum
E19 flavoenzyme nitroalkane oxidase (oxidoreductase) 3D9E F. oxysporum
E20 nitric oxide reductase cytochrome (oxidoreductase) 1ULW F. oxysporum

E21 NAD(P)-dependent dehydrogenase (dehydrogenase) 1U3T b F. vascular
(A0A0D2YG03 c)

E22 nitroreductase [NADPH] (oxidoreductase) 2BII b F. vascular wilt
(P39863 c)

E23 aspartate kinase (kinase) 2CDQ b F. verticilloides
(W7MS01 c)

E24 FMN-dependent dehydrogenase (oxidoreductase) 1GOX b F. verticilloides
(W7NCP1 c)

E25 14-lanosterol demethylase (CYP51) (oxidoreductase) 4LXJ b F. cerealis (I6ZLS0 c)
a Two different cavities (binding pockets) evaluated of the same enzyme structure; b Enzymes taken as template
(after sequence alignment through homology modeling) from respective Uniprot sequences of Fusarium enzymes
using Yasara Structure package [9]; c Uniprot entries of enzyme sequences.
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