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ABSTRACT
Small-cell lung cancer (SCLC) is a recalcitrant cancer characterized by high metastasis. However, the exact
cell type contributing to metastasis remains elusive. Using a Rb1L/L/Trp53L/L mouse model, we identify the
NCAMhiCD44lo/– subpopulation as the SCLCmetastasizing cell (SMC), which is progressively
transitioned from the non-metastasizing NCAMloCD44hi cell (non-SMC). Integrative chromatin
accessibility and gene expression profiling studies reveal the important role of the SWI/SNF complex, and
knockout of its central component, Brg1, significantly inhibits such phenotypic transition and metastasis.
Mechanistically, TAZ is silenced by the SWI/SNF complex during SCLCmalignant progression, and its
knockdown promotes SMC transition and metastasis. Importantly, ectopic TAZ expression reversely drives
SMC-to-non-SMC transition and alleviates metastasis. Single-cell RNA-sequencing analyses identify SMC
as the dominant subpopulation in human SCLCmetastasis, and immunostaining data show a positive
correlation between TAZ and patient prognosis.These data uncover high SCLC plasticity and identify TAZ
as the key molecular switch in orchestrating SCLC phenotypic transition and metastasis.
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INTRODUCTION
Small-cell lung cancer (SCLC) is characterized by
very poor prognosis, with ∼15% global lung cancer
incidence and a five-year survival lower than 7% [1].
This canbe largely attributed to the highlymetastatic
capability of SCLC. Most SCLC patients are ini-
tially diagnosed at extensive stage, characterized by
nearby lung and/or distant metastases. Therefore,
exploration of the mechanisms involved in SCLC
metastasis is urgently needed so as to provide helpful
insights into clinical management.

Previous studies have shown that ∼90% of hu-
man SCLC harbors concurrent inactivating muta-
tions or deletions of Rb1 and Trp53 [2]. Homozy-
gous deletion of these two alleles in mouse lung
epithelia promotes SCLC development and dra-

matic metastasis, which closely recapitulates hu-
man SCLC in the clinic [3]. Mouse SCLC in
the Rb1L/L/Trp53L/L (RP) model typically ex-
presses neuroendocrine markers including neu-
ronal cell adhesionmolecule (NCAM) and achaete-
scute complex homolog 1 (ASCL1), and frequently
metastasizes into distant organs [3]. Concurrent
deletion of P130, an Rb-related gene, or Pten in the
RP model, significantly accelerates malignant pro-
gression and SCLC metastasis [4,5]. Moreover, up-
regulated Nuclear Factor I B (NFIB) expression is
found to promote SCLCmetastasis through increas-
ing the accessibility of global chromatin [6–8].

SCLCs are characterized by high heterogene-
ity [9–15]. It is proposed that human SCLC is
composed of four different subtypes based on
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lineage-related transcription factors including
ASCL1, NEUROD1, YAP and POU2F3 [14].
More recently, an inflamed SCLC subtype has been
identified with a good response to immunotherapy
[16]. Similar heterogeneity has also been found in
mouse
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SCLC, e.g. the CD24hiCD44loEpCAMhi

subpopulation from the RP model is identified as
harboring a strong capability to form tumors in
allograft assay [11]. Moreover, mouse SCLC is
found to contain the neuroendocrine (NE) and
non-neuroendocrine (non-NE) subpopulations
according to distinct growth patterns in culture,
with the NE subtype growing as suspension and the
non-NE as adhesion [9]. The NE cells frequently
express neuroendocrine markers including NCAM,
synaptophysin (SYP) and ASCL1. In contrast, the
non-NE cells tend to express mesenchymal markers
such as VIMENTIN and CD44 [9]. It has been
reported that the synergetic cooperation between
NE and non-NE subpopulations is necessary for
SCLC metastasis whereas neither subtype could
metastasize on its own [9]. Therefore, the exact
population responsible for SCLC metastasis still
remains unknown.

The switch/sucrose-non-fermentable (mSWI/
SNF) complexes, including canonical BRG1/BRM-
associated factor (BAF), polybromo-associatedBAF
(PBAF) and non-canonical BAF (ncBAF), are es-
sential for chromatin remodeling [17,18]. All three
complexes contain a core ATPase subunit, e.g.
BRG1 (Brahma/SWI2-related gene 1, also called
SMARCA4), which catalyzes the hydrolysis of ATP
[18]. Previous studies reveal that the SWI/SNF
complexes tend to function as tumor suppressors
during cancer development. Consistently, a high in-
cidence of BRG1 inactivating mutation is detected
in multiple cancer types including lung cancer [19].
Previous studies show that BRG1 promotes cell cy-
cle arrest and senescence through the retinoblas-
toma pathway in cancer cells [20,21]. Interestingly,
recent studies have also indicated an oncogenic role
of BRG1. For example, BRG1 promotes pancre-
atic intraepithelial neoplasia (PanIN) development
and gastric cancer metastasis [22–24]. In SCLC,
BRG1 is preferentially required for cancer progres-
sion when MAX (Myc-associated factor) is inacti-
vated [25].These findings indicate that BRG1might
function as tumor suppressor or oncogenic driver in
a cell-type- or genetic-context-dependent manner.

The Hippo pathway is initially defined as an im-
portant pathway during organ size control, and func-
tions mainly via the synergetic interaction between
the transcription factor TEAD1-4 and transcrip-
tional co-activator YAP/TAZ (WWTR1) [26]. The
oncogenic activities of YAP/TAZ have been well
documented in multiple epithelial cancers [26–31].

It is well known that YAP/TAZ sustains self-renewal
and tumor-initiating capability, and promotes can-
cer malignant progression and metastasis through
epithelial-to-mesenchymal transition (EMT) [30].
The latest studies also reveal that YAP/TAZ might
function as a tumor suppressor [32–34]. For in-
stance, YAP expression is downregulated in breast
cancer and knockdown of YAP promotes cancer
cell migration and invasiveness [35]. Moreover, we
have previously found that YAP acts as the barrier
for adenocarcinoma-to-squamous-carcinoma trans-
differentiation (AST) as well as for lung squamous-
cell carcinoma progression [33,36]. Nonetheless,
the exact role of YAP/TAZ during SCLCmetastasis
has not been characterized yet.

We here identify NCAMhiCD44lo/– cells as
the major subpopulation responsible for SCLC
metastasis. Moreover, this subpopulation is pro-
gressively transitioned from the non-metastatic
NCAMloCD44hi cells via the SWI/SNF-complex-
mediated TAZ silencing. Our data highlight the
important link between epigenetically regulated
TAZ and SCLC plasticity and metastasis.

RESULTS
Identification of the NCAMhiCD44lo/–

subpopulation as SCLC metastasizing
cells
To study SCLC heterogeneity during cancer
malignant progression and metastasis, we first
performed immunohistochemistry (IHC) staining
in RP tumors using NE marker NCAM and mes-
enchymal marker CD44. In primary RP tumors,
we indeed observed the heterogeneous expression
pattern of these two markers intra-tumorally and
inter-tumorally (Fig. 1A and Table S1). We found
that the percentage of NCAMhiCD44lo/– tumors,
definedwith over 50% of cancer cells highly express-
ing NCAM and with low or no CD44 expression
[37], increased with malignant progression and
metastasis (Fig. 1B, Fig. S1A and Table S1). Consis-
tently, we found that distant organ metastases such
as liver and kidney metastases uniformly exhibited
the NCAMhiCD44lo/– expression pattern (Fig. 1A).
These data indicate that the NCAMhiCD44lo/–

subpopulation might be responsible for SCLC
metastasis.

To test this, we then used Fluorescence
Activated Cell Sorting (FACS) to isolate the
NCAMhiCD44lo/– and NCAMloCD44hi sub-
populations from primary RP tumors (Fig. 1C).
Genotyping analyses confirmed the concurrent
deletion of Rb1 and Trp53 in both subpopulations
(Fig. S1B). We found that the NCAMhiCD44lo/–
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Figure 1. Identification of the NCAMhiCD44lo/– cells as SCLC metastasizing cells in the RP mouse model. (A) Representative photos of Hematoxylin-
Eosin (HE) staining, NCAM and CD44 IHC staining of primary tumors, liver and kidney metastases (met) from the RP mouse model. The intra-tumor
heterogeneity of primary tumors is shown in high magnification. The marked areas in high magnification panels indicate the NCAMhiCD44lo/– ex-
pression pattern. Scale bars, 100 μm. (B) Statistic analyses of the NCAMhiCD44lo/– tumors at limited stage (no overt distant organ metastasis) and
extensive stage (overt metastasis) in the RP model. The NCAMhiCD44lo/– tumors were defined when the lesions contained >50% of cells showing
NCAMhi and CD44lo/– expression. Limited stage: 87 tumors from 4 mice were analyzed; extensive stage: 98 tumors from 4 mice were analyzed. Data
are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t test. (C) Flow cytometry (FACS) analyses of primary tumors from the RP
mouse model using antibodies towards EpCAM, NCAM and CD44. The tumor cells without primary antibody incubation are shown as negative control
(top panels). The NCAMloCD44hi and NCAMhiCD44lo/– cells were sorted and cultured in vitro and the representative cell growth photos are shown
on the right. Scale bar, 100 μm. (D) Western blot detection of EpCAM, NCAM, CD44, ASCL1 and TAZ expression in established NCAMloCD44hi and
NCAMhiCD44lo/– SCLC primary cell lines. (E and F) Representative photos (E) and the incidence (F) of liver metastasis in nude mice subcutaneously trans-
planted with primary NCAMloCD44hi or NCAMhiCD44lo/– cells derived from the RP mouse model. Data are shown from three independent experiments
(n = 5 mice for each experiment). The ratio of mice with liver metastasis was also indicated. P value was calculated by unpaired two-tailed t test.
(G and H) Representative photos of HE staining, NCAM and CD44 IHC staining of (G) liver metastases, and (H) subcutaneous tumors in nude mice
transplanted with NCAMhiCD44lo/– cell lines. Scale bars, 100 μm.
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cells grew in culture as oncospheres with a sus-
pension growth pattern (Fig. 1C), similar to
classical human SCLC cell lines. In contrast, the
NCAMloCD44hi cells grew as adhesion (Fig. 1C).
Moreover, a higher ASCL1 level was detected in the
NCAMhiCD44lo/– subpopulation (Fig. 1D). We
then subcutaneously transplanted 5× 106 cells from
either the NCAMhiCD44lo/– or NCAMloCD44hi

subpopulation into nude mice and waited for up
to 10 weeks for distant organ metastasis analyses.
Both subpopulations formed subcutaneous tumors
at 100% in allograft assay, with comparable tumor
growth (Fig. S1C andD). In contrast, themetastasis
analyses revealed a huge difference. Most mice (13
out of 15) from the NCAMhiCD44lo/– group had
spontaneous metastases in the liver whereas only
1 out of 15 mice from the NCAMloCD44hi group
displayed distant metastasis (Fig. 1E and F). The
liver metastases from the NCAMhiCD44lo/– group
exhibited a characteristic marker expression pattern,
similar to subcutaneous tumors (Fig. 1G and H).
These data demonstrate that the NCAMhiCD44lo/–

cells are mainly responsible for SCLC metastasis.
We hereafter refer to the NCAMhiCD44lo/– and
NCAMloCD44hi subpopulations as SCLC metasta-
sizing cell (SMC) and non-SCLCmetastasizing cell
(non-SMC), respectively.

Phenotypic transition from non-SMC
to SMC contributes to SCLC metastasis
Consistent with SMC metastatic tumors, the liver
metastasis lesion from the non-SMC allograft as-
say also exhibited the NCAMhiCD44lo/– expres-
sion pattern (Fig. 2A and Fig. S2). We speculated
that there might exist phenotypic transition from
non-SMC to SMC during SCLC malignant pro-
gression. To test this, we established a non-SMC
cell line stably expressing GFP, termed non-SMC-
GFP, and performed a subcutaneous allograft assay
(Fig. 2B). Immunofluorescence (IF) staining in allo-
graft tumors revealed that ∼13 ± 2% GFP-positive
cancer cells displayed the NCAMhiCD44lo/– pat-
tern whereas the rest remained as a non-SMC
expression pattern (Fig. 2C and Table S2). Consis-
tently, both suspension and adhesion growth pat-
terns were observed when these allograft tumors
were cultured in vitro (Fig. 2B). To further confirm
such transition, we picked single-cell clones from
non-SMC-GFP cells and performed allograft assay
with the clonal non-SMC-GFP cell lines (Fig. 2D).
Similarly, we found that these subcutaneous tumors
also displayed the NCAMhiCD44lo/– pattern, rang-
ing from 14 ± 2% to 20 ± 3% (Fig. 2E and Ta-
ble S2). A mixed growth pattern was also observed
in culture (Fig. 2D). We further isolated the tran-

sitioned SMC with NCAMhiCD44lo/– pattern and
tested its metastasis capability using allograft assay.
In contrast to no overt metastases in the non-SMC
group, multiple distant organ metastases, e.g. lymph
node, lung and liver metastases, were detectable in
the transitioned SMC group (Fig. 2F and G). We
found that the liver metastases also displayed the
NCAMhiCD44lo/– pattern (Fig. 2G).These data to-
gether convincingly proved the transition from non-
SMC to SMC and highlighted the important role of
such phenotypic transition in SCLCmetastasis.

Brg1 knockout inhibits SMC phenotypic
transition and SCLC metastasis
To further explore the molecular mechanisms
underlying non-SMC-to-SMC transition, we
performed RNA sequencing and comparatively
analyzed the gene expression profiling of SMC
and non-SMC. The small-cell neuroendocrine
(SCN) signature has been recently established
as an important index for SCLC metastasis [38].
Interestingly, we found a significant enrichment of
SCN-signature-related pathways in SMC whereas
non-SCN-related pathways (immune-related path-
ways) were enriched in non-SMC (Fig. 3A and
Tables S3 and S4). Real-time PCR data further con-
firmed the increased expression of SCN signature
genes, includingAscl1, Insm1,Neurod1,Chga, Sox11
and Ttf1, in SMC (Fig. 3B). These data might par-
tially explain the high metastasis capability of SMC.

Epigenetic alterations have been implicated in
cancer plasticity [39,40]. We performed the as-
say for transposase-accessible chromatin with next-
generation sequencing (ATAC-seq) to determine
the global chromatin accessibility of SMC and non-
SMC. Our analyses on transcription start sites also
revealed an overall reduced signal in the active
promoter regions of SMC (Fig. 3C). The total
reads of ATAC-seq for SMC and non-SMC were
∼36 million and 27 million, respectively. Chro-
matin remodelers, such as SWI/SNF complex, are
critical for regulating chromatin architecture and
accessibility [18]. We found that multiple mem-
bers of the SWI/SNF complex, including the cen-
tral catalytic ATPase Brg1, were markedly dysregu-
lated between these two subpopulations (Fig. S3A).
Real-time PCR quantification further confirmed the
significant upregulation of Brg1 in SMC (Fig. 3D).

To test whether Brg1 is involved in the pheno-
typic transition and SCLCmetastasis, we generated
the Rb1L/L/Trp53L/L/Brg1L/L (RPB) mouse cohort
and performed comparative analyses of tumorige-
nesis, SCN signature enrichment and metastasis in
parallel with the RP model (Fig. 3E). We found
that Brg1 knockout significantly reduced the tumor
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Figure 2. Phenotypic transition from non-SMC to SMC contributes to SCLC metastasis. (A) Representative photos for HE
staining, NCAM and CD44 IHC staining in the only liver metastasis from nude mice subcutaneously transplanted with the
NCAMloCD44hi cell lines (non-SMC) derived from the RP mouse model. Scale bars, 100 μm. (B) Experimental scheme to
test phenotypic transition from non-SMC to SMC. Primary non-SMC was derived from the RP mouse model and ectopi-
cally expressed GFP, and then used for subcutaneous transplantation in nude mice. The subcutaneous tumors were analyzed
through oncosphere formation, and NCAM and CD44 IF staining. Oncospheres in cell culture were indicated. (C) Repre-
sentative photos of NCAM and CD44 IF staining in subcutaneous tumors from nude mice transplanted with non-SMC-GFP
cells. The NCAMhiCD44lo/– subpopulation indicated by white arrows were microscopically counted and the mean ratio of
NCAMhiCD44lo/– cells is indicated in the top right corner. Scale bar, 25 μm. Data are shown as mean ± S.E.M. (D) Experi-
mental scheme to test the potential phenotypic transition using single-cell-derived clonal non-SMC-GFP. The subcutaneous
tumors were then analyzed through oncosphere formation and NCAM and CD44 IF staining. Oncospheres in cell culture were
indicated. (E) Representative photos of NCAM and CD44 IF staining in clonal non-SMC-GFP subcutaneous tumors. C1: clone
#1; C2: clone #2. The NCAMhiCD44lo/– subpopulation indicated by white arrows was microscopically counted and the ratio
of NCAMhiCD44lo/– cells is indicated in the top right corner. Scale bar, 25 μm. Data are shown as mean ± S.E.M. (F) Sta-
tistical analyses of the incidence of lymph node (LN), lung and liver metastases in nude mice subcutaneously transplanted
with transitioned SMC or non-SMC, which were derived from the clonal non-SMC-GFP subcutaneous tumors. n = 4 mice
for transitioned SMC group and n= 5 mice for paired non-SMC group. P values were calculated by Pearson chi-square test.
(G) Representative photos of NCAM and CD44 IHC staining of mouse livers in (F). The livers from paired non-SMC showed
no metastasis. Scale bar, 100 μm.

number (Fig. 3F, and Fig. S3B and C). More-
over, several SCN-signature-related genes, includ-
ing Ascl1, Ttf1 and Sox11, were significantly down-
regulated in RPB tumors (Fig. 3G and Fig. S3B).
IHC staining of the NCAM and CD44 showed
that the percentage of primary tumors with an
SMC expression pattern was also decreased in the
RPB group (Fig. 3H and I and Table S5). No-
tably, no liver metastasis was detected in the RPB
group in contrast to ∼50% incidence in the RP
model (Fig. 3J and K). These data support the
conclusion that the SWI/SNF complex is impor-
tant for SMC phenotypic transition and SCLC
metastasis.

Epigenetic silencing of TAZ by SWI/SNF
complex in SMC
To identify the downstream mediator of the
SWI/SNF complex in contribution to SCLC
phenotypic transition and metastasis, we first
constructed the dysregulated transcriptional factor
(TF) network through the integrative analyses
of RNA-seq and ATAC-seq data as previously
described [41]. We found that Ascl1 and Tead2
were top-ranked TFs with the highest number of
dysregulated target genes in SMC and non-SMC
respectively (Fig. 4A and B, Figs S4 and S5, and Ta-
ble S6). ASCL1 is known as the pioneering TF that
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Figure 3. Knockout of Brg1 in the RP mouse model significantly abrogates SMC phenotypic transition and SCLC metastasis. (A) The enrichment of
small-cell neuroendocrine (SCN) signature-related pathways in SMC and the enrichment of immune-related pathways in non-SMC. NES, normalized
enrichment score. (B) Real-time PCR detection of SCN-signature-related genes including Ascl1, Insm1, Neurod1, Chga, Sox11 and Ttf1 in SMC vs.
non-SMC. Data are shown as mean ± S.E.M. P values were calculated by unpaired two-tailed t test. (C) Trend plot (top) and heat map (bottom)
showing ATAC-seq signal over 6 kb regions centered at the transcription start sites (TSS) in SMC and non-SMC. (D) Real-time PCR detection of Brg1
expression in SMC vs. non-SMC. (E) Schematic illustration of the comparative analyses of Rb1L/L/Trp53L/L (RP) and Rb1L/L/Trp53L/L/Brg1L/L (RPB) mice.
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Figure 3. Continued. (F) Statistical analyses of primary tumor numbers in RP and RPB mice at 32 weeks after Ad-Cre treatment. n = 18 mice for the
RP group, n = 10 mice for the RPB group. Data are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t test. (G) Real-time
PCR detection of Brg1 and the SCN-signature-related genes in primary tumors from RP and RPB mice. n = 2 mice for each group. Data are shown as
mean ± S.E.M. P values were calculated by unpaired two-tailed t test. (H) Representative photos of NCAM and CD44 IHC staining in primary tumors
from RP and RPB mice at 32 weeks after Ad-Cre treatment. Scale bar, 100 μm. (I) Statistical analyses of the percentage of primary tumors with an
NCAMhiCD44lo/– expression pattern in RP and RPBmice. The NCAMhiCD44lo/– tumors were defined when the lesions contained>50% of cells showing
NCAMhi and CD44lo/– expression. A total of 56 tumors from 3 RPmice and 28 tumors from 4 RPBmice were analyzed. Data are shown as mean± S.E.M.
P value was calculated by unpaired two-tailed t test. (J) Representative photos of NCAM and CD44 IHC staining in livers of RP and RPBmice. The livers
from RPB mice contained no metastasis. Scale bar, 100 μm. (K) Liver metastasis incidence in RP and RPB mice at 32 weeks after Ad-Cre treatment.
n= 18 mice for the RP group, n= 10 mice for the RPB group. P value was calculated by Pearson chi-square test.

initializes neuronal reprogramming and is also
included in the SCN biomarker genes [42]. TEAD
family members are important TFs that function
with cofactor YAP/TAZ in cancer malignant
progression [30,43,44]. Gene set enrichment
analysis revealed that the Hippo pathway was
significantly enriched in non-SMC (Fig. 4C).
Moreover, Taz/Yap stood out as top hits among
the dysregulated components of the Hippo
pathway (Fig. 4D). Using real-time PCR, we
further confirmed the decreased expression of
Taz/Yap in SMC vs. non-SMC cells (Fig. 4E and
Fig. S3D).

We further asked whether Taz/Yap expres-
sion was regulated by Brg1. We found that Brg1
knockdown in SMC cells resulted in a significant
upregulation of TAZ expression whereas the ex-
pression of YAP was downregulated (Fig. 4F and
G and Fig. S3E). Such upregulation of TAZ was
also detectable in RPB tumors in comparison to RP
tumors (Fig. 4H and J and Table S5). Moreover,
we observed an obvious decreased chromatin
accessibility at the promoter region of Taz in
SMC (Fig. S3F), which might explain the reduced
TAZ expression (Fig. 1D). A similar but lesser
degree of chromatin accessibility change was also
observed at the Yap promoter region in SMC
(Fig. S3F). In support of this, TAZ level was
obviously downregulated in primary tumors at
extensive stage (Fig. S1A). Moreover, knock-
down of Arid1a or Arid2, another two important
components of the SWI/SNF complex, obvi-
ously upregulated TAZ expression in SMC cells
(Fig. S3G and H). However, YAP expression was
only slightly upregulated with Arid2 knockdown,
or even downregulated after Arid1a knockdown in
SMC (Fig. S3G and H). Moreover, we performed
BRG1 Chromatin Immunoprecipitation real-time
quantitative PCR (ChIP-qPCR) analysis and found
that BRG1 could bind to the promoter region of
Taz (Fig. S3I). These results together demonstrate
that TAZ is silenced during non-SMC-to-SMC
transition through SWI/SNF-complex-mediated
epigenetic reprogramming.

TAZ knockdown promotes
non-SMC-to-SMC transition
and accelerates SCLC metastasis
To explore the function of TAZ in phenotype
transition and SCLC metastasis, we performed
Taz knockdown in non-SMC for allograft assay
(Fig. 5A). We found that Taz knockdown in non-
SMC upregulated NCAM and SCN-related genes,
whereas it downregulated CD44, without a dra-
matic effect upon Yap expression (Fig. 5B and
Fig. S6A–C). Moreover, Taz knockdown also pro-
moted the invasiveness in matrigel, colony for-
mation in soft agar and anti-anoikis capability of
non-SMC (Fig. 5C and E). IF staining of allo-
graft tumors showed that Taz knockdown pro-
moted the appearance of theNCAMhiCD44lo/– pat-
tern, resembling the SMC-derived tumors (Fig. 5F
and Fig. S6D). Importantly, knockdown of Taz
in non-SMC promoted distant organ metastasis
(Fig. 5G). IHC staining further confirmed that these
metastases displayed the SMC expression pattern
(Fig. 5H). These data together demonstrate that
TAZ downregulation promotes phenotypic transi-
tion from non-SMC to SMC and SCLCmetastasis.

Ectopic TAZ expression reversely
promotes the transition from SMC to
non-SMC and alleviates SCLC metastasis
To test if the phenotypic transition from non-SMC
to SMC is reversible, we ectopically expressed a con-
stitutive activated TAZ mutant (TAZ-4SA) [30]
in SMC (Fig. 5I). We found that the downstream
targets of TAZ, including Cyr61, Ctgf, Areg, Vim
and Axl, were significantly upregulated after ec-
topic TAZ-4SA expression in SMC (Fig. S6E). Ec-
topic TAZ-4SA but not YAP-5SA [33] expression
in SMC dramatically downregulated NCAM and
upregulated CD44 expression in vitro, indicative
of the potential reversible transition from SMC to
non-SMC (Fig. 5J, Fig. S6F, and Tables S7 and
S8). Moreover, the SCN score and related gene ex-
pression also decreased after ectopic TAZ-4SA ex-
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Figure 4. Continued. Taz in SMC and non-SMC. Data are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t test. (F) Real-time
PCR detection of Brg1 and Taz in SMC with or without Brg1 knockdown. Gapdh served as the internal control. Data are shown as mean ± S.E.M.
P values were calculated by unpaired two-tailed t test. (G) Western blot detection of BRG1 and TAZ levels in SMC with or without Brg1 knockdown.
GAPDH served as the internal control. (H) Real-time PCR detection of Taz in primary tumors from RP and RPB mice at 32 weeks after Ad-Cre treatment.
Gapdh served as the internal control. n = 2 for each group. Data are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t
test. (I) Representative photos of TAZ IHC staining in primary tumors from RP and RPB mice at 32 weeks after Ad-Cre treatment. Scale bar, 100 μm.
(J) Percentage of TAZ positive tumors in RP vs. RPBmice at 32 weeks after Ad-Cre treatment; 56 tumors from 3 RPmice and 28 tumors from 4 RPBmice
were analyzed. Data are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t test.

pression (Fig. 5K and L and Tables S7 and S8).
Functional assays showed that TAZ-4SA expres-
sion markedly suppressed the matrigel invasiveness,
colony formation in soft agar and anti-anoikis ca-
pability of SMC (Fig. 5M and O). IF staining also
showed that ectopicTAZ-4SA expression promoted
the non-SMC expression pattern in comparison to
SMC-derived subcutaneous tumors (Fig. 5P and
Fig. S6G). More importantly, ectopic TAZ-4SA ex-
pression significantly suppressed the liver metas-
tases of SMC (Fig. 5Q). Furthermore, all the liver
metastases consistently showed no TAZ expression
(Fig. S6H). These findings support the conclusion
that ectopic TAZ expression promotes reverse tran-
sition from SMC to non-SMC and alleviates SCLC
metastasis.

Low TAZ level is associated with SCN
signature enrichment and predicts poor
prognosis of SCLC patients
To evaluate whether our findings are clinically rel-
evant, we downloaded a public RNA-sequencing
dataset of 112 human SCLCs [2,45] and analyzed
the correlation between TAZ and SCN signature,
and single-cell sequencing data of liver metastasis
[15], to detect whether SMC exists in metastatic
lesion, and collected 101 Chinese surgical speci-
mens for prognosis analyses (Fig. 6A). Bioinfor-
matic analyses showed that human SCLC with low
TAZ expression (TAZlo) displays a significantly
higher SCN score (Fig. 6B and Table S9), indicative
of strong metastasis capability. The SCN-signature-
related pathways, including positive regulation of
neurotransmitter transport, neurotransmitter secre-
tion and synaptic vesicle membrane, were signifi-
cantly enriched in TAZlo SCLC (Fig. S7A). Con-
sistently, most SCN-signature-related genes, includ-
ing ASCL1, INSM1 and CHGA, were significantly
increased in TAZlo SCLC samples (Fig. 6C). More-
over, NCAM was increased, and CD44 was de-
creased inTAZlo SCLCspecimens (Fig. 6C), indica-
tive of the SMCpattern of these samples.TEAD also
decreased in theseTAZlo samples (Fig. 6C).Also,we
observed a negative correlation between the SCN-
signature-related genes andTAZ, and a positive cor-

relation between CD44, TEAD2 and TAZ (Fig. S7B
and Table S9).

We further took advantage of the Ireland et al.
single-cell RNA-sequencing data derived from
SCLC liver metastasis [15]. Interestingly, we found
that most SCLC metastatic cells showed high ex-
pression of NCAM with concurrent low expression
of CD44, resembling the SMC pattern (Fig. 6D).
Moreover, these cells showed high expression of the
SCN signature markers INSM1 and NEUROD1,
similar to the SMC in the RP model (Fig. 6D). Im-
portantly, low or no TAZ expression was detected
in these metastasis cells (Fig. 6D), confirming the
silence of TAZ in metastasis.

Lastly, we put together a patient cohort contain-
ing 101 Chinese SCLC surgical specimens for im-
munostaining analyses of NCAM, CD44 and TAZ.
Most of these patients were at limited stage without
distant metastases. We found that high NCAM or
low CD44 levels were significantly associated with
worse patient overall survival (OS) (Fig. 6E and
Table S10).Moreover, TAZlo patients also showed a
worse overall survival (Fig. 6F).These data together
provide strong clinical evidence in support of our
findings of SMC in the RPmodel.

DISCUSSION
SCLC is the most lethal form of lung cancer, char-
acterized by highly metastatic capacity. A growing
body of evidence based on mouse models has
demonstrated that SCLC is highly heterogeneous
with distinct subpopulations playing different roles
during malignant progression and metastasis
[5–15]. In this study, we identify the
NCAMhiCD44lo/– cells in the RP model as the
SCLC metastasizing cells. We further reveal that
the SMCs are progressively transitioned from
non-SMCs during SCLC malignant progression
and metastasis. Our data further show that the
SWI/SNF-complex-mediated epigenetic down-
regulation of TAZ is essential for driving such a
phenotype transition. Moreover, TAZ activation is
sufficient to drive the reverse transition from SMC
to non-SMC and thus alleviate SCLC metastasis.
With the support of clinical specimen analyses, our
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Figure 5. TAZ functions as a critical molecular switch in regulating the phenotypic transition and SCLC metastasis. (A) Schematic illustration of the
comparative analyses of non-SMC with or without Taz knockdown. (B) Western blot detection of TAZ, NCAM and CD44 levels in non-SMC with or
without Taz knockdown. GAPDH served as the internal control. (C) Representative photos of the matrigel invasiveness of non-SMC with or without Taz
knockdown (left). The statistical analyses of the clone sizes were performed using Image J software. Scale bars, 100 μm. P values were calculated
by unpaired two-tailed t test. (D) Representative photos (left) and number (right) of the soft-agar colonies of non-SMC with or without Taz knockdown.
Scale bars, 100 μm. Data are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t test. (E) Western blot detection of cleaved
caspase3 (CC3) in anti-anoikis assay of non-SMC with or without Taz knockdown. TUBULIN served as the internal control. (F) Representative photos of
NCAM and CD44 IF staining in subcutaneous tumors from nude mice transplanted with non-SMC with or without Taz knockdown. Scale bar, 25 μm.
(G) Metastasis incidence and (H) representative photos of NCAM and CD44 IHC staining in livers from nude mice transplanted by non-SMC with or
without Taz knockdown. n = 6 for each group. P value was calculated by Pearson chi-square test. Scale bar, 100 μm. (I) Schematic illustration of the
comparative analyses of SMC with or without ectopic TAZ-4SA expression. (J) Western blot detection of TAZ, NCAM and CD44 levels in SMC with
or without ectopic TAZ-4SA expression. GAPDH served as the internal control. (K) SCN score of SMC with or without ectopic TAZ-4SA expression.
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Figure 5. Continued. Data are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t test. (L) Real-time PCR detection of the SCN-
signature-related genes in SMC with or without ectopic TAZ-4SA expression. Gapdh served as the internal control. Data are shown as mean ± S.E.M.
P values were calculated by unpaired two-tailed t test. (M) Representative photos of the matrigel invasiveness of SMC with or without ectopic TAZ-4SA
expression (left). The statistical analyses of the clone sizes were performed using Image J software. Scale bar, 100 μm. P values were calculated by
unpaired two-tailed t test. (N) Representative photos (left) and statistical analyses (right) of soft-agar colonies of SMC with or without ectopic TAZ-4SA
expression. Scale bar, 100 μm. Data are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t test. (O) Western blot detection of
CC3 in an anti-anoikis assay of SMC with or without ectopic TAZ-4SA expression. TUBULIN served as the internal control. (P) Representative photos of
NCAM and CD44 IF staining in subcutaneous tumors from nude mice transplanted with SMC with or without ectopic TAZ-4SA expression. Scale bar,
25 μm. (Q) Metastasis incidence (left) and representative photos of NCAM and CD44 IHC staining of liver metastasis (right) in nude mice transplanted
with SMC with or without ectopic TAZ-4SA expression. n= 6 mice for the control group, n= 7 mice for the TAZ-4SA group. Scale bar, 100μm. P value
was calculated by Pearson chi-square test.

data demonstrate that the NCAMhiCD44lo/– cells
are mainly responsible for SCLC metastasis and
the SWI/SNF-TAZ axis importantly orchestrates
SCLC plasticity and metastasis (Fig. 6G).

To assess SCLC heterogeneity in the RPmodel,
we use both NE marker NCAM and mesenchy-
mal marker CD44 to do the immunostaining and
FACS analyses, and identify the NCAMhiCD44lo/–

cells as the SCLC metastasizing cells. A previous
study shows that mouse SCLC cells contain both
NE and non-NE subpopulations [9]. However, nei-
ther subpopulation alone can metastasize and a syn-
ergetic cooperation is necessary for distant organ
metastasis [9]. In contrast, our data show that the
NCAMhiCD44lo/– cells harbor strongmetastasis ca-
pability in allograft assay, and the tumors metasta-
size intomultiple distant organs including the lymph
node, lung and liver. Since the SMC defined here
also expresses classical NE biomarkers, we reason
that the NCAMhiCD44lo/– cells might belong to the
NE subpopulation, but with higher metastasis po-
tential. In other words, the NCAMhiCD44lo/– cells
might represent the highlymetastatic subpopulation
of the NE subtype. In addition, we used primary
NCAMhiCD44lo/- cells and demonstrated their ro-
bust metastatic capability, whereas Calbo et al. [9]
employed tumor-derived cell lines for metastasis as-
says. Future efforts looking into the heterogeneity
of the NE subtype will hopefully uncover more sub-
populations linked to SCLC malignant progression
and metastasis.

We also find that phenotypic transition from
non-SMC to SMC contributes to SCLC metastasis,
which closely links cancer plasticity and malignant
progression. Indeed, recent data also show, during
SCLCdrug resistance acquisition, thatNotch signal-
ing promotes the transition from an NE to non-NE
subtype and thus provides a niche for resisting drug
treatment [10]. A similar transition fromNE to non-
NE subtypes has also been found in another recent
study [15]. Metastasis and drug resistance are two
major hurdles in clinical SCLC management. Un-
derstanding molecular mechanisms involved in the
phenotypic transition in these two important events

will hopefully provide a solid base for the develop-
ment of a novel therapeutic strategy to treat SCLC
in the clinic.

Through integrative analyses of gene expres-
sion profiling and chromatin accessibility, we find
that SWI/SNF complexes play an important role
during non-SMC-to-SMC transition. Although the
SWI/SNF complex is generally considered to be tu-
mor suppressive [46], our results indicate that this
complex has a different role in SCLC progression.
Knockout of its ATPase BRG1 inhibits such phe-
notypic transition and cancer metastasis, indicating
the oncogenic function of the SWI/SNF complex as
well as BRG1 in SCLC. In agreement with our ob-
servation, a previous study reported that BRG1 is
important for the activation of NE transcriptional
programs to upregulate MYC targets, and depletion
of BRG1 strongly hinders cell growth, specifically
in MAX-deficient SCLC tumors [25]. Consistently,
we find that BRG1 knockdown suppresses neuronal
gene expression and several SCN-signature-related
genes in the SMC subpopulation. Likewise, the dual
roles of ARID1A have also been revealed in cancer
[47].Thus, the exact function of the SWI/SNF com-
plex and its subunit as tumor suppressor or onco-
genic drivermight be cell-typeor genetic-context de-
pendent and vary with the type of malignancy.

We further find that TAZ is an important down-
stream mediator of the SWI/SNF complex during
SCLC phenotypic transition. Although both YAP
and TAZ are significantly upregulated in non-SMC,
only TAZ is significantly upregulated when Brg1 is
knocked down in SMC. Similar findings are also
observed when Arid1a or Arid2 is knocked down.
Consistently, Brg1 knockout in an RP mouse up-
regulates TAZ and significantly inhibits SMC ap-
pearance and SCLC metastasis. Moreover, we find
that low TAZ expression is associated with SCN
signature enrichment. In agreement with these ob-
servations, previous studies have shown that high
YAP/TAZ expression correlates with decreased NE
markers [48], and YAP loss defines NE differentia-
tion [49]. Meanwhile, NE lineage markers are dom-
inant in the SCN signature, which is significantly

Page 11 of 15



Natl Sci Rev, 2022, Vol. 9, nwab232

0 12 24 36 48 60
Month

OS
 (%

)

P=0.013

NCAMlo (n=15)
NCAMhi (n=86)

100

80

60

40

20

0

OS
 (%

)

P=0.012

CD44lo (n=72)
CD44hi (n=29)

100

80

60

40

20

0
0 12 24 36 48 60

Month 

High

TA
Z

Low

**

***
**

10.0

7.5

5.0

2.5

0.0

Lo
g 2(F

PK
M+

1)

P=0.0002
P=0.0006

P=0.0042

P<0.0001
***

P=0.0002
***

P=0.3378

P=0.5748

P=0.6997

P<0.0001
***

TAZhi

TAZlo

TEAD2
TTF1

SOX11

NEUROD1
CHGA

INSM1
ASCL1

CD44
NCAM

-6

-4

-2

0

2

4
P<0.0001

***

SC
N 

sc
or

e

TAZhi TAZlo

0 12 24 36 48 60

OS
 (%

)

P=0.002
TAZlo (n=64)
TAZhi (n=37)

100

80

60

40

20

0

Month

Human SCLC analysis

RNA-seq data
(EGAS00001000925 &
EGAS00001000334)

SCN signature SMC existence Prognosis

Sc-RNA-seq data of
metastasis

IHC staining in
101 surgical
specimens(GSM4558305)

SMC
NCAMhiCD44lo/-

BRG1 BRG1

SCN signature

TAZ

Non-SMC
NCAMloCD44hi

T cell

Tumor cell

Macrophage

Endothelial cell

NK cell

B cell

−30

−20

−10

0

10

20

−20 0 20 40
−30
−20
−10

0

10
20

−20 0 20 40

0
1
2

NCAM

−30
−20
−10

0
10
20

−20 0 20 40

0
1
2
3

CD44

−30
−20
−10

0
10
20

−20 0 20 40

0.0
0.5
1.0

TAZ

−30
−20
−10

0
10
20

−20 0 20 40

0
1
2
3

INSM1

−30
−20
−10

0
10
20

−20 0 20 40

0
1
2
3
4NEUROD1

tSNE_1

tS
NE

_2

CD
44

High Low

NC
AM

High Low

CB

D

E

A

F

G

Figure 6. Low TAZ level is correlated with SCN signature enrichment and predicts poor prognosis of SCLC patients. (A) Schematic illustration of the
analyses of human SCLC specimens. (B) SCN score of human SCLC specimens with high or low TAZ mRNA level. The RNA-seq data were downloaded
from a public database (GSE69091 and EGAS00001000334). Data are shown as mean ± S.E.M. P value was calculated by unpaired two-tailed t test.
(C) Correlation between individual SCN-signature-related genes, CD44 or TEAD2 expression with high or low TAZ level in human SCLC (GSE69091 and
EGAS00001000334). Data are shown as mean ± S.E.M. P values were calculated by unpaired two-tailed t test. (D) Clustering and the NCAM, CD44,
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metastasis. TAZ, which is epigenetically silenced by the SWI/SNF complex, functions as a critical molecular switch during the phenotypic transition
from non-SMC to SMC and SCLC metastasis. Disruption of the SWI/SNF complex through BRG1 knockout promotes TAZ upregulation and thus inhibits
the phenotypic transition and cancer metastasis.
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associated with SCLC malignant progression and
metastasis [38,50–52]. Of course, considering the
redundant function and concurrent decrease of YAP
andTAZ, it remains possible that YAPmay also con-
tribute to SCLC phenotypic transition and metasta-
sis albeit independent of the SWI/SNFcomplex. Fu-
ture efforts will be necessary to clarify the detailed
regulatory mechanisms underlying YAP expression
during SCLC phenotypic transition and metastasis.

Our findings from loss-of-function and gain-
of-function experiments support the tumor-
suppressive role of TAZ in SCLC. YAP/TAZ is
well established as oncogenic driver. Nonetheless,
accumulated evidence has recently revealed the
tumor-suppressive function of YAP/TAZ in mul-
tiple cancer types [53]. For instance, YAP restricts
Wnt signals during intestinal regeneration, which
results in rapid loss of intestinal crypts, and YAP
loss promotes hyperplasia and microadenoma
development [54]. In hematological cancer, low
YAP level prevents nuclear ABL1-induced apop-
tosis and rescued YAP expression triggers cell
death [55]. Another study shows that the growth
inhibitory effect caused by LATS1/2 deletion is due
to uncontrolled activation of YAP in colon cancer
[56]. A recent report demonstrates that LATS1/2
promotes breast cancer cell growth through inhibi-
tion of YAP/TAZ [34]. Our findings with regard
to the tumor-suppressive function of TAZ are also
supported by clinical specimen analyses. Single-cell
RNA-sequencing data support that the cancer cells
from SCLC liver metastasis mainly display the SMC
expression pattern and these metastatic cells show
low or no expression of TAZ. Moreover, low TAZ
level is significantly associated with poor patient
survival. These data together support that TAZ
works as a tumor suppressor in controlling SCLC
plasticity and metastasis.

MATERIALS AND METHODS
RP and RPB mouse cohort generation,
maintenance and analyses
Mice were housed in a specific pathogen-free envi-
ronment at the Shanghai Institute of Biochemistry
and Cell Biology, and treated in accordance with
protocols conforming to theARRIVEguidelines and
approved by the Institutional Animal Care and Use
Committee of the Shanghai Institutes for Biolog-
ical Sciences, Chinese Academy of Sciences (ap-
proval number: IBCB0011). Conditional knockout
mice including Trp53L/L, Rb1L/L [3] and Brg1L/L
[57] alleles were generously provided by Drs. Tyler
Jacks, Ronald A. DePinho and Pierre Chambon.
Mice were crossed to obtain Rb1L/L/Trp53L/L (RP)

and Rb1L/L/Trp53L/L/Brg1L/L (RPB) cohorts. All
experimental mice were maintained on a mixed ge-
netic background as previously described [58].Mice
at 6–8 weeks old were treated with Adenovirus-
CMV-Cre recombinase (Ad-Cre, 2 × 106 p.f.u.) by
intratracheal intubation [59] to allow for Cre-lox
mediated recombination of floxed alleles. Mouse tu-
mors were used for immunostaining, FACS analy-
ses, genomicDNAextraction and genotyping as pre-
viously described [3,57]. The primer sequences are
shown in the supplementary data.

Statistical analysis
Statistical analyses were carried out using SPSS 16.0
or GraphPad Prism 5/7 software (San Diego, CA).
The significance of differences was determined us-
ing a two-tailed Student’s t test or chi-square test.
Kaplan-Meier analysis with log-rank test was used to
assess patients’ survival between subgroups. P value
<0.05 was considered to be statistically significant.

DATA AVAILABILITY
Sequence data have been deposited in Gene Expres-
sion Omnibus (GEO) with the primary accession
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SMC) andGSE158293 (RNA-seq of SMC-Ctrl and
SMC-TAZ-4SA).
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