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ABSTRACT: In the field of optoelectronic applications, the vigorous development of organic−inorganic hybrid perovskite
materials, such as methylammonium lead triiodide (MAPbI3), has spurred continuous research on methods to enhance the
photodetection performance. Periodic nanoarrays can effectively improve the light absorption of perovskite thin films. However,
there are still challenges in fabricating tunable periodic patterned and large-area perovskite nanoarrays. In this study, we present a
cost-effective and facile approach utilizing nanosphere lithography and dry etching techniques to create a large-area Si nanopillar
array, which is employed for patterning MAPbI3 thin films. The scanning electron microscopy (SEM) and X-ray diffraction (XRD)
results reveal that the introduction of nanopillar structures did not have a significant adverse effect on the crystallinity of the MAPbI3
thin film. Light absorption tests and optical simulations indicate that the nanopillar array enhances the light intensity within the
perovskite films, leading to photodetectors with a responsivity of 11.2 A/W and a detectivity of 7.3 × 1010 Jones at 450 nm in
wavelength. Compared with photodetectors without nanostructures, these photodetectors exhibit better visible light absorption.
Finally, we demonstrate the application of these photodetector arrays in a prototype image sensor.

1. INTRODUCTION
Photodetectors that convert incident light (ultraviolet, visible,
or infrared) into electrical signals are pivotal in numerous
industrial and scientific fields, including optical communica-
tion, environmental monitoring, day and night monitoring, and
chemical and biological sensing.1−3 For high-performance
photodetection, materials with low cost, high optical
absorption coefficient, narrow direct band gap, and fast
response rate are imperative.4−6 Many materials have been
explored for photon detection, including graphene,7−9 colloidal
nanocrystals,10−12 metal oxides,13−15 and metal halide perov-
skites and their hybrids.16−18 In particular, organic−inorganic
hybrid perovskites, such as methylammonium lead trihalide
(MAPbX3, where MA = CH3NH3, X = Cl, Br, or I), have
gained increasing attention due to their high optical absorption
coefficient, carrier mobility, and long diffusion length over a
wide spectral range.19−21 Thus, they are considered a
promising candidate for next-generation photodetection
applications. In recent years, people have been continuously
striving to optimize surface defects, control crystal growth, and

improve light-trapping ability of organic−inorganic hybrid
perovskite films to optimize the performance of photo-
detectors.22−24

Although metal halide perovskite exhibits excellent perform-
ance for high-performance photodetectors, their susceptibility
to moisture and oxygen in the air can curtail their potential
applications,25 and the grain boundary effect and internal
decomposition have a significant impact on the performance of
perovskite devices. These defects are prone to appear at the
interface and grain boundaries of perovskite films, which
reduce the probability of radiation recombination and lead to
trap states related to grain boundaries.26,27 Therefore, it is
critical to slow down the decomposition process and improve
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the stability and performance of the device.28,29 For instance,
Jeong et al. used pseudo-halide anionic formate (HCOO−) to
suppress anionic vacancy defects present at grain boundaries
and perovskite film surfaces, improving the film’s crystal-
linity.30 Wu et al.31 incorporated 1-butyl-3-methylimidazolium
tetrafluoroborate (BMIMBF4) as an additive into methyl-
ammonium lead triiodide (MAPbI3) nanowires, effectively
passivating defects, inhibiting the degradation of perovskite,
and leading to the formation of nanochannels, achieving rapid
charge transfer. Other methods such as introducing a polymer
modification32 and using a two-step imprinting technique33

have been shown to enhance the stability of films.
The light absorption ability of the films greatly affects the

performance of photodetectors. By properly designing periodic
light capture nanostructures, light scattering can be increased,
resulting in enhanced light absorption ability, which can
improve the performance of the photodetectors.34,35 Although
periodic nanoarray structures exhibit good repeatability and
tunability compared with nonordered nanostructures, manu-
facturing large-area periodic arrays such as nanowires and
nanotubes generally requires complex and expensive commer-
cial lithography techniques such as electron beam lithography
or focused ion beam lithography. Therefore, to achieve high-
performance nanostructured organic−inorganic hybrid perov-
skite photodetectors on an affordable scale, it is necessary to
explore and develop economical nanomanufacturing methods.
In recent years, various methods such as orthogonal

lithography,36,37 nanosphere lithography,38−40 chemical strip-
ping lithography,41 self-collapse lithography,42 nanoimprint
methods,43−45 and photolithography46 have been developed to
prepare large-area submicrometer patterns. These strategies
have low cost and high repeatability and have been widely used
to fabricate nanostructured devices.47−49 For instance, Wang et
al. realized a high-performance patterned perovskite photo-
detector at the nanometer level through nanoimprint
lithography; the crystallinity and optical properties of the
perovskite have been improved, which contribute to higher
mobility, longer diffusion length, and better photon
absorption.50 By rationally designing light-trapping nanostruc-

tures, the crystallinity and light absorption of perovskite films
can be increased, leading to improved device performance.51

In this work, utilizing nanosphere lithography and dry
etching, we prepared a large-area-ordered nanopillar array
structure for fabricating organic−inorganic hybrid perovskite
films. The diameters, heights, and pitch of the nanopillars can
be precisely controlled. Through spin coating, we deposited
the MAPbI3 thin film to fill and cover the entire periodic
nanopillar array, thus enhancing the light absorption and
photoelectric sensitivity of the photodetectors. Additionally,
we further studied the effect of the periodic nanopillar array
through a COMSOL multiphysics simulation. To demonstrate
our method, we fabricated an image sensor composed of a 5 ×
5 photodetector array that exhibited good imaging function-
ality. This strategy not only improves the photoelectric
performance of the device with good repeatability but also
provides a basis for the development of large-area nano-
structured organic−inorganic hybrid perovskite thin-film
photodetectors.

2. MATERIALS AND METHODS
2.1. Materials. Polystyrene (PS) spheres with sizes from

500 nm to 2 μm were purchased from Rigor Bioscience
Development Inc. Methylammonium lead iodide
(CH3NH3PbI3) was purchased from Xi’an Polymer Light
Technology Corp. All of the materials and reagents were used
as received.

2.2. Fabrication of Nanopillar Arrays. Si substrates were
cleaned with isopropyl alcohol, acetone, and deionized water
for 10 min and dried using a nitrogen gas gun. Then, the
cleaned Si substrates were treated using an oxygen plasma
cleaner at 150 W for 600 s. Then, the substrates were covered
with a tightly packed monolayer of PS spheres. The diameters
of the PS spheres were reduced by oxygen plasma at 200 W.
Dry etching was performed in a gas atmosphere of C4F8 and
SF6 for 2 min to obtain nanopillars. The PS spheres were
eliminated on the nanopillar through 5 min of oxygen plasma.
Finally, silicon dioxide with a thickness of 200 nm was
deposited on the surface of the Si substrate with the nanopillar
array by thermal evaporation.

Figure 1. Schematic diagram of the produced nanopillar array by microsphere lithography, dry etching, and related scanning electron microscopy
images. Step 1: spread a single layer of polyethylene (PS) spheres onto a Si substrate (top view SEM). Step 2: reduced the diameter of the PS
spheres via O2 plasma etching (top view SEM). Step 3: fabricated nanopillars’ structures via dry etching (45° top view SEM). Step 4: removed the
PS spheres on the nanopillars via oxygen plasma (45° top view SEM). Step 5: evaporated a 200 nm-thick SiO2 layer onto Si nanopillars (45° top
view SEM).
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2.3. Fabrication of MAPbI3 Thin Film on Nanopillar
Substrates. 50 μL portion of 1 M MAPbI3 perovskite
precursor solution in N,N-dimethylformamide was spin-coated
on the nanopillar substrate at 3000 rpm for 45 s. During spin
coating, 100 μL of toluene was added dropwise on the
substrate. Then, the sample was annealed at 100 °C for 10 min
to form MAPbI3 on the nanopillar substrate.

2.4. Fabrication of Perovskite Photodetectors. The
electrodes of the photodetectors were fabricated by thermal
evaporation of copper under a shadow mask, which had a
thickness of 200 nm. Photodetectors based on S-1, S-2, S-3,
and flat samples were fabricated under identical conditions.

3. RESULTS AND DISCUSSION
3.1. Preparation of SiO2/Si Nanopillar Substrates. We

combine nanosphere lithography and dry etching techniques to
fabricate a large-area periodically tunable nanopillar array on
silicon wafers and then evaporate a SiO2 layer onto Si
nanopillars, which serves as a substrate for MAPbI3 thin films,
as illustrated in Figure 1.
3.1.1. Step 1. Spread a single layer of polyethylene (PS)

spheres with diameters of 2 μm, 1 μm, and 500 nm onto a Si
(100) substrate to form a dense stack and submicrometer
features.
3.1.2. Step 2. The diameters of the PS spheres were reduced

by half via oxygen plasma for 30 (for 500 nm diameter PS
nanospheres), 75 (for 1 μm diameter PS microspheres), and
180 s (for 2 μm diameter PS microspheres) (Figure 1 as well as
Figures S1 and S2 in the Supporting Information).

3.1.3. Step 3. Low aspect ratio Si nanostructures with
smooth sidewalls were directly obtained via dry etching, which
simultaneously used C4F8 and SF6 as etching and passivation
gases for 2 min.

3.1.4. Step 4. The PS spheres on the nanopillars were
removed via oxygen plasma for 5 min, exposing a large area of
periodic nanopillars with diameters of 1 μm, 500 nm, and 250
nm and a height of 400 ± 30 nm (Figures S3 in the Supporting
Information).

3.1.5. Step 5. A 200 nm-thick SiO2 layer was evaporated
onto the Si nanopillars by thermal vapor deposition. Then, a
large area of the SiO2/Si nanopillar array with diameters of 1
μm, 500 nm, and 250 nm was fabricated (Figure S4 in the
Supporting Information).

3.2. Preparation of MAPbI3 Thin Films. When the
preparation of the nanostructured substrates was complete,
MAPbI3 was spin-coated on the SiO2/Si substrate with
nanopillars and the flat SiO2/Si substrate, respectively. During
spin coating, toluene was added dropwise as an antisolvent to
promote the crystallization of MAPbI3, followed by a thermal
annealing process to increase crystallinity (Figure 2a). (More
details are in the Supporting Information.)
As shown in Figure 2b, the MAPbI3 thin film on the flat

substrate does not have a specific submicrometer structure, and
there are some pores on the surface (Figure S5). On the
contrary, due to the periodic distribution of the nanopillar
array, Figure 2c shows that the thin film with nanopillars
exhibited a large-area patterned periodic morphology (Figure
S5). The MAPbI3 thin film completely covered the entire

Figure 2. (a) Schematic coating process of the MAPbI3 film on nanopillar arrays of SiO2/Si. (b) Typical SEM images of the MAPbI3 film fabricated
on the flat substrate (top view). (c, e) Typical SEM images of the MAPbI3 film fabricated on the nanopillar substrate (top view). (d) Cross-
sectional SEM image of the MAPbI3 film on the nanopillar substrate (side view). (f) XRD patterns of the MAPbI3 film based on the nanopillar
array substrate and flat substrate.
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Figure 3. (a) Measured absorption spectra of MAPbI3 films on SiO2/Si nanopillar substrates and flat substrates from 380 to 850 nm. (b) Dark/
photocurrent of the photodetectors based on flat substrates and nanopillar substrates. The incident white light intensity is 2.5 mW/cm2. (c) I−V
curves of the photodetector (sample S-2) measured in the dark and under white light illumination with a range of light intensity. (d) Plots of
responsivity of the photodetector (sample S-2) as a function of light intensity under white light. (e) Time-resolved photoresponse of the
photodetector; the incident light intensity is 2.5 mW/cm2. (f) I−V curves of the S-2 at different wavelengths; the incident light intensity is 10 μW/
cm2. (g) Plots of responsivity of the photodetector (sample S-2) as a function of light intensity at different wavelengths; the incident light intensity
is 10 μW/cm2. (h, i) Time-resolved photoresponse of the photodetector at 380 and 800 nm, respectively. The incident light intensity is 10 μW/
cm2. (j, k) Magnitude of the electric field obtained from COMSOL simulations for MAPbI3 films on flat substrates and SiO2/Si nanopillar
substrates under light illumination at 650 and 850 nm.
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nanopillar array, with a thickness of 450 nm (Figure 2d), which
is relatively dense, with uniform grain distribution (Figure 2e);
a histogram of the particle size distribution is shown in Figure
S6. Through SEM images and particle size distribution
histograms, we can find that the particle sizes of the MAPbI3
thin film based on different substrates are relatively similar
without significant differences. X-ray diffraction patterns
(XRD) of the MAPbI3 thin films on different substrates are
shown in Figure 2f. The diffraction pattern shows peaks among
the following angles: 14.1, 28.5, 31.9, 40.5, and 43.2°, which
correspond to the (110), (220), (310), (224), and (314)
planes, as reported previously.52−54 From the results of XRD
(details in Supporting Information), we confirm that the
crystallinity of the MAPbI3 thin film does not significantly
change due to the introduction of nanostructures. From the
energy-dispersive spectrometer (EDS), we can see that the
MAPbI3 film on the nanopillar substrate shows good element
distribution (Element: I, O, Pb, Si, C, and N) (Figure S7).

3.3. Performance of Photodetector Devices. In all
subsequent tests and characterizations, we selected three sizes
of nanopillar samples, each with at least 5 samples. Tested the
following dimensions: S-1 sample, a nanopillar array with a
diameter of 1000 nm; S-2 sample, a nanopillar array with a
diameter of 500 nm; S-3 sample, a nanopillar array with a
diameter of 250 nm; a flat SiO2/Si substrate. Then, we
prepared MAPbI3 thin films on these substrates (Figure S8 in
the Supporting Information) and evaporated copper electrodes
to prepare devices for subsequent testing. First, we tested the
absorption spectra of MAPbI3 grown on different substrates
(S-1, S-2, S-3, flat substrate) to examine its light absorption
ability. From the results, we found that compared to the flat
substrate, the absorbance of MAPbI3 thin films on the
substrates with nanopillar structure increased by ∼10% (Figure
3a). These results have been reported in previous
reports,16,51,55−57 indicating that in the visible light range,
the introduction of nanopillars’ structure can increase the
scattering and decrease the reflection of light within the
MAPbI3 film, thus enhancing the light absorption of MAPbI3
film. From the PL spectrum (Figure S9), the absorption edge
around 750 nm is related to the optical absorption of the
perovskite as well as the PL peak at around 780 nm. These
results are consistent with those found in the scientific
literature.58

Then, we designed and fabricated a photodetector array to
test the photoelectronic characteristics of devices based on
nanopillar array substrates. To prevent mutual influence
between different devices, the interdigital electrode of our
designed photodetector has an aspect ratio of 1/41. (The
channel length and width of the photodetector are 50 and
2050 μm, respectively, Figure S10.) Figure 3b shows
photodetectors’ typical current versus voltage (I−V) curves
based on S-2 and flat substrate measured in the dark and under
white light illumination at 2.5 mW/cm2. The photodetectors
based on S-2 samples showed considerably higher current (Ilight
= 1.42 × 10−5 A) under white light illumination, which is 2317
times larger (at 5 V bias) than that in the darkness (Idark = 6.12
× 10−9 A), while the photodetectors with flat substrate just
showed 253 times larger (at 5 V bias) current under the same
illumination (Ilight = 1.53 × 10−6 A) as that in the darkness
(Idark = 6.04 × 10−9 A), which is similar to prior reports.59−61

We also measured S-1 and S-3 samples and observed similar
photocurrents to S-2 samples (Figure S11). Therefore, we
found that the introduction of nanopillar array substrates can

improve the photoelectric performance of MAPbI3 thin film
devices. These photodetectors have good stability, which
exhibited stable performance after 72 h of exposure to air
(Figure S12).
We further investigated the incident light intensity depend-

ence of photodetectors. Figure 3c depicts the I−V curves
measured by a photodetector based on S-2 under visible light
and dark conditions with different light intensities. The light
intensity of white light is 5, 50, 0.3, 0.5, and 1 mW/cm2,
respectively.
In photodetectors, the responsivity (R) represents the signal

strength under illumination, which can be calculated using

=R
J J

L
ph dark

light (1)

Here, Jph is the photocurrent density, Jdark is the dark current
density, and Llight is the incident light intensity.

62

From eq 1, the R values of the photodetectors based on
nanopillar substrates (S-2 samples) are calculated to be 7.1 A/
W (under white light at 5 μW/cm2) (Figure 3d). Figure 3e
shows the On−Off diagram measured by a photodetector
based on the S-2 sample under white light at 2.5 mW/cm2; the
Ilight and Idark remain stable every 10 s, which represents the
device demonstrating good optoelectronic performance
stability. And we tested the I−V curves of the photodetector
based on the S-2 sample measured under visible light at
different wavelength under 10 μW/cm2 and darkness (Figure
3f), and the R values at different wavelengths are shown in
Figure 3g.
The specific detectivity (D*) is often used to represent the

ability of a photodetector to detect weak signals, which can be
calculated through the following expression

* = ·
·

D
A f
I R

R
q J

( )
( / ) (2 )

0.5

n dark
0.5

(2)

Here, A is the effective area of the device, f is the electrical
bandwidth, In is the noise current, and q is the fundamental
unit of charge. The D* value of the photodetector based on S-2
is 7.3 × 1010 Jones (at 450 nm). The D* values of the
photodetector are distributed from 4.1 × 1010 to 4.6 × 1010
Jones under a white light intensity range from 5 to 1 mW/cm2,
which suggests that the device is sensitive to weak light.
The photodetectors based on nanopillar array substrates

showed a high sensitivity to visible light, as shown in Figure 3h
(under 10 μW/cm2 at 380 nm) and Figure 3i (under 10 μW/
cm2 at 800 nm), which indicates that nanostructures can
increase the light absorption in the visible light range.
As Table 1 shows, both R and D* values of the

photodetectors based on nanopillar array structures are at a
good level in the photodetectors based on MAPbI3 films.
To further study the photoresponse enhancement effect of

the nanopillar array on MAPbI3 thin film devices, we made use
of optical simulations via COMSOL methods to investigate
their optical properties. We simulated the electric field
distribution of MAPbI3 thin films on SiO2/Si nanopillar
substrates and flat substrates, respectively. (The incident light
was set at 650 nm and 850 nm on the nanopillars with a height
of 400 ± 30 nm and a diameter of 300 nm.) Figure 3k shows
the enhancement of the electric field between nanopillar
structures and periodic fluctuations along the nanopillar array,
as the nanopillar array allows for repeated reflections of
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incident light. On the contrary, the electric field distribution on
the flat substrate remains unchanged and is uniform (Figure
3j). Therefore, introducing a nanopillar array structure into the
MAPbI3 film can increase its light absorption and sensitivity,
which is consistent with the experimental results.

3.4. Application of Image Sensors. Photodetectors are
widely used in the field of image sensors. We have fabricated
an image sensor composed of a 5 × 5 photodetector array. The
size of each photodetector is 450 μm × 750 μm. As shown in
Figure 4a, we used a hollowed out “T″-shaped metal mask (1.5
cm × 1.5 cm) and placed it on photodetectors to manufacture
an image sensor. Figure 4b shows that the photoresponse of a
single photodetector under white light at a bias voltage of 5.0 V
is stable. When the light is turned off, the “T″ character cannot

be recognized (Figure 4c) because all photodetectors display
low dark current (<4.5 × 10−8 A). On the contrary, when the
light is turned on, the photocurrent of all photodetectors below
the character “T″ has significantly increased (>2.5 × 10−6 A),
showing good resolution. Although due to incomplete shading,
there is a small amount of light transmission, resulting in a
slight increase (<3.5 × 10−7 A) in the current of the
photodetector in the obstructed area; it is still much smaller
than the photocurrent under direct illumination. Therefore, the
character “T” can be recognized through mapping the
photocurrent (Figure 4d).

4. CONCLUSIONS
In summary, we have prepared a large-area tunable SiO2/Si
nanopillar array via nanosphere lithography and dry etching
and demonstrated its applications in improving the photo-
sensitivity of perovskite materials. The SEM and XRD results
indicate that the nanopillar array does not significantly
decrease the crystallinity of MAPbI3 thin films. Experimental
results and COMSOL simulation results demonstrate that
nanopillar arrays can improve light absorption and enhance the
electric field within the nanopillar arrays covered by MAPbI3
thin films, resulting in higher photosensitivity of MAPbI3 thin
films. The photodetector with nanopillar structures exhibited
responsivity with 11.2 A/W and specific detectivity of 7.3 ×
1010 Jones at 450 nm. In comparison to devices based on flat
substrates, these photodetectors exhibit better light absorption
ability in the visible light range, which is attributed to the light
enhancement effect brought about by the nanopillar array
structure. Additionally, an image sensor array was fabricated,
and it demonstrated high-contrast image sensing. The
nanopillar arrays are also suitable for other light-sensing
materials such as InGaAs, GaN, CdS, and TiO2.

Table 1. Comparison of the Key Parameters of
Photodetectors Based on Different Materials

Material
Light
source

R
(A/W) D* (Jones) Refs

MAPbI3 nanopillars White
light

7.1 2.9 × 1010 this
work

MAPbI3 nanopillars 450 nm 11.2 7.3 × 1010 this
work

MAPbI3 film White
light

0.2 ref 63

670 nm 0.3 ref 64
365 nm 3.5 ref 65

MAPbI3 network 650 nm 0.1 1.0 × 1012 ref 66
MAPbI3 nanonet White

light
0.6 ref 67

700 nm 10.3
MAPbI3 nanoflake 265 nm 12.0 1.0 × 1011 ref 68
MAPbI3 porous photonic
crystals

White
light

12.7 3.2 × 1013 ref 69

Figure 4. (a) Schematic illustration of a photodetector array with 5 × 5 pixels. (b) Time-resolved photoresponse of the photodetector based on a
MAPbI3 film on a SiO2/Si nanopillar substrate (S-2 sample) under white light (1 mW/cm2). (c, d) Output results of the photodetector array in
darkness and under illumination, respectively.
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