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Abstract: Over the last decades, the global life expectancy of the population has increased, and so,
consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g.,
drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging
issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer
treatment. One of the most promising therapies focuses on the assembly of hierarchical structures
in the form of nanoclusters, as this approach involves preparing individual building blocks while
avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an
overview of the major advances made in developing nanoclusters based on polymeric nanoparticles
(PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the
construction of the nanoclusters were described. Afterwards, the design, fabrication and properties
of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero)
nanoclusters and their mode of action in cancer therapy, were summarized.

Keywords: nanoclusters; inorganic nanoparticles; polymeric nanoparticles; theranostics; drug
delivery; cancer therapy

1. Introduction

Cancer is one of the main causes of death around the world, with 19.3 million cases
being diagnosed worldwide in 2020 according to World Health Organization [1]. It is
estimated that there will be 27.5 million new cases of cancer each year by 2040 [2]. Over the
years, conventional treatments such as radiation and chemotherapy have improved greatly,
and yet drawbacks and challenges encountered during treatment are still present, such
as cytotoxicity, non-specific distribution of the anticancer agents, low concentration of the
drug reaching the target tumor site and the development of multiple drug resistance [3].
In the last decades, the understanding of the human body has led to a great range of
possibilities for cancer treatment [4]. For example, the emergence of nanotechnology, as a
discipline of science for the development of tools and devices with sizes of 5 to 300 nm, has
led it to become a key component in nanomedicine for the preparation of therapy and drug
delivery agents, which have been useful over the last few decades [5]. The advantages of
nanomedicine consist of materials that are designed at the nanoscale level with the ability to
exhibit novel properties compared to their bulk counterpart. These nanostructures are also
capable of encapsulating or attaching drugs for the delivery to the target tissues, as they
can increase the bioavailability and reduce the dose, toxicity and transport across biological
barriers [6]. The application of these nanostructures can range from theranostics (combina-
tion of therapy and diagnostics), tissue engineering, drug delivery, targeted therapy, and
imaging [7]. The adoption of nanocarriers between 10–100 nm as a cancer treatment has
reached clinical trials, showing their advantage over conventional treatments and their
improved efficiency [8]. They have abilities associated with improved biodistribution and
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pharmacokinetics, not to mention the increased solubility of hydrophobic compounds.
Thanks to their unique properties, they can be designed as systems with improved efficacy
and reduced side effects [9]. Despite their advantages, single DDS are usually not sufficient
to prevent cancer recurrence; hence, the possibility to apply simultaneous therapeutic
agents would substantially increase the efficacy of the treatment. The ability to incorporate
different components with multiple mechanisms of action against cancer cells has been
proposed since the 1960s as an alternative to tackle multiple drug resistance. The first use
of combination therapy was developed as a pilot study in 1963 by Moxley et al. [10] against
Hodgkin’s lymphoma. Methodologies combining various functionalities within a single
particle with promising properties have been reported in the literature [11–15]. However,
despite the attractive features of this approach, it often involves the usage of toxic chemicals
that come into contact with the biological molecules, which could cause bioactivity loss.
In this respect, assembly of different building blocks, which can be prepared individually
while avoiding handling of toxic substances when manipulating biological materials, into
large hierarchical structures in the form of nanoclusters, would be more advantageous. A
plethora of building blocks can be applied in the preparation of the nanoclusters for cancer
therapy. The search for nanocarriers with low toxicity, better biocompatibility and biodistri-
bution has gained more attention, comprising biodegradable polymers and inorganic NPs.
This review focuses on this concept of the assembly of hierarchical structures in the form of
nanoclusters as DDS and theranostics agents, the major features of the building blocks that
can be employed for their preparation, the mechanisms responsible for their formation and
their drug delivery process. Emphasis on biodegradable and noble-metal NPs based on
gold, silver and iron oxide for the assembly of the nanoclusters is discussed in this review.

2. Nano-Based Building Blocks

In current cancer therapy, the number of designed and tested nanocarriers continu-
ously increases and includes micelles, dendrimers, liposomes, vesicles, capsules, organic
and inorganic NPs, etc. [16–20]. An ideal nanocarrier for drug delivery and cancer treatment
should meet a number of criteria including avoidance of the cleansing by the reticuloen-
dothelial system (RES) and release and accumulation of the cargo at the targeted site with
the desired therapeutic dose [21]. These criteria are directly dependent upon the particle
size, surface chemistry and charge, as well as hydrophobicity. Among these, particle size
distribution, surface charge and surface chemistry are important for successful design of
the nanoclusters with controlled size, morphology and stability. Therefore, rational design
of the nanoclusters using viable strategies requires a design of the building blocks with
tailored properties.

2.1. Polymeric Nanocarriers as Building Blocks

Targeting the ideal nanocarrier for cancer imaging and treatment, scientists have
focused much effort on PNPs. Indeed, PNPs have already been recognized as good candi-
dates for combined treatment and diagnosis of cancer. This is based on PNPs’ remarkable
stability, biocompatibility and/or biodegradability, design possibilities and relatively low
cost. Case-dependent application of basic chemistry in the design, the synthesis and the
modification of polymers allows the design of pre-defined materials selectively, combining
different elements in the so called “lego” concept towards cancer imaging and therapy [22].

The large number and the huge versatility of synthetic/modification processes for
polymers allow precise control over chemistry, functionality, architecture and self-assembly.
Selective conditions provide loading of anti-cancer substances, and surface “decoration”
with different reactive moieties allows the overcoming of problems related to immuno-
genicity, circulation time, cargo release, targeted delivery, traceability, and synergistic
chemotherapy [4,23–29]. Using this panoply of possibilities, PNPs can be designed to
accumulate in tumor sites passively or actively, respond to particular tumor microenviron-
ment conditions (pH, reactive oxygen species, overexpressed enzymes) and trigger and
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control drug/imaging agent delivery and exposure to provide the appropriate therapeutic
or imaging outcome of a theranostic.

As an example, multiple types of polymers have been designed to form micelles,
vesicles, nanospheres, nanogels, etc., and have been used in cancer diagnostics, imaging
and/therapy (Table 1). Although biocompatible, these polymers usually face size, surface
charge, stability and blood-residence time restrictions, predetermining the in vivo fate
of the PNPs [30]. Indeed, the lack of biodegradability of polyethers raises significant
concerns for bioaccumulation at the targeted body sites after drug-delivery is achieved.
This requires a clause for elimination through the natural pathways (preferably renal
filtration but also gastro-intestinal) to be fulfilled prior to application in cancer-targeting
formulations. As renal filtration is only possible below a certain size, the molecular weight
to be respected lies preferably below 5 kilodaltons (kDa) for a polyethylene glycol (PEG)-
containing nanocarriers, for example [31–33]. Thus, depending on their size and chemistry,
PNPs will distribute and accumulate either in the kidneys, liver or spleen, with much less
concentration in other organs and tissues [34]. Actually, it is all a question of compromise—
the desired bioaccumulation at the targeted size vs. bioelimination after drug-delivery
must both be optimal. A very good example is related to PEG-based systems for tumor
targeting. Because of the particularities of the tumor tissue, namely vasculature, PEG
nanocarriers designed for photodynamic therapy (PDT) show tumor accumulation, which
increases with the molecular weight of the carrier (10 < 20 < 30 � 40 � 60 kDa) [7], while
for successful bioelimination a molecular weight below 5 kDa is required. The problems
related to the elimination of non-biodegradable polymers might be solved by the use of
biodegradable polymers, such as (but not limited to) hydroxypropyl (methyl)cellulose),
carbomers, sodium hyaluronate, chitosan (CHIT), cyclodextrins, poly (galacturonic acid),
xyloglucan, xanthan gum, gellan gum, poly (ortho esters), poly (glycolide) (PGA), poly
(lactide) (PLA), poly (caprolactone) (PCL) and poly (lactide-co-glycolide) (PLGA). These
synthetic or natural polymers are recognized by living organs, tissues and cells in vivo,
and enter the complex metabolic pathways catalyzed by enzymes to finally be converted to
energy, building blocks or water and carbon dioxide (CO2).

Table 1. Examples of polymer types designed to form PNPs for cancer diagnostics, imaging
and/therapy.

Polymer PNPs Size (nm) Therapeutic/Ligand Role Cancer Type Ref.

Polyethers (e.g.,
PEG-based) 40–160 Photothermal agent (IR-780),

folic acid (FA)

Imaging
diagnostics

therapy

Ovarian, colon,
breast, lung [35–39]

Polyesters (PCL,
PLA, PLGA and

block-copolymers)
60–150 FA, doxorubicin (DOX),

paclitaxel, SPION, antibodies
(Ab), Indocyanine green

(ICG), metal NPs

cervical cancer,
HeLa cells,

carcinoma (SCC7)
[40–44]

Polysaccharides
(CHIT) 100–200 Subcutaneous

tumors, prostate [41,45–47]

The typical PNPs might be defined as reversibly formed assemblies (micelles, lipo-
somes, dendrimer systems or solid NPs) of multiple polymer chains, in which active
substances are encapsulated, mixed, absorbed or attached [48–52]. Their bulk is usually
charged with therapeutic and/or imaging agents or diagnostics, such as medications, gold
(Au) or iron oxide (Fe3O4) NPs, etc., and their surface was decorated with peptides [53],
ribonucleic acid (RNA) [54], folic acid (FA) [55], boronopicolinic acid [56] and other biologi-
cally active functionalities. Some authors, ref. [57], designed acid-responsive copolymers
(named Dlinkm) and micelle-based systems from (Micelleplex = PEG-Dlinkm-R9-PCL) by
interacting with small interfering RNA (siRNA). These Micelleplex are obtained via the
solvent exchange method. The in vivo tests on nude mice have shown improved siRNA
protection towards serum and prolonged blood-circulation time, as well as improved
anticancer activity when Dlinkm copolymer was present in micelles structure. Another
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group [58] loaded poly (lactic-co-glycolic acid)-co-polyspermine (PLGA-PSPE) micelles
with dihydroergotamine (DHE) and studied DHE uptake by A549 lung cancer cell lines
together with the in vivo cytotoxicity in lung tumor model mice. These micelles showed
controlled and sustained release of the loaded drug and dose-dependent cell-uptake. En-
hanced apoptosis was attested by a cell viability study. Reduced cancer cell number and
size were also observed for micelles in comparison to free drug. Polymeric micelles were
found not only to provide improved anticancer activity but also decreased medication side-
effects (namely cardiotoxicity) in the case of acetylthevetin B (ATB)-loaded CHIT/pluronic
P123 micelles [59].

The building and loading versatility of the polymeric micelles allowed further de-
velopment of the so called “co-delivery strategy”—an effective method to minimize the
amount of needed medication by amplifying its effect via a synergy with other biologically
active substances. This was firstly demonstrated [60] in a pH-sensitive CHIT/pluronic
F127 micelles with conjugated doxorubicin (DOX) and physically loaded paclitaxel in
the hydrophobic core of the micelles. Interestingly, the loading capacity of the micelles
towards paclitaxel was found to increase with DOX-conjugate content. The release of the
active substances followed in vivo a four-fold increase of the plasma concentration time
compared to mixed paclitaxel- DOX non-micelle formulations. A similar example is the
DOX-conjugated methoxypoly (ethylene glycol)-poly (caprolactone) (mPEG-PCL) diblock
copolymer self-assembled into micelles in a curcumin aqueous solution. These co-delivery
micelles proved in vitro cytotoxic activity against A549 tumor cells greater than the free
medications [60].

Despite all benefits, the concept of building PNPs via self-assembly in the presence
of an active substance, a metallic nanoparticle or other biologically active moiety presents
some disadvantages. Thus, the PNPs can be regarded as a trap controlling the accessibility
and limiting the action of any anticancer agent. The success of the as obtained PNPs is con-
trolled by the particle size, shape and surface potential. Additionally, their interaction with
tumors solely occurs via a passive targeting (a diffusion-controlled, and thus size-controlled,
migration of a substance through the blood vessels endothelium with no structural change
or specific interactions (Figure 1) [61]) allowed by the increased permeability and retention
(EPR) effect related to the leaky tumor vasculature [62,63]. As this passive targeting is often
non-specific and inefficient, the PNPs’ efficiency is substantially limited [64].
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Figure 1. Schematic of passive (A) vs. active (B) targeting in cancer diagnostic, imaging and therapy.
Reproduced with permission from ref. [61]; Boateng et al., Int. J. Mol. Sci. 21 (2020) 273. (open access
Creative Common CC).

Another introduced concept utilizes the so-called active targeting (Figure 1), e.g.,
specifically introduced surface chemistry of preformed PNPs as an anchoring site for the
selective introduction of functional groups (antigens or antibodies (Ab)), stealth chains
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(PEG brushes), traceable markers (fluorescent probes) and synergistic chemotherapy (drugs
and metal clusters) targeting corresponding functionalities on the tumor cell membrane.
Gifted with tumor specificity, these surface modified PNPs present active tumor targeting
through binding with tumor-specific receptors [65–67]. As an example, phenylboronic acid-
decorated chondroitin sulfate A (CSA)-based PNPs with a dual-targeting function were
developed [50]. Folate-bearing nanotheranostics were also obtained using sulfur-containing
hyperbranched polymer [68]. Other exemplary studies are summarized and discussed
in a recent review [69]. Despite this, conjugation of functional moieties and tags to PNPs
demands precise chemical design and control over synthesis, as well as functionalization
via differing chemistries and via covalent bonding that might also affect the integrity of the
PNPs and the trapped medicine [70–74].

Originally, other author groups benefitted from the highly selective, strong but dy-
namic host-guest (supramolecular, non-covalent) interactions in the design and construction
of active nanoparticles for cancer treatment [22,75–78]. For instance, the strong interac-
tions between cucurbit[n]urils (where n = 5–8, or 10) and spermine were employed in
developing PNPs for combined cancer imaging and chemotherapy [62–65]. Sun et al. [22]
used PLA/PLGA PNPs as independent “lego” blocks to decorate with cucurbit[7]uril.
A second complementary “lego” piece (amantadine, amantadine conjugated FA, PEG
and fluorescein isothiocyanate) was also linked with and allowed the incorporation of a
second drug (oxaliplatin), in addition to the first loaded drug (paclitaxel), for a possible
synergistic chemotherapy.

Based on the above, the PNPs might be presented using the concept of multifunctional
“lego” particles, which structure, composition, morphology and surface can be on-demand
adapted to act in diagnostics, imaging and even treatment of cancer [22] (Figure 2). To
conclude, the structural, physical and chemical versatility and tenability of the polymeric
nanocarriers, which are capable of loading various types of anticancer therapeutic agents,
constitute an interesting building block platform for the construction of nanoclusters-
based DDS.
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2.2. Inorganic Nanoparticles

The design and fabrication of numerous ranges of DDS with the ability to tailor the
composition, size and functionality have provided immense resources in cancer therapy and
can be part of the assembly of the nanoclusters as DDS. Inorganic NPs made of gold, silver,
iron oxide, platinum, copper and so on have been used more frequently in nanomedicine
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thanks to their size and material dependent physico-chemical properties. In particular,
their optical and magnetic properties, ease of functionalization and inertness allow them
to be a good alternative for imaging and ablation of cancer cells [79]. This review focuses
on the most investigated inorganic NPs and their related nanoclusters for cancer therapy,
namely gold, silver and iron oxide.

2.2.1. Gold Nanoparticles

The attention to gold (Au) in DDS and in theranostics agents has a long history thanks
to its chemical stability, ease of synthesis, non-immunogenic and low toxicity. When the
size of Au is on the nanometer scale (i.e., 1–100 nm), it displays totally different prop-
erties from bulk Au, particularly its optical properties. Au NPs offer unique properties,
including a surface plasmon resonance (SPR) effect, which possesses a high light-to-heat
conversion efficiency of due to the oscillating free electrons in their conduction bands,
size- and shape-dependent electronic properties and photothermal effect, thus attracting
remarkable attention and practical consideration over the last decades. Their biomedical
applications include drug and gene delivery, photothermal therapy (PTT), photodynamic
therapy, radiotherapy and use as contrast agents for cancer imaging [80]. In particular, the
recent advances in the engineering of Au NPs allowed a better control and tuning of the
size, shape, composition and surface chemistry of the particles and thereby adjustment
of the optical and electronic properties of Au NPs for the effective utilization of these
materials in biomedical applications [81–83]. The synthesis of Au NPs was first reported in
1941 upon reacting with chloroauric acid (HAuCl4) and trisodium citrate (Na3C6H5O7) [84].
In 1951, Turkevich et al. reported in detail what has become since then the most common
method of Au NPs synthesis. This method is also based on the reduction of HAuCl4 using
Na3C6H5O7 as a reducing agent as well as a surface ligand on the surface of Au NPs [85].
Adjustment of this method allowed the preparation of spherical monodisperse Au NPs in
the size range between 15 to 150 nm, depending on the initial concentration of Na3C6H5O7.
This methodology was the foundation for the development of other techniques that allowed
a more controlled synthesis of Au NPs in diverse media (e.g., water, organic solvents) at
different pH, temperature and reducing agents (e.g., sodium borohydrate (NaBH4) [86,87]
and aspartate [88]). The Brust-Schiffrin method is another approach used to synthesize
Au NPs in organic solvents that are not miscible with water. The methodology involves
the transfer of gold(III) chloride (AuCl4) to an organic solvent (e.g., toluene, chloroform,
benzene) phase from an aqueous solution using tetraoctylammonium bromide (TOAB) as
the phase-transfer agent, and reduced by NaBH4, in the presence of an alkanethiol (e.g.,
dodecanethiol) [87]. Other reported methods of Au NPs synthesis include electrochem-
ical, seeding growth, biological, microwave irradiation and sonochemical. The variety
of methods of synthesis allowed the production of Au NPs with multiple shapes (e.g.,
nanorods, nanocubes, nanocages and nanotubes) and size and surface chemistry, thus
allowing precise control of their properties [89–93]. Beyond this, the possibility to bind
amines, thiols and polymers to the surface of Au NPs offers a suitable way to incorporate
reactive functional groups that can be used for conjugating therapeutic agents (e.g., drugs,
siRNA, radionuclides photosensitizers and genes) and for targeting (e.g., peptides and Ab).

This makes Au NPs a promising material in the development of polyvalent nanomedicines
capable of multimodal therapeutic applications in cancer treatment [94,95]. In general,
surface functionalization can be achieved through covalent attachment (e.g., thiol linkages)
or physical adsorption. PEGylation is one of the ubiquitously used strategies for surface
functionalization of Au NPs [96,97]. PEG is versatile and inexpensive, and it is Food and
Drug Administration (FDA) approved. It is commercially available in different molecular
weights and with various functional groups such as thiols, acids, amines or even vitamins,
enzymes, etc. PEG can be attached covalently to the Au NPs surface. PEGylated Au NPs are
characterized by reduced uptake by the RES, decreased enzymatic degradation, diminished
renal filtration and prolonged half-blood life due to an increase in their hydrophilicity,
and hence an enhanced bioavailability [98,99]. All these properties are present because
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PEGylation prevents the formation of a protein corona, so that the immune system does
not recognize the Au NPs. The last, but not the least, PEGylation allows minimizing
nonspecific interactions via steric stabilization and surface charge control to avoid NP loss
to unwanted locations [100]. Despite these advantages, recent in vivo studies showed that
PEGylation may induce acute inflammation and apoptosis in liver cells in the presence of
PEGylated Au nanoshells (AuNSs) [101,102]. When it comes to the nanometer scale, Au
NPs exhibit various advantages compared to their bulk counterpart, and their numerous
applications in the biomedical area has led to the exploration of their in vitro and in vivo
adverse effects [103,104]. In fact, it was shown that Au NPs can exhibit toxicity, which is
dependent on their different properties such as size, shape, coating material and surface
charge [105,106]. Nonetheless, it is possible, with proper surface modifications, to reduce
or even eliminate their toxic effect and still use them as therapeutic agents. Besides PEG,
different surface modifications were studied to reduce or eliminate the cytotoxic effect of Au
NPs such as polyacrylamide [107], polyvinylpyrrolidone (PVP) [108], oligonucleotides [109],
carbohydrates [110], folic acid (FA) [111] and Ab [112]. It is important to consider the
targeting properties of the surface ligands and the possible effects of the NPs in different
parts of the body when designing therapies for biomedical applications.

There is an extensive literature dedicated to the conjugation of chemotherapeutic
agents into Au NPs via covalent conjugation or non-covalent interactions and their de-
livery in a targeted or non-targeted manner [113]. As an example, Gibson et al. reported
the conjugation of Au NPs to the chemotherapeutic agent (i.e., paclitaxel) through a flex-
ible hexaethylene glycol spacer using carbodiimide-based chemistry [114]. In another
study, Au NPs were employed to reduce the toxicity of certain tumor necrosis factors and
compared with freely administered ones, where the tumor necrosis factor alpha (TNFα)
was delivered by conjugating Au NPs with a thiol derivatized PEG and the TNFα (CYT-
6091, Aurimune) [115]. For example, Lee et al. proposed the conjugation of DOX loaded
oligonucleotides to Au NPs as a DDS against colon cancer. In the study, the DOA (DOX-
Oligomer-Au NP) formulation showed the cellular uptake by the cancer cell line with the
release of the drug into the cell nucleus [116]. Another drug, methotrexate, was used for
conjugation with Au NPs, showing the enhanced cytotoxicity in various tumor cell lines
(e.g., human bladder cancer, human prostate cancer and human cervical cancer) compared
to the free drug. When conjugated to Au NPs, the drug had a faster and higher level
of accumulation in the cancer cells [117]. Besides Au NPs, the use of Au as an active
thin layer coating on the surface of different types of nanomaterials such as silica NPs
for cancer therapy, known also as Au nanoshells (AuNSs), was reported [118–120]. They
are currently used in clinical trials as the silica core serves as the dielectric core while the
Au shell induces the thermal ablation once the NIR light stimulates the outer Au shell
electrons [121].The possibility to use Au NPs as passive agents, namely diagnostic probes,
was also investigated [122–124]. Sokolov et al. prepared a multifunctional carrier composed
of Au NPs, conjugated to an antibody to bind to the epidermal growth factor receptors
(EGFR). It served for detecting cervical cancer where Au NPs acted as contrast agents for
optical imaging due to their SPR scattering effect [125]. Other targets for cancer treatment
include folate receptors (FRs). They are usually overexpressed in breast, kidney, brain
and ovary cancer cells. By using FA or anti-folate on the Au NPs surface, they can act as
targeting agents for drug delivery. Recently, Au conjugates were synthesized to target the
FRs with a linker of PEG between the FA and the Au NPs [126]. However, more recently,
Au NPs are also being explored as active agents with antitumor properties, i.e., theranostics.
Theranostics is a new technological field which develops multifunctional nanomaterials
that comprise nanosize structures, which offer the possibility to target and kill cancer
cells in a regulated matter and simultaneously allow the detection of cancer cells with
high sensitivity and specificity [127]. For instance, their design as tools for photothermal
and imaging applications makes them promising instruments in cancer. PTT involves the
absorption of NIR light by the phototransducer (e.g., Au NPs), which then converts it into
heat to cause cell death at the tumor site. Lin et al. demonstrated the application of Au NPs
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as photothermal agents, where 30 nm Au NPs were conjugated with an Ab for a targeted
therapy, where the NPs achieved membrane permeabilization and the killing of cancer cells
after irradiation [128]. Kang et al. used mesenchymal stem cells (MSCs) as a component to
aggregate pH-sensitive Au NPs for PTT. The Au NPs were loaded into the MSCs and were
successfully delivered into the tumor tissues with an enhanced photothermal efficiency
and therapeutic effect upon laser irradiation when compared to control Au NPs (non-pH
sensitive) [129]. The combination of Au NPs as diagnostic and imaging probes have great
potential as they can provide greater contrast in imaging techniques such as MRI, photoa-
coustic imaging (PAI), dark-field microscopy and X-ray computed tomography (CT), and
can be used for ablation of cancer cells [130,131]. For example, Huang et al. prepared gold
nanovesicles for PAI and PTT. The vesicles were based on PEG-b-PCL block copolymer
with a disulfide bond at the terminus, where the Au NPs were grafted. These vesicles
showed a high photothermal conversion efficiency (37%) and the simultaneous imaging in
the size of the tumor-xenograft model [132]. A non-extensive list of Au NPs undergoing
clinical trials and approved by European Medicines Agency (EMA) or FDA for cancer
therapy is summarized in Table 2. All listed Au NPs systems involve the surface chemistry
modification, along with the control of the size and shape of the NPs since these aspects
will determine the enhanced biocompatibility, prevention of aggregation, interaction with
the cells and the targeted transport and accumulation in the desired organs [133].

Table 2. List of Au NPs for cancer therapy undergoing clinical trials and approved by EMA or FDA.

Vector Name Formulation Treatment Clinical
Approve Ref.

Au NPs

CYT-6091
(Aurimune)

PEGylated colloidal
Au-TNF

Solid tumors
Phase I

completed
[115]

Non-small
lung cancer

undergoing
Phase II

AuroLase Silica core coated with
Au shell

Head and
neck cancer

Completed
pilot study [134]

NU-0129
Spherical nucleic acid

formulation conjugated
to Au NPs

Glioblastoma
multiform

Phase 0
completed [135]

2.2.2. Silver Nanoparticles

Silver NPs (Ag NPs) are one of the most studied and explored metallic NPs derived
from noble metals, together with Au NPs for biomedical applications. Ag NPs have been
shown to have authentic features and considerable potential for the development of new
pharmaceutical formulations, antimicrobial agents, diagnostic and detection platforms, tis-
sue regeneration materials and biomaterials and medical device coatings [136,137]. Ag NPs
were proved to exhibit antibacterial, anti-inflammatory, antiviral and antifungal activities.
In the past few decades, the use of Ag NPs in theranostics has gained considerable attention
due to their unique physico-chemical properties and biological activities [138,139]. The
physico-chemical properties of Ag NPs will be affected by the synthetic methods where
their size can range from 1 to 100 nm [140]. The synthesis of Ag NPs includes chemical,
physical and biological methods that are similar to the preparation of Au NPs [139]. The
main components usually involved in the synthesis of Ag NPs are metal precursors, re-
ducing agents and stabilizing agents. Chemical reduction, which is a fast, simple and
inexpensive approach, is the most common method used for the synthesis of Ag NPs with
a high yield as a stable colloidal dispersion in water or organic solvents. The mechanism of
formation of the Ag NPs involves nucleation and growth of the NPs, where the reduction
of Ag ions (Ag+) leads to the formation of the Ag atoms followed by cluster agglomeration,
and finally to the formation of colloidal Ag NPs [138]. The most common reducing agents
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used in this method include sodium citrate, alcohol, borohydride, ascorbic acid and hy-
drazine [141,142]. A strong reducing agent (e.g., borohydride) can result in small particles
(3–5 nm) with a fairly monodisperse distribution, while a weaker reductant (e.g., citrate)
leads to bigger NPs formation (30–100 nm) with a broader size distribution [143–145]. It is
also important to consider the capping agent for the stabilization of the NPs to avoid any
agglomeration. The most commonly employed protective agents include polymers such
as PEG, PVP, poly (methacrylic acid) (PMAA), polymethylmethacrylate (PMMA), CHIT,
and organic compounds such as oleylamine and thiols (e.g., dodecanethiol) [146,147]. The
surface charge of the Ag NPs can be controlled by a proper selection of the capping agent,
which can be further used as precursor for conjugation with biomolecules. For instance, the
production of Ag NPs using the chemical method was tested against a murine fibrosarcoma,
where the citrate-stabilized Ag NPs were functionalized with a mouse serum albumin lig-
and (Ag NP-MSA). The study showed the reduction of size and delay of incidence of the
fibrosarcoma when treated with Ag NP-MSA [148].

Despite all above-mentioned advantages, the chemical method very often requires the
use of chemical reducing agents, which can be harmful to living organisms.

The production of Ag NPs by physical methods usually does not involve toxic chem-
icals and it has a fast-processing time that yields NPs with a narrow size distribution.
However, agglomeration can occur as a major drawback because no stabilizing agent is
used. The physical methods include arc-discharge, ball milling, laser ablation, physical
vapor condensation and direct current sputtering [149,150]. Regardless of the mentioned
advantages, the major drawback of this approach is its high-energy consumption; hence,
the chemical method is mostly preferred.

Last but not least, the formation of Ag NPs by biological method has emerged as
the new viable option as it replaces the reducing agents and stabilizers with non-toxic
molecules (e.g., antioxidants, proteins). The bio-molecules during the production of the
NPs act as the reducing agent by the produced enzymes present in the system, and the Ag
NPs are further stabilized by the proteins excreted through the microorganism [151]. The
general mechanism starts by the entrapment of the Ag+ on the surface of the microorganism
cells followed by the reduction of the ions, which produces the Ag nuclei to finally create
the colloidal Ag NPs [152]. The use of microorganisms such as fungi, yeast and bacteria,
as well as plant systems such as aloe vera, lemongrass, seaweed and mustard, as bio-
reducing agents was reported for the preparation of the Ag NPs [153,154]. Biological
methods have numerous advantages over the conventional one, including eco-friendliness,
availability of a large pool of bio-reducing agents, a one-step process, ease of dispersion
of the NPs in water and tenability of the particle size. In general, the implementation of
biological methods allows for more ease of control of the size, morphology and distribution
compared to the chemical methods [155,156]. For example, NPs have been prepared
using Bacillus species, where an intracellular electron donor could exploit the bacterial
metabolic process in the bio-reduction of Ag+ [157,158]. Due to their intrinsic cytotoxicity
and physico-chemical properties, Ag NPs have been reported to induce cytotoxic effects
against leukemia cells and breast cancer cells [159,160]. As Ag NPs become an interesting
platform for cancer therapy, the anticancer activity of the NPs was investigated to elucidate
their mechanism of action. Asharani et al. investigated the molecular mechanism and
cellular effects using human brain cancer cells U251 and normal human lung cells IMR-
90. The results showed that Ag NPs prepared by the chemical reduction method could
adsorb cytosolic proteins on their surface; hence, they can regulate gene expression and
influence intracellular factors [161]. On the other hand, several studies have shown that the
generation of reactive oxygen species (ROS) can lead to serious cell damage, followed by
apoptosis [162–164]. Overall, the proposed mechanism of action for Ag NPs to induce cell
death involves activation of caspases, ROS generation, DNA damage, enhanced leakage of
lactate dehydrogenase, endoplasmic reticulum stress and mitochondrial dysfunction [139].
Gurunathan et al. produced Ag NPs from B. funiculus bacteria and showed the effect of the
NPs using different concentrations over the course of 24 h against MDA-MB 231 cells (breast
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cancer cells) by the ROS and activation of caspase-3 that led to the DNA fragmentation and
apoptosis [159]. In addition to their innate tumor killing properties, the combination of Ag
NPs with chemotherapeutic agents is an effective approach to enhance the tumor-killing
effects of the drugs. For example, Zhang et al. developed Ag NPs through a biological
method using a bacterium Bacillus clausii. The synthesized NPs had a spherical shape with
a size of 16–20 nm and the combination of the Ag NPs with salinomycin (inhibitor for
cancer stem cells) enhanced the cell death (81%) more efficiently than either Ag NPs (25%)
or salinomycin (25%) alone against human ovarian cancer cells [18]. Similarly, Ag NPs
can be conjugated with specific surface agents that are expressed in tumor cells for active
targeting using different capping agents. Attaching biomolecules on the NPs surface can be
achieved by physisorption or through covalent bonding based on carbodiimide (carboxyl
groups) using the free amines on Ab [165]. Locatelli et al. developed a nanocarrier where
lipophilic Ag NPs were entrapped into polymeric PEG-based NPs and the chlorotoxin
peptide was conjugated to the surface. The results showed an enhanced cytotoxic effect and
improved cellular uptake 8 times more with respect to the non-targeted NPs [166]. Recent
studies demonstrated the cancer theranostics application of synthesized Ag NPs [167–169].
Despite all these efforts, Ag NPs are not extensively used as drug delivery agents due to
serious concerns about their toxicity [137,170]. Nonetheless, as greater knowledge about
in vivo behavior of the nanosystems, biodistribution, bioavailability and toxicity unfolds,
so do the possibilities to apply Ag NPs as DDS; some examples can be observed in Table 3.

They demonstrated anti-tumor activity in several studies via light absorption that can
promote photo-thermal elimination of cancer cells. Meanwhile, the scattered light can be
used for imaging for diagnostics [160,171].

Table 3. Examples of Ag NPs as DDS.

Size of Ag NPs (nm) Anticancer Drug Cancer Cells Ref.

30–50 DOX
Human lung carcinoma (A549)

[152]
Breast cancer (MCF-7)

32 Plumbagin Human cervical cancer cells [172]

23 Dexamethasone
HeLa cervical cancer cells

[173]
Osteocytic cells (MLO-Y4)

20 Imatinib Breast cancer cells (MCF-7) [174]

2.2.3. Superparamagnetic Iron Oxide Nanoparticles

The concept of using magnetic materials along a magnetic field in medicine was in-
troduced in the 1960s, and much attention has been focused on the superparamagnetic
iron oxide NPs (SPIONs). They have attracted special attention as a suitable nanosystems
for drug delivery (e.g., chemotherapy, gene therapy) due to their biocompatibility, ease of
functionalization, higher relaxation times, inherent magnetic behavior, biocatalytic activity
and photo-responsiveness. Their main advantage lies in their unique magnetic proper-
ties, which allow them to serve as contrast agents in magnetic resonance imaging (MRI)
or/and as magnetic hyperthermia treatment [175]. For in vivo applications, maghemite
(γ-Fe2O3) and magnetite (Fe3O4) forms of iron oxide have been commonly preferred for
being metastable with a cubic inverse spinel crystal structure as compared to other forms
of iron oxide. SPIONs with sizes below 25 nm exhibit superparamagnetic properties. Su-
perparamagnetism occurs below the characteristic threshold where the SPIONs enter a
single-domain state. The single-domain state refers to the state where the NPs’ magnetic
moments are aligned in one direction along the respective axis of magnetization. Once the
applied magnetic field is removed, the SPIONs retain no residual magnetism, hence making
them perfectly suitable for magnetic hyperthermia treatment, imaging, gene therapy and
tissue repair [176]. The size of the SPIONs for in vivo applications must be ideally between
10–100 nm to avoid rapid renal clearance and sequestering from the RES [177]. Additionally,
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the SPION’s surface must be covered by a biocompatible compound to prevent degradation
of iron oxide, suppress the agglomeration of the NPs and provide the desired functional
groups for bioconjugation. Various methodologies have been developed for the synthe-
sis of SPIONs, namely co-precipitation, microemulsion, hydrothermal synthesis, thermal
decomposition, sonochemical reactions, aerosol and sol-gel synthesis [178–180]. The co-
precipitation technique is the simplest one and allows industrial upscaling for clinical
applications. The size of the NPs can range from 2 to 17 nm depending on the methodology
parameters. The synthesis consists of the mixture of Fe2+/Fe3+, followed by the addition
of a strong base under an inert atmosphere. The formation of the SPIONs begins with
a short burst of nucleation as the concentration of the species reaches supersaturation,
and then a slower growth process follows by the diffusion of the solutes to the crystal’s
surface. The salt precursors, pH, ratio of the salts and temperature will have an influence
on the size distribution and properties of the synthesized NPs [181]. Based on the synthesis
parameters for co-precipitation, attempts to prepare SPIONs using nanoreactors have been
studied. For example, formation of magnetic NPs in micelles and microemulsions were
produced by the oxidation of iron salts, and the size distribution was controlled by the
temperature and surfactant concentration [182]. Overall, NPs with diameters from 3 to
116 nm can be obtained using the nanoreactor methodology [183,184]. For the case of
hydrothermal syntheses of SPIONs, there are two main routes: hydrolysis and oxidation
of the mixed metal precursors. Both processes are very similar, and again, the reaction
conditions are very important for the final product properties. For example, the particle
size of the SPIONs increases with a longer reaction time and a higher water content also
results in the precipitation of larger SPIONs. Therefore, the particle size is mainly controlled
through the rate of nucleation and the grain growth, which is dependent upon the reaction
temperature [185]. In contrast, thermal decomposition occurs by the decomposition of iron
organic precursors (e.g., iron pentacarbonyl (Fe(CO)5), iron (III) acetylacetonate (Fe(acac)3))
and using surfactant and organic solvents. For example, Sun et al. produced SPIONs with
a diameter from 4 to 20 nm by the reaction of Fe(acac)3 with 1,2-hexadecanediol in the
presence of oleic acid and oleylamine [186]. Even though new techniques such as thermal
decomposition and hydrothermal synthesis allow the obtainment of more monodisperse
distribution and enhanced magnetic properties, they often require the use of toxic chemicals
for biomedical applications; therefore, co-precipitation remains the most used technique.

The possibility to incorporate a functional group on the SPION’s surface is essential
for their stabilization, cytotoxicity, target and application. So far, several studies have exam-
ined the potential cytotoxic effect of the SPIONs with different surface coatings, generally
showing no or low toxicity until high exposure levels (>100 µg mL−1) [187–189]. High
exposure level of SPIONs can lead to oxidative stress, DNA damage and changes in the
gene expression. Therefore, is it extremely important to select a surface coating capable
of stabilizing the SPIONs until they are cleared from the body [190–192]. First, the surface
coating with desired functional groups can prevent their aggregation and cytotoxicity and
can provide binding sites for further conjugation with the pharmaceutical agent or targeting
ligand. Stabilization of the NPs mainly achieved by electrostatic forces or steric repulsion
and by controlling the strength of these forces is the key parameter to obtain NPs with a
good stability for biomedical applications. The most common primary functional groups
adsorbed or attached on the SPIONs surface include carboxylic groups (e.g., alginate (ALG),
polyacrylic acid (PAA), and citrate), amine groups (e.g., polyethyleneimine (PEI), CHIT)
and hydroxyl groups (e.g., PEG, polysaccharides, ALG) [193]. Another way of coating
SPIONs is by using inorganic materials such as Au, silica or gadolinium, which in turn
can enhance the nanoparticle properties and help in binding biological ligands. Lin et al.
synthesized a core-shell structure of Fe/Au NPs with a 10 nm size by a reverse-micelle
approach [194]. In another example, Caro et al. synthesized Au coated SPIONs and capped
with PVP (Fe@Au NPs) by a seed-mediated growth chemical method. In the study, the
NPs showed a multimodal activity as contrast agents for MRI, X-ray CT and as possible
image-guided PTT, thus indicating the potential development of the platform as thera-
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nostics agents [195]. Similar strategies to Au and Ag NPs are employed for the surface
functionalization and stabilization of the SPIONs and are depicted in Figure 3. Overall,
the conjugation efficiency will be variable depending on the surface chemistry of the NPs,
and sometimes the biomolecules require modification in order to be reactive for conjuga-
tion. This is mostly the case for direct NP conjugation, and in turn loss of bioactivity can
occur [196]. For example, a new approach implicates the use of “click” chemistry, which
involves Copper (Cu)-catalyzed azide-alkyne chemistries [197]. Both groups are highly
reactive towards each other and are unreactive with most functional groups, allowing for
the specific conjugation with the desired moiety with a highly stable bond. Even though
the implementation of “click” chemistry allowed for a direct conjugation of SPIONs with a
biomolecule, there are some limitations. First, the Cu catalyst can lead to problems in vivo
if it is not properly purified beforehand, as excessive consumption of Cu was linked to
disorders such as kidney disease, hepatitis and Alzheimer’s [198]. Second, the highly stable
bond between the SPIONs and biomolecules may also inhibit the further degradation of
the magnetic NPs and be secreted from the body. Therefore, the method for conjugation
with a biomolecule mainly involves the modification of the SPION’s surface with a proper
functional group that contains a linker that can directly be attached between both moieties.
The linker chemistry conjugation has a better control over the binding sites since it can
increase the number of active biomolecules at the nanoparticle surface and the milder
reactive conditions limit the loss of bioactivity during the conjugation. Finally, another
way to achieve interactions between a biomolecule and the SPIONs is by applying physical
forces based either on electrostatic interactions, hydrophobicity/hydrophilicity or affinity
(e.g., avidin-biotin) interactions. The advantages when using this approach include no
need for an intermediate modification step and high and rapid binding efficiencies. For
example, electrostatic interactions have been used for the assembly of plasmid DNA onto
SPIONs, where the SPIONs were coated with cationic PEI and then complexed with the
negatively charged plasmid DNA [199,200]. While hydrophobic/hydrophilic interactions
have remained unattractive for conjugation with a biomolecule due to the sensitivity of the
SPIONs to the environmental conditions and low orientation of the bound ligands, affinity
interactions have shown to be very effective for bioconjugation. For example, the SPION’s
surface can be modified with streptavidin, which will specifically bind to any biontinylated
molecules [201]. Unlike the electrostatic and hydrophobic interactions, the affinity interac-
tion is the strongest non-covalent bond and does not suffer from environmental conditions
such as salinity or changes in pH [179]. As the SPIONs systems have the possibility to be
coated with diverse polymers and materials, they are capable of interacting not only with
biomolecules but also with any desired drug and they can act as magnetic nanocarriers for
drug delivery. The strategies for conjugation are similar to the one used for bioconjugation
and can overall be represented in Figure 3.

For example, the therapeutic effect can be triggered by the applied magnetic field, or,
as it is called, magnetic drug targeting (MDT). The MDT first involves the attachment of the
drug to the biocompatible SPIONs, followed by intravenous injection of the SPIONs in the
form of suspension and finally the application of the external magnetic field to direct the
NPs towards the pathological site to allow the release of the drug. For example, early clinical
trials using MDT have been reported where SPIONs were loaded with epirubicin, and the
accumulation of the NPs at the target site in half of the patients was demonstrated [202].
Unfortunately, some problems are also encountered using this therapy, such as embolization
of the blood vessels and control of the drug diffusion after release from the magnetic NPs,
as well as some toxicity. Nonetheless, it remains as a promising new therapeutic model
for cancer therapy. Another way to take advantage of the SPION’s properties as cancer
therapy is by the local overheating of the cancer cells alongside the simultaneous release of
the drug. This effect is called hyperthermia or magnetic fluid hyperthermia (MFH), where
the SPIONs can adsorb an alternating magnetic field that is then converted into heat. The
exploration of MFH began in 1957 by destroying metastases on the lymph nodes from dogs.
Since then, the development of SPIONs as a potential cancer treatment has exploded. For
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instance, one successful outcome was developed in Berlin at Humboldt University, where
the group synthesized SPIONs with an aminosilane coating against prostate cancer and
glioblastoma multiform [203,204]. Due to the coating and their small size, the SPIONs could
be taken up intracellularly by differential endocytosis. The testing of the new system in
clinical trials resulted in a positive outcome, leading to regulatory approval in Europe. The
SPION formulation (NanoTherm) is currently applied in combination with radiotherapy
for patients with brain tumors [205]. Each of the proposed components can usher in endless
possibilities for the assembly of the nanoclusters, which in turn needs to be designed in a
clever strategy for the proper distribution within the patient. Therefore, the next section
will include examples of nanoclusters with multiple functionalities.
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2.3. Design towards Nanoclusters as Drug Delivery Systems and Theranostics

Nanoclusters have drawn considerable research interest in the biomedical field, owing
to their distinct features. To effectively design nanoclusters for cancer therapy, parameters
such as size, charge and surface properties must be tailored for the effective bio-distribution
in patients. In this section, the design, fabrication and properties of the two main classes of
nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and
their mode of action in cancer therapy are summarized.

2.3.1. Metallic Nanoclusters

Metallic nanoclusters (MNCs) are nanosystems composed of a few to a hundred
atoms. They display molecule-like features since their size (below 2 nm) is close to the
Fermi-wavelength of electrons (c.a. 0.7 nm) [206]. Owing to their discrete energy levels,
MNCs have radically different chemical, optical and electrical properties from those of
bigger metal NPs. A distinct characteristic of the MNCs is their strong photoluminescence,
ease of synthesis, tunable fluorescence emission, very large surface-to-volume ratios, good
quantum yields, high photostability and large Stokes shift [207]. Luminescence properties
of the MNCs can be controlled using several approaches, such as ligand-to-metal electron
transfer, quantum confinement effects, controlled surface complexation, ligand-controlled
formation of super-cluster architectures and via agglomeration induced emission between
clusters protected by thiolate [208–210]. MNCs formed from Au and Ag have been widely
explored for applications in the biomedical field for bioimaging and biolabeling [206,211].
Therefore, for the MNCs to be applied as successful tools, it is highly important to assemble
a biocompatible and reliable platform to achieve the required performance. Biocompatibil-
ity is a key parameter for the short and long-term interaction with the patient, as when the
MNCs are injected into the organism, they can potentially harm the host and trigger an
immunological response that could lead to toxicity. To reduce and avoid the possibility of a
negative response, coating and functionalization of the metallic core and coating with a
non-toxic shell can improve its biocompatibility while keeping their intrinsic properties.
The general approach for achieving proper functionalization for the MNCs is either by the
“top-down” or “bottom-up” method (Figure 4). The most common method of synthesis
is very similar to the preparation of inorganic NPs such as chemical reduction, chemical
etching, photoreduction, electrochemical synthesis, sonochemical synthesis and microwave
assisted synthesis [206,212]. The most widely used methodology is the chemical reduction
of the metal salts in the presence of organic ligands as the stabilizing agents. To control
the size of the MNCs and obtain ultra-small MNCs, three essential features need to be
considered, namely a strong stabilizing effect that can be obtained by ligands with a large
steric hindrance, a high metal binding affinity between the ligand and metallic core and
a weak reducing power coming from the reducing agents. For instance, Au NCs can be
assembled in-situ using thiols as protecting ligands. This approach consists of the chemical
reduction of the Au ions into Au0, followed by their nucleation in the presence of capping
and reducing agents (e.g., NaBH4 and tetrakis (hydroxymethyl) phosphonium (THP)) [213].
The array of substituents will influence the arrangement of the Au atoms and hence the
NC’s core due to the volume and properties of the ligand [214]. The presence of thiols is
often used because they can form strong thiol-Au bonds with a similar strength as Au-Au
bonds and they have good water solubility and high stability. Many thiols have been used
to prepare monolayer-stabilized Au NCs and Ag NCs, such as glutathione (GSH), thiolate
cyclodextrin and tiopronin [215,216]. Besides thiols as capping agents, biomolecules and
polymers have gained attention in the chemical reduction process due to their minimal
toxicity and higher biocompatibility [213]. For example, several studies were performed to
synthesize luminescent Ag NCs using various DNA sequences [217]. Ag NC’s function-
alization using DNA helps prevent the Ag NCs from aggregating and allows a distinct
recognition ability for biomarkers in the cells, e.g., integrating the DNA tail with some
aptamers to attain specific binding and cell targeting [218]. The main advantages for these
Au NCs and Ag NCs have been explored in the field of biosensing and biolabeling thanks
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to their fluorescent properties. Lately, they have gained more attention in therapeutic
applications (e.g., radiotherapy and photodynamic therapy) as a new strategy to elude
drug resistance [219–221]. For example, in radiotherapy, ionization energy is used for the
killing of cancer cells. However, as a high energy is employed, healthy tissues can be
also affected, which constitutes a major obstacle of this method. Therefore, the need for
materials that can be localized in the tumor and be used as radiosensitizers are now being
considered. Since Au has a high atomic number (Z = 79), it can have an enhanced radiation
effect [222]. The use of Au NCs as radiosensitizers can be an advantage since they can
strongly absorb a radiotherapy ray and yield the secondary electrons once irradiated with
gamma or X-rays [223]. It was reported by Zhang et al. that Au NCs synthesized using glu-
tathione as a coating agent can accumulate in the tumor by the EPR effect, and thus enhance
the efficacy of the radiotherapy [224,225]. The potential photochemical activity of Au NCs
on cancerous cells was lately explored. Cifuentes-Rius et al. synthesized protein-stabilized
Au NCs as potential photodynamic agents, which displayed cell uptake even after 24 h of
administration This induced cell death throughout this period via the production of ROS,
including singlet oxygen, which plays a key role in the photodynamic therapy as damaging
cellular factors after their irradiation with NIR light [226]. The application of Ag NCs as
tools in photodynamic therapy have been also explored. For instance, in a study by Yu et.al,
bovine serum albumin (BSA) protein templated Ag NCs exhibited a stronger singlet oxygen
generation than their Au NCs analogue. These Ag NCs were tested on MCF-7 breast cancer
cells where they showed good uptake and the cancer cells were killed by the irradiation of
white light [221]. Overall, MNCs offer an excellent, versatile and multifunctional platform
for developing colloidal superstructures via self-assembly governed by metal cores and
surface ligands for various applications including bioimaging, therapy and drug delivery.
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The cytotoxicity of the MNCs could be easier to evaluate compared to the NPs as
the narrow size distribution of the MNCs will allow the oversight of the size dependent
toxicity that has to be considered when dealing with NPs [227,228]. Nonetheless, the
proper surface functionalization remains an important factor for their biodistribution and
clearance. Among the examples that can be found in the literature [229–231], Zohrabi et al.
prepared BSA Au NCs that were conjugated with a chimeric peptide (HNH) to decrease
the potential cytotoxicity of the NCs. In this study, several ratios of HNH to BSA Au NCs
were tested to find the highest transfection efficiency, showing the importance of the proper
design of the platform for an optimal biosafety profile [232].

2.3.2. Multicomponent and Multifunctional Nanoclusters

Development of nanomaterial systems featuring multiple features such as fluorescence,
magnetization, drug delivery and therapy is highly desirable for biomedical diagnosis
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and therapy. In this regard, combination of various therapeutics or simultaneous usage of
different therapeutics mechanisms within a single system would significantly enhance the
treatment efficiency. During the last two decades, through the efforts of many researchers,
methodologies integrating various functionalities within a single particle have been re-
ported [233–236]. Their preparation methods can be divided into three categories [237–239],
including a coupling method, inorganic synthesis and an encapsulation method [240,241].
Despite the multiple advantages of this approach, it frequently necessitates the usage of
toxic molecules that come into contact with the biological materials, which may lead to
loss of bioactivity. To address this issue, supramolecular assembly of sundry building
blocks (e.g., NPs), which can be synthesized individually while avoiding handling of toxic
chemicals and while manipulating biomolecules, into large hierarchical nanostructures
(i.e., nanoclusters) would be more beneficial. Integration of multiple functionalities into
nanoclusters by combining a variety of materials exhibiting different physico-chemical
properties and functionalities has the potential to transform health care in cancer. The
design and fabrication of multi-component nanoclusters with multiple functionalities
(e.g., bioimaging, anti-cytotoxic activity, targeting, drug delivery and therapy) for cancer
theranostics is in its infant stage.

MNCs—Based Multifunctional Nanoclusters

Combination of MNCs with various materials (e.g., biological molecules, polymers
and drugs) has lately gained significant momentum in order to construct multifunctional
nanoclusters for applications in cancer nanotheranostics. These functionalities may include
bio-imaging, tumor cell localization (targeting), cancer therapy and drug delivery, and
can be tuned as desired since they depend on the chemical composition and the physico-
chemical properties of the nanoclusters. The formation of such a multicomponent system
is usually achieved by the stabilization of the MNCs with a stabilizing agent (e.g., BSA,
glutathione (GSH)), followed by the conjugation to an anticancer drug, photosensitizer or a
polymeric carrier or by the encapsulation of the MNCs inside the polymeric matrix [242].
For instance, Wang et al. encapsulated Ag NCs into a DNA scaffold and a nucleoli-targeting
agent (AS1411) with protoporphyrin IX (PPIX) on the DNA scaffold’s surface [243]. The
multicomponent nanoclusters displayed NIR fluorescence and photothermal and photo-
dynamic efficiency against HeLa cells. Similarly, Chen et al. fabricated a pH-responsive
polymeric nanocarrier encapsulating Au NCs, recognition agents and anticancer drugs
to improve the selective targeting, in situ imaging and anticancer therapy against human
hepatoma BEL-702 cell line and KB cell line (over-expressed folate receptor) [244]. The Au
NCs were stabilized by (GSH) with the targeting ligand (FA). Then, they were attached to
an amphiphilic copolymer poly (DBAM-co-NAS-co-HEMA), followed by the self-assembly
of the latter with the anticancer drug (i.e., paclitaxel) (Figure 5). Both in vitro and in vivo
results revealed that a multicomponent nanocluster system had a therapeutic action against
both cancer cell lines (i.e., BEL-702 and KB), showing its utility for early detection and
cancer therapy.

In a different study, Khandelia et al. reported the preparation of Au NCs embedded
with BSA (composite NPs) and the anticancer drug (DOX) [245]. The DOX loaded com-
posite NPs demonstrated toxicity against the cancer cells (i.e., HeLa cells) while retaining
their luminescence in the blood serum. Zhou et al. also synthesized Au NCs as theranostics
agents while combining them with an anticancer drug (i.e., cisplatin pro drug) and FA [246].
They demonstrated the capacity of the multicomponent nanoclusters to inhibit the growth
and metastasis of the breast cancer cells while exhibiting fluorescence imaging with a strong
signal due to the targeting effect of the FA. Ammar et al. developed a strategy of prepara-
tion of multi-component nanoclusters based on assembly via electrostatic interactions of
MNCs [247]. They synthesized Au NCs with sizes of about 100–150 nm by self-assembly.
The Au NCs stabilized with GSH (Au-GSH) were used as precursor along with a cationic
polymer poly (allyl amine hydrochloride) (PAH) for the self-assembly of the NPs. It was
possible to form the NPs without significant aggregation thanks to a proper control of the
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electrostatic interactions between the Au NCs and the polyelectrolyte. The self-assembled
NPs were loaded with fluorescent biomolecules (e.g., peptide or Ab) to demonstrate the
drug delivery capability using a single-step reaction and determine the colocalization of
the NPs and biomolecules after incubation. The loaded NPs with either peptide or Ab led
to an enhancement in fluorescence as compared to their free counterparts, (Figure 6).

Polymers 2022, 14, x FOR PEER REVIEW 18 of 34 
 

 

 
Figure 5. Schematic illustration of the multicomponent nanocluster system based on Au-NCs and 
amphiphilic copolymer. Reprinted with permission from ref [244]; Chen et al., Adv. Funct. Mater. 
23 (2013) 4324–4331. Copyright (2013) John Wiley and Sons, Inc. 

In a different study, Khandelia et al. reported the preparation of Au NCs embedded 
with BSA (composite NPs) and the anticancer drug (DOX) [245]. The DOX loaded compo-
site NPs demonstrated toxicity against the cancer cells (i.e., HeLa cells) while retaining 
their luminescence in the blood serum. Zhou et al. also synthesized Au NCs as 
theranostics agents while combining them with an anticancer drug (i.e., cisplatin pro 
drug) and FA [246]. They demonstrated the capacity of the multicomponent nanoclusters 
to inhibit the growth and metastasis of the breast cancer cells while exhibiting fluorescence 
imaging with a strong signal due to the targeting effect of the FA. Ammar et al. developed 
a strategy of preparation of multi-component nanoclusters based on assembly via electro-
static interactions of MNCs [247]. They synthesized Au NCs with sizes of about 100–150 
nm by self-assembly. The Au NCs stabilized with GSH (Au-GSH) were used as precursor 
along with a cationic polymer poly (allyl amine hydrochloride) (PAH) for the self-assem-
bly of the NPs. It was possible to form the NPs without significant aggregation thanks to 
a proper control of the electrostatic interactions between the Au NCs and the polyelectro-
lyte. The self-assembled NPs were loaded with fluorescent biomolecules (e.g., peptide or 
Ab) to demonstrate the drug delivery capability using a single-step reaction and deter-
mine the colocalization of the NPs and biomolecules after incubation. The loaded NPs 
with either peptide or Ab led to an enhancement in fluorescence as compared to their free 
counterparts, (Figure 6). 

Figure 5. Schematic illustration of the multicomponent nanocluster system based on Au-NCs and
amphiphilic copolymer. Reprinted with permission from ref. [244]; Chen et al., Adv. Funct. Mater.
23 (2013) 4324–4331. Copyright (2013) John Wiley and Sons, Inc.

Incorporation of the MNCs with carbon materials has been also considered for the de-
velopment of MNCs-based composites, especially, reduced graphene oxide (rGO) [248,249].
rGO displays properties such as a large surface area and hybridized carbons (sp2) that
allow for their application in cancer therapy [250,251]. For example, Zhang et al. syn-
thesized a carbon-based composite based on Ag NCs with an aptamer for the detection
of platelet-derived growth factor (PDGF-BB), which is an important protein indicator for
malignant tumors. The nanocomposite biosensor, labeled as 3D-rGO@AgNCs@Apt, ex-
hibited biocompatibility and specificity for the protein with a low detection limit [252].
Another example includes the assembly of nanocomposites based on Au NCs, rGO and
FA. The biosensor was used for the detection of two metal ions (e.g., Na+ and K+) using
ribonuclease A (RNase A) that can be used as therapeutic protein. The RNaseA/AuNCs
were loaded onto FA-rGO, and hence the composite can be used as a potential DDS and
fluorescence quencher [253]. Another material that has been thoroughly explored is the
combination of mesoporous silica NPs (MSNPs) with MNCs/inorganic NPs. The appli-
cation of MSNPs in the area of nanomedicine is associated with their high surface area,
chemical stability, ease of functionalization and biocompatibility [254,255]. For example,
Mulikova et al. synthesized MSNPs coated with Au NPs on their surface (labeled as MS-Au
NPs), hence forming nanoclusters using two types of primary particles. The prepared
MS-Au NPs reached a size of 130 nm and they were tested for an effective X-ray attenuation
in CT and as a DDS. The results showed an enhancement in the X-ray attenuation efficiency
compared to other metal NPs [256]. Many other examples are found in the literature, where
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MSNPs represent a template for the assembly of multifunctional nanoclusters for cancer
therapy [257–260].
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Supramolecular Assembly of Building Blocks into Multifunctional Nanoclusters

Besides the MNCs-based multicomponent and multifunctional systems, hierarchical
nanostructures prepared by supramolecular assembly of building blocks (e.g., organic
NPs, inorganic NPs, biomolecules, and drugs) using well-known approaches including
hydrophobic interactions or electrostatic interactions of oppositely charged entities were
reported in the literature. Following this concept, our group developed a simple and
versatile methodology consisting of supramolecular assembly via electrostatic interactions
of oppositely charged inorganic and drug loaded PNPs to construct controlled multicom-
ponent and multifunctional nanoclusters [261,262]. Specifically, the nanoclusters were
constructed by supramolecular assembly through electrostatic interactions of oppositely
charged SPIONs and drug loaded PLGA NPs (Figure 7). It was demonstrated that by
a dropwise approach (slow and progressive addition of one component into another),
clusters in the nanometer range regardless of the ratio between the primary NPs were
formed. This new methodology can be applied for the development of nanoclusters com-
bining multiple functionalities such as imaging, targeting, therapy and drug delivery to
fight cancer. Similarly, Haša et al. prepared multicomponent nanoclusters by electrostatic
interactions of negatively charged liposomes, SPIONs and positively charged poly L-lysine
(PLL) [263]. The control of the nanoclusters’ size and structure was dependent on the order
of addition of the components. First, SPIONs were incorporated into the liposomes. Then,
the SPIONs-liposomes were introduced into PLL solution. The formed nanoclusters were
stabilized by adding an excess of SPIONs to block any remaining positive charge from PLL,
and hence inhibit their increment in size. The liposomes clusters showed the advantage
of encapsulating independently different drugs (e.g., resazurin and vitamin C) into the
liposomes, while the addition of SPIONs allowed the stabilization of the final size of the
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clusters, and their presence can be used for a controlled release by applying a magnetic
field [263].
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In another example, Codari et al. produced nanoclusters made out of a statistical
distribution of polymeric and inorganic particles (primary particles) using a process based
on aggregation and breakup [264]. The aggregation process of the primary polymeric
particles PMMA and SPIONs was approached by their aggregation into large micrometer
size clusters by the addition of a salt. This was then followed by the breakage of the
clusters through hydrodynamic stress in the presence of a surfactant. This presented
proof of the concept can be applied to the production of multifunctional nanoclusters for
biomedical applications.

Thanks to their unique features, magnetic NPs (i.e., magnetic nanocrystals) of op-
timized size can be used as building blocks to generate magnetic colloidal nanocrystal
clusters (MCNC) with tailored morphology, size and properties for anticancer theranos-
tics applications (i.e., MRI and targeted drug delivery). One-pot as well as multiple-step
solution-phase methodologies were developed to synthesize nanoscale ferrite systems
consisting of several tightly coupled inorganic subunits. In the one-pot approaches (e.g.,
solvothermal and high-temperature organometallic methods), there is a nucleation and
growth of the nanocrystals in the reaction medium. Afterwards, they agglomerate at an ele-
vated temperature via the surfactant bridge in a secondary structure. In the multiple-steps
approaches, the nanocrystals of specific shape and size are first synthesized. Then, the
nanocrystals agglomerate into the nanocluster system in another synthetic step, e.g., encap-
sulation of the nanocrystals in organic matrixes. As an example, Xu et al. employed several
biopolymers (i.e., CHIT, soybean, casein, poly (glutamic acid)) as structure directing agents
for the synthesis of nanoporous MCNC by solvothermal synthesis for dual drug delivery
in prostate cancer [265]. They showed that the size, crystallinity and surface properties
of the nanoclusters were affected by the type of the biopolymer. The results showed the
possibility of stabilizing the magnetic nanoclusters with a biopolymer and the role played
by the latter in the structural changes of the porous nanocrystal clusters. Glutamic acid was
chosen as the directing agent able to create a high surface area of MCNCs. Further, two
drugs were encapsulated (i.e., docetaxel and ceramide) in the poly (glutamic acid) magnetic
nanoclusters leading to an improvement of their drug loading and an enhancement in
their apoptotic effect against PC-3 cells (prostate adenocarcinoma). The stabilization of the
MNCs by a modified solvothermal approach using sodium citrate as the stabilizer was
also achieved by Liu et al. [266]. The formation of magnetic NPs with a size in the range of
80–410 nm was tuned by changing the concentration of the iron salt (e.g., FeCl3) or sodium
citrate. TEM images indicated that the obtained magnetic particles were in fact loose MNCs
formed by nanocrystals with a size of 5–10 nm. The MNCs seemed to be connected to each
other by the amorphous phase in the particles. The clustering of the magnetic nanocrystals
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provided the formed NPs with superparamagnetism and a high magnetization, making
them promising candidates for theranostics. Assembly of DOX-mesoporous MNCs as a
DDS was developed by Li et al. [267]. The formation of the magnetic nanoclusters were
synthesized using solvothermal reaction and stabilized by agarose. Then, chemical mod-
ification of the MNCs was carried out in order to graft the anticancer drug DOX. The
cytotoxicity between the free drug and the conjugated MNCs was studied in a gastric carci-
noma cell line (SGC7901) and a normal cell line (HEK 293T). The results showed equivalent
toxicity as compared to the free drug, but a lower cytotoxicity was present in the normal
cell line (Figure 8). Dong et al. also reported the formation of highly porous magnetite
clusters as a drug release system with a strong magnetic response [268]. The magnetic
nanoclusters were assembled by a solvothermal reaction of the iron salt with ammonium
acetate as a porogen to increase the surface area for drug loading and sodium citrate as the
stabilizer and surface modifier. The overall structure was a microsphere composed of small
monodispersed SPIONs with an average diameter of 150 nm, high porosity and magnetic
response. The magnetic nanoclusters were monitored for drug release using a model drug
(e.g., ibuprofen), showing their potential for biomedical applications.
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The mentioned examples show the possibilities of assembling supramolecular struc-
tures into nanoclusters by the combination of the primary building blocks. These systems
of nanoclusters can render to a higher drug loading and can implement multiple function-
alities such as imaging, cell targeting and emerging cancer therapies (e.g., radiotherapy,
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MFH, PTT, photodynamic therapy). On top of that, the nanoclusters can be further used
for drug delivery by the two main approaches: passive and active drug targeting.

3. Summary and Perspectives

Since the discovery of nanotechnology, the prospects of nanocarriers as DDS and
theranostics have been explored for cancer therapy with an exponential rise as they offer
many advantages over free drugs. They can protect the drug from degradation, enhance
their biodistribution and penetration and prevent the drug from prematurely interacting
with the biological environment. Although the delivery of the drugs through nanocarriers
has been an alternate route, the molecular complexity of the cancer cells can present multiple
drug resistance due to membrane proteins that transport the anticancer drugs out of them.
Therefore, to address the challenge of multiple drug resistance and cancer recurrence, the
incorporation of multiple functionalities in the form of nanoclusters has been the new
approach for ensuring an efficient treatment. In fact, the preparation of the nanocarriers
with tunable surface chemistry and properties has opened up possibilities for their assembly
into bigger objects in the form of nanostructured materials or supramolecular systems
with many functionalities such as MNCs. The combination of polymeric nanocarriers (e.g.,
PNPs) with inorganic NPs (e.g., Au, SPIONs, Ag) and their assembly into nanoclusters
(i.e., heteroclusters) is advantageous as it offers multiple functionalities simultaneously,
including imaging, targeting, therapy and drug delivery. Though less discussed in this
review paper, the cited examples illustrate well the benefits of combining metallic NPs with
carbon fillers (e.g., graphene derivatives) or MSNPs for the preparation of multifunctional
nanoclusters as potential platforms for cancer therapy.

Overall, it becomes clear that the exploitation of nanomaterials in practical applications
holds much promise for further advances in cancer therapy. Thus, it is likely that this area of
research will continue creating important advancements and results for the coming years.
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