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Abstract

A recently introduced Multilocus Sequence Typing scheme for Treponema pallidum subsp.

pallidum was applied to clinical samples collected from 2004 to 2017 from the two largest cit-

ies (Prague and Brno) in the Czech Republic. Altogether, a total of 675 samples were tested

in this study and 281 of them were found PCR-positive for treponemal DNA and typeable.

Most of the typed samples (n = 281) were swabs from primary or secondary syphilis lesions

(n = 231), and only a minority were whole blood or tissue samples (n = 50). Swab samples

from patients with rapid plasma regain (RPR) values of 1–1024 were more frequently PCR-

positive (84.6%) compared to samples from patients with non-reactive RPR test (46.5%;

p-value = 0.0001). Out of 281 typeable samples, 136 were fully-typed at all TP0136, TP0548,

and TP0705 loci. Among the fully and partially typed samples, 25 different allelic profiles

were identified. Altogether, eight novel allelic variants were found among fully (n = 5) and par-

tially (n = 3) typed samples. The distribution of TPA allelic profiles identified in the Czech

Republic from 2004 to 2017 revealed a dynamic character with allelic profiles disappearing

and emerging over time. While the number of samples with the A2058G mutation was seen

to increase (86.7% in 2016/2017), the number of samples harboring the A2059G mutation

was found to have decreased over time (3.3% in 2016/2017). In addition, we found several

allelic profile associations with macrolide resistance or susceptibility, the gender of patients,

as well as patient residence.
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Introduction

Treponema pallidum subsp. pallidum (TPA) is an unusual bacterial pathogen [1] that causes

syphilis, a chronic venereal disease in humans. Each year, there are about 5.6 million new cases

worldwide [2–3]. In recent years, there have been approximately 700–800 cases of syphilis per

year in the Czech Republic, a country having about 10.5 million citizens (data provided by the

Institute of Health Information and Statistics of the Czech Republic). Most of the cases were

among men having sex with men (MSM), promiscuous individuals, or sex-workers [4].

While a syphilis diagnosis is mainly based on anamnestic data, clinical findings, and results of

serological tests, PCR detection and molecular typing can also be used to diagnose syphilis, espe-

cially in the cases with negative serology [5]. Moreover, PCR and molecular typing have proved

to be useful in cases where the infection was caused by T. pallidum subsp. endemicum [6–10].

In the last two decades, molecular typing of TPA isolates has mapped several thousand clinical

isolates from different countries all over the world. During that time, the original typing tech-

nique [11] was continually improved for better resolution [12–13]. Sequencing-based molecular

typing (SBMT) was introduced in 2006 [14] and was recently enhanced [15]. The recently

reported treponemal MLST typing system analyses the TP0136, TP0548, and TP0705 loci, and

has shown a resolution power of about 30% of whole genome sequences [15]. While MLST typ-

ing is a simple method revealing a high portion of genetic variability, whole genome sequencing

is a more complicated method where just a subset of samples is usually characterized. In addition,

23S rDNA can be used to find mutations that cause macrolide-resistance, however, this analysis

is not part of MLST. MLST typing has already been used to examine several hundred clinical

samples from Switzerland [15], France [15, 16], and Cuba [17]. Moreover, a public treponemal

MLST database for storage and analyses of typing data has been established [18].

In this communication, we performed molecular typing of TPA, using a newly introduced

MLST typing system, on samples collected in the Czech Republic from 2004–2017. Some of

the samples had been previously typed with the SBMT typing scheme [4, 19].

Materials and methods

Clinical material

Samples were collected during years 2004–2017 from two clinical departments in Brno (the

Department of Dermatovenereology, St. Anne´s Faculty Hospital and the Department of Med-

ical Microbiology, Faculty of Medicine, St. Anne´s Hospital and Masaryk University) and

from two clinical departments in Prague (the Department of Dermatovenereology, 1st Faculty

of Medicine, Charles University and the National Reference Laboratory for Diagnostics of

Syphilis, National Institute for Public Health). Clinical data included patient age, gender, type

of clinical material, results of serology, primary diagnosis, sexual orientation, and HIV status.

Serological tests included T. pallidum particle agglutination (TPPA) or T. pallidum hemagglu-

tination (TPHA) tests, the rapid plasma regain (RPR) test, and enzyme-linked immunosorbent

assay (ELISA) or Western blot for IgM and IgG depending on the source hospital. Serological

tests were provided by OMEGA Diagnostics (Reinbek, Germany), TEST-LINE (Brno, Czech

Republic), and MARDX (Carlsbad, CA, USA). In total, 675 samples were examined by PCR.

Patient characteristics for those with typeable samples (i.e., samples positive for at least one of

typing loci) are given in Table 1.

Isolation of DNA

DNA was isolated as described previously [4] using QIAamp DNA Blood Mini Kits and a

DNeasy Blood & Tissue Kits (Qiagen, Hilden, Germany).
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PCR amplification

Typing loci and the 23S rDNA locus were amplified as described previously [4, 15, 16, 20]. The

PCR mixture (final volume of 25 μl) contained in the first step 16.3 μl of water, 2 μl of a 2.5

mM deoxynucleotide triphosphate (dNTP) mixture, 5 μl of 5x PS GXL buffer, 0.095 μl of each

primer (100 pmol/μl), 0.5 μl of PrimeSTAR GXL polymerase (Takara Bio Europe, France), and

1 μl of isolated DNA. When PCR results were negative, the amount of isolated DNA per sam-

ple was increased: 11.5 μl of water, 2.5 μl of ThermoPol Reaction buffer, 0.5 μl of a 10 mM

dNTP mixture, 0.25 μl of each primer (100 pmol/μl), 0.1 μl Taq polymerase (5,000 U/ml; New

England BioLabs, Ipswich, MA) and 10 μl of DNA. In the first step, using 1 μl of DNA and

GXL polymerase, PCR amplification was performed under the following condition: 94˚C (1

min); 98˚C (10 s), 68˚C (15 s; −1.0˚C per cycle), 68˚C (1 min and 45 s) for 8 cycles; 98˚C (10

s), 61˚C (15 s), 68˚C (1 min and 45 s) for 35 cycles; and 68˚C (7 min). When using 10 μl of

DNA and Taq polymerase, these following conditions were used: 94˚C (1 min); 94˚C (20 s),

55˚C (20 s; −1.0˚C per cycle), 72˚C (1 min and 45 s) for 8 cycles; 94˚C (20 s), 48˚C (20 s), 72˚C

(1 min 45 s) for 35 cycles); and 72˚C (7 min). The mixture for the second step was the same for

both versions of the first step and the final volume (25 μl) for one reaction contained: 20.5 μl of

water, 2.5 μl of ThermoPol Reaction buffer, 0.5 μl of a 10 mM dNTP mixture, 0.25 μl of each

primer (100 pmol/μl), 0.1 μl Taq polymerase (5,000 U/ml; New England BioLabs, Ipswich,

MA) and 1 μl of PCR product from the first step. PCR were performed under following condi-

tions: 94˚C (1 min); 94˚C (30 s), 48˚C (30 s), 72˚C (1 min and 15 s) for 40 cycles; and 72˚C (7

min). DNA of TPA strain Nichols (5 pg/μl) was used as a positive control; distilled water was

used as a negative control. A list of all primers used for nested PCR is shown in S1 Table [15].

PCR products were purified using QIAquick PCR Purification Kits (Qiagen, Hilden, Ger-

many) according to the manufacturer´s instruction.

Table 1. Clinical characteristics of patients with typed TPA samples.

Clinical characteristics of patients Patients (n = 269)

Mean age (men/women) 44.2 (0–71)/24.9 (0–38)

Sex, n (%) M 244 (90.71); W 25 (9.29)

Serologya

TPPA/TPHA (%) 242 P (89.96); 7 N (2.6); 20 n.d. (7.43)

RPR 216 P (80.3); 47 N (17.47); 6 n.d. (2.23)

� 1:16 118

� 1:32 91

Positive without titer value 7

Diagnosis

Primary syphilis stage 165

Secondary syphilis stage 36

Congenital syphilis 2

Undetermined syphilis stage 66

Material Samples (n = 281)b

No. of swabs 231 (82.2%)

No. of whole blood samples 47 (16.7%)

No. of tissue samples 3 (1.1%)

P, positive; N, negative; n.d, not determined; M, men; W, women
aSerology is presented for the most frequently used tests.
bThere were no differences found in multiple samples collected from one patient.

https://doi.org/10.1371/journal.pone.0217611.t001
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Sequencing and sequence analysis

We used Sanger sequencing performed at GATC Biotech AG (Constance, Germany; Eurofins

Genomics Company). Analyses of the sequences were performed using Lasergene software

(DNASTAR v.7.1.0; DNASTAR, Madison, WI, USA). Sequences were uploaded to the

PubMLST database of Treponema pallidum subsp. pallidum [18] and allelic profiles were auto-

matically assigned. Sequences of 23S rRNA genes encoding macrolide resistance or susceptibil-

ity were evaluated at positions corresponding to positions 2058 and 2059 in the 23S rRNA

gene of Escherichia coli (accession no. V00331), where the A for G substitution has been

shown to cause macrolide resistance [20–22]. These positions were carefully analysed to check

for possible mix of wild-type and mutant sequences. Sequences were obtained by Sanger

sequencing. Alleles encoding resistance were marked A2058G or A2059G depending on the

site of substitution.

Statistical methods

Correlations of characteristics of clinical samples with allelic profiles were performed using the

two-sided Fisher´s exact test, and statistical significance was set at p< 0.05. Statistical analyses

were performed using STATISTICA software v.12 (StatSoft, Tulsa, OK, USA).

Ethics statement

This study was approved by the ethics committee of the Faculty of Medicine, Masaryk Univer-

sity (5G/2017). All patients provided written informed consent.

Results

We examined 675 clinical samples collected from 2004–2017 from four hospitals in the two

largest cities in the Czech Republic (2 hospitals in Brno and 2 hospitals in Prague). While all

samples were tested against TP0705, TP0136, and TP0548 between 2014–2017, data for

TP0136 and TP0548 came from clinical samples collected between 2004 and 2013 as part of

previous studies [4, 19] and were retested in locus TP0705. We found 281 samples to be posi-

tive and typeable, i.e., at least one locus TP0136, TP0548, or TP0705, was amplified and

sequenced. The majority of the typed samples were swabs from primary or secondary syphilis

lesions (n = 231) and the rest were from whole blood samples (n = 47) and tissue samples

(n = 3) taken post mortem. Most of the samples (86.48%) belonged to the SS14-like genetic

group, while only 2.13% belonged to the Nichols-like genetic group. The remaining 32 samples

(11.39%) were not classified as SS14-like or Nichols-like because of selective positivity for

locus TP0705 which does not contain informative sites for discriminating between these two

genetic groups. Clinical characteristics of patients are summarized in Table 1.

Swab samples from patients with RPR values from 1–1024 were more frequently PCR-posi-

tive (84.6%) compared to samples from patients with non-reactive RPR test (46.5%; p-

value = 0.0001). No such difference was observed among whole blood samples, however,

whole blood samples represented a minority of samples used in this study (16.7%; 47 out of

281).

Out of 281 typeable samples, 136 were fully-typed at the TP0136, TP0548, and TP0705 loci.

Among the fully typed samples, 16 different allelic profiles were found, and the partially typed

samples (n = 145) revealed 18 different allelic profiles (listed in S2 Table). Since nine allelic

profiles were identified in both fully and partially typed samples, the total number of different

allelic profiles identified in this study was 25. In fully-typed samples, five novel allelic variants

were identified including four in TP0548 and one in TP0705. Novel allele variants (n = 3) were
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also identified among partially typed samples and included one in TP0548 and two in TP0705.

Allelic profiles identified among fully-typed samples are summarized in Table 2, rest of identi-

fied variants are presented in S2 Table. The new allelic variants identified in this study are

shown in Fig 1. Among both fully and partially typed samples, the highest amplification effi-

ciency was found for locus 23S rDNA, which was not used for typing (positive in 233 samples),

followed by TP0705 (typed in 224 samples), TP0548 (typed in 208 samples), and TP0136

(typed in 204 samples).

A phylogenetic analysis of allelic profiles found among fully typed samples is shown in Fig

2. The allelic profile 9.7.3. corresponds to the allelic profile of the Nichols-like strain, all other

allelic profiles corresponded to the allelic profiles of the SS14-like strains. Except for the allelic

profile 18.1.1., all identified allelic profiles of the SS14-like strains were highly related.

The distribution of TPA allelic profiles identified in the Czech Republic from 2004 to 2017

is shown in Fig 3. Whereas allelic profile 1.1.8. (which was found to be associated with suscep-

tibility to macrolides) reached its highest proportion in 2010 and 2011 and then disappeared

in 2017, there were other allelic profiles that circulated during all tested years (e.g., 1.1.1.) or

even increased (e.g., 1.3.1.). In 2012, a new allelic profile (1.26.1.) emerged and persisted until

the end of the test period in 2017. Other allelic profiles seem to have random occurrence indi-

cating the dynamic nature of circulating allelic profiles in particular populations. The most fre-

quent was allelic profile 1.3.1. (41.2%) followed by allelic profiles 1.1.8. (20.6%), and 1.1.1.

(14.7%). Moreover, as the number of samples increased (13 in 2004/2007, 24 in 2008/2009, 56

in 2010/2011, 63 in 2012/2013, 71 in 2014/2015 and 54 in 2016/2017), the number of allelic

profiles also increased (11 in 2004/2007, 7 in 2008/2009, 8 in 2010/2011, 16 in 2012/2013, 17 in

Table 2. Allelic profiles identified among fully-typed samples (n = 136).

Sequence type1 Allelic profile2 23S rDNA3

(no. of samples)

Genetic group [23]. No. of samples (%)

1 1.3.1. S(1)/R8(44)/X(11) SS14-like 56 (41.2)

3 1.1.8. S(26)/R8(2) SS14-like 28 (20.6)

2 1.1.1. S(8)/R8(11)/X(1) SS14-like 20 (14.7)

25 1.26.1.4 R8(10)/X(2) SS14-like 12 (8.8)

11 1.1.3. R9(5) SS14-like 5 (3.7)

44 1.36.1.4 S(4) SS14-like 4 (2.9)

26 9.7.3. R8(1)/X(1) Nichols-like 2 (1.5)

48 17.1.1.4 S(1) SS14-like 1 (0.7)

46 1.31.1.5 R8(1) SS14-like 1 (0.7)

43 1.28.1.5 R8(1) SS14-like 1 (0.7)

45 4.1.1. R8(1) SS14-like 1 (0.7)

41 1.29.1.5 R8(1) SS14-like 1 (0.7)

50 1.32.1.5 S(1) SS14-like 1 (0.7)

42 1.1.16.5 R9(1) SS14-like 1 (0.7)

7 1.4.1. R8(1) SS14-like 1 (0.7)

49 18.1.1.4 S(1) SS14-like 1 (0.7)

1 According PubMLST database of Treponema pallidum subsp. pallidum [18].
2 Allelic profiles based on sequences of TP0136, TP0548, and TP0705 [15].
3 Locus encoding resistance to macrolide antibiotics: S = sensitive, R8 = A2058G mutation, R9 = A2059G mutation, X = undetermined. Both A2058G and A2059G

mutations result in resistance to macrolide antibiotics.
4 Newly identified profiles, with known alleles from previous studies [4, 19]. Original description: 1.26. = SU5, 1.36. = SU7, 17.1. = U2S, 18.1. = U1S.
5 Newly identified allelic profiles, with novel alleles.

https://doi.org/10.1371/journal.pone.0217611.t002
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2014/2015 and 13 in 2016/2017), suggesting that the genetic variability of TPA has not been

fully described yet.

Macrolide resistance

The prevalence of macrolide resistance causing mutations among TPA isolates in the Czech

Republic is shown in Fig 4. While there is an increasing trend in the number of samples con-

taining A2058G mutations (86.7% in 2016/2017), the number of A2059G mutations has

decreased over time (3.3% in 2016/2017). This trend was detected in a previous study [4]. In

Fig 1. An alignment of the newly identified allelic variants. A. New alleles of TP0548. B. New alleles of TP0705. New alleles are in italics. A complete

overview of allelic variants found in this study at the TP0136, TP0548, and TP0705 loci are shown in S1 Fig. No new alleles were found in the TP0136 locus.

https://doi.org/10.1371/journal.pone.0217611.g001
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Fig 2. A phylogenetic tree of allelic profiles identified among fully typed samples. The scale shows the number of substitutions per site. Bootstrap values are

shown next to branches. The length of concatenated sequences was 2593 bp and contained 95 variable positions. The tree was constructed in MEGA7 [24]

using the Maximum Likelihood method [25] with the bootstrap test [26].

https://doi.org/10.1371/journal.pone.0217611.g002

Fig 3. Distribution of TPA allelic profiles identified in the Czech Republic from 2004 to 2017.

https://doi.org/10.1371/journal.pone.0217611.g003
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addition, associations of these mutations with different allelic profiles were identified. Allelic

profiles 1.26.1. and 1.3.1. were found to be associated with the A2058G mutation (p = 0.0342

and p< 0.0001, respectively) and allelic profile 1.1.3. was associated with the A2059G muta-

tion (p< 0.0001). Moreover, allelic profile 1.1.8. was found to be associated with macrolide

susceptibility (p< 0.0001).

Associations of allelic profiles with patient characteristics

Besides macrolide resistance or susceptibility, we tested possible associations of allelic profiles

with sex, locality, stage of disease and serology. No allelic profile associations with serology

(RPR titer) and stage of syphilis were found. Allelic profile 1.1.8. was found more frequently

among women than men (p = 0.0143). When compared to Prague, allelic profile 1.26.1.

showed a geographical association (p< 0.0001) with the city of Brno.

Discussion

In this study, we examined 675 samples collected from patients suspected of having syphilis

between 2004 to 2017 from four clinics, two in Brno and two in Prague. Almost one-half of the

samples were PCR-positive and typeable (n = 281, 41.6%). In comparison with other MLST

studies [15–17], this study represents largest collection of typed samples. Moreover, a long

time period of collecting samples allowed to discover over two dozens of allelic profiles includ-

ing highly diverse allele in the TP0136 locus.

The majority of the typed samples were swabs from primary or secondary syphilis lesions

(82.2%), and the rest were from whole blood or tissue samples (16.7% and 1.1%). While analy-

sis of swab samples resulted in a similar number of fully typed (i.e., samples typed at all three

TP0136, TP0548 and TP0705 loci) (n = 128, 55.4%) and partially typed samples (sequenced at

least one typing locus) (n = 103, 44.6%); whole blood samples analysis revealed a minority of

fully typed samples (n = 6, 12.8%) and a majority of partially typed samples (n = 41, 87.2%).

For swab samples, patients that had positive RPR titer were more likely PCR positive compared

to RPR-negative patients (p = 0.0001) suggesting that the group of patients that contains both

RPR-negative and PCR-negative patients is likely to include patients not having syphilis. Alto-

gether, these findings indicate that the swab samples are more suitable for molecular typing of

TPA strains and isolates, an observation that was noticed in previous studies [4–5, 27–28].

Fig 4. Identified prevalence of macrolide resistance causing mutations in the Czech Republic during the study

period. The prevalence over the two- or three-year intervals was calculated as an average; standard errors of the mean

are shown. During years 2004 to 2006, none of the mutations were found.

https://doi.org/10.1371/journal.pone.0217611.g004
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In this study, we have identified 16 different allelic profiles among 136 fully typed TPA-con-

taining samples, in the same collection of samples we would identify 13 different profiles by

SBMT. In the Czech Republic, in comparison to samples analyzed in previous studies from

other countries [15–17], there were partial overlaps with identified fully determined allelic pro-

files. Samples collected in Switzerland [18] revealed four allelic profiles also found in this study

(i.e., 1.1.1., 1.1.3., 1.3.1. and 1.4.1.), while 20 were different. Similarly, samples collected in

France [18] revealed four shared allelic profiles (1.1.1., 1.3.1., 1.1.8., 9.7.3.) with 28 profiles that

were different. Cuban samples [18] revealed two shared allelic profiles (1.1.1., 1.3.1.) and 17

different profiles (Fig 5). Only allelic profiles 1.1.1. and 1.1.3. were shared by all four countries

Fig 5. TPA allelic profiles identified in the Czech Republic, France, Switzerland and Cuba [15–18].

https://doi.org/10.1371/journal.pone.0217611.g005
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indicating that TPA allelic profile variability is relatively high even in somewhat closely related

geographical regions (Fig 5). Comparison of shared allelic profiles among Czech Republic,

France, Switzerland and Cuba (Fig 5) revealed that the profiles 1.1.1. and 1.3.1. were detected

in every MLST study in most time points whereas the profile 1.4.1. was detected in Switzerland

at least two years earlier than in the Czech Republic (see PubMLST database [18]). Allelic pro-

file 9.7.3. shared between Czech Republic and France was detected in similar years and profile

1.1.8. disappeared in 2016 in France and in 2016/2017 in the Czech Republic. The most fre-

quent allelic profiles were thus similarly detected in different countries suggesting suprana-

tional spreading of certain syphilis strains. When both partially and fully typed samples were

analyzed, a total of eight new alleles were identified in 281 typeable samples. We found five

novel allelic variants among fully typed samples and three novel allelic variants among partially

typed samples. This finding further shows the relatively high variability of TPA strains circulat-

ing in the Czech Republic.

The most common allelic profile in the Czech Republic, 1.3.1. (41.2%), corresponds to the

SU2 genotype based on SBMT [19] and to the “g” ECDCT_TP0548 subtype based on ECDCT

[13]. This allelic profile is also the most common in Belgium [27], France [16], Switzerland

[15], Italy [29], the UK [30], and other countries including Cuba [17], the USA [31], and Aus-

tralia [32]. The second and third most common allelic profiles found in this study were 1.1.8.

(20.6%) and 1.1.1. (14.7%) both having allelic variant TP_0548_1 corresponding to the “f”

ECDCT_TP0548 subtype [13], which is the most common in Argentina [33], China [34–39],

Taiwan [40], and Russia [41].

In our study, we found differences in the local distribution of allelic profiles between sam-

ples from Brno and samples from Prague. In Prague, we found a greater number of allelic pro-

files, which may be related to Prague’s larger population as well as the larger number of people

visiting Prague, who could represent potential carriers of new profiles. Despite the lower num-

ber of different allelic profiles identified in Brno, one profile (1.26.1.) was exclusively present

in the Brno region (found in 12 patients). This finding further extends previous findings that

showed differences between individual countries and suggests that sexual networks can differ

even within a single country.

In this study, associations of different allelic profiles 1.26.1., 1.3.1., and 1.1.3. with macrolide

resistance and 1.1.8. with macrolide susceptibility, were found. Similar associations have been

found in other studies [4, 15, 42]. This study confirmed two trends: {i} there are increasing

numbers of A2058G mutations and {ii} there are decreasing numbers of A2059G mutations, a

trend that was also seen in a previous study [4]. As suggested by Grillová et al. (2014) [4], the

differences in the occurrence of the A2058G and A2059G mutations could reflect opposite

trends in the use of spiramycin and azithromycin in the Czech Republic. While there is a

decreasing trend in the use of spiramycin, azithromycin is being prescribed more frequently

[4]. While the A2058G mutation does not encode resistance to spiramycin, the A2059G does.

In addition to decreased use of spiramycin, the A2059G mutation was predicted to have a

higher fitness cost compared to A2058G [42].

A phylogenetic analysis of allelic profiles found in this study clearly differentiated profiles

belonging to SS14-like and Nichols-like strains (Fig 2), however, differences within the SS14

strains were supported with low bootstrap values (lower than 70%). With the assumption that

the MLST typing system has about 30% of the discriminatory power of whole-genome analyses

[15] and the low support for clustering of SS14-like strains, the identified SS14 strains were

highly clonal showing low genetic diversity, which is also likely at the whole genome level. In

fact, previous whole-genome studies that analyzed SS14-like strains found only limited genetic

diversity among SS14-like strains [43–44]. Among the SS14-like allelic profiles identified in

this study, allelic profile 18.1.1. (originally found by Flasarová et al. 2006) [14] appeared to be
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the most divergent (Fig 2), which was predominantly a result of a highly divergent sequence

found at the TP0136 locus. In addition, the sequences of allelic profile 18.1.1. in TP0548 and

TP0705 were identical to and different from the SS14 sequences, respectively. A detailed analy-

sis of locus TP0136 revealed that the observed genetic diversity was a result of gene reshuffling

of modular gene segments (Fig 6). A similar modular structure to that of TP0136 was found

among TPE strains [45]. Another similar genetic rearrangement of TP0136 was found in the

study of Grillová et al. [17], where four modular regions (r1-r2-r3-r4) were deleted.

The most probable explanation for the sequence differences in the TP0136 gene in clinical

isolate 18.1.1 is a gene conversion event copying the r0 sequence instead of the first r4

sequence. This scenario explains why both r0 sequences were identical in the 18.1.1. isolate.

Fig 6. Modular structure of the TP0136 gene in the TPA SS14 strain and in the TPA 18.1.1. clinical isolate. A. A schematic representation of the TP0136

gene in the TPA SS14 strain between coordinates 158434–158678 (CP004011.1). The figure was modified from Strouhal et al. (2018) [45]. The r0 repetitive

sequence in the TPA 18.1.1. clinical isolate replaced the first r4 repetitive sequence. B. A list of repetitive (r0, r1, r2, r3, r4, r6) and non-repetitive sequences (r5).

The nucleotide differences within r1 and r2 repetitions in the TPA SS14 strain are shown in bold.

https://doi.org/10.1371/journal.pone.0217611.g006
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There are already numerous examples of genome rearrangements in treponemal strains and

isolates including the tprK gene [46], tprCDIGJK genes [47], the TP0133 gene [45, 48–50],

rRNA (rrn) operons [51], TP0856 and TP0858, and other genes [45].

Most of the TPA samples analyzed in this study belonged to the SS14-clade [23, 52], and

only 2.41% of the 249 determined samples belonged to the Nichols-like clade. The number of

identified Nichols-like TPA strains is lower compared to previous studies [15–16]; however, it

is not far from the worldwide estimated number of Nichols-like strains (i.e., 5.9%) [50].

In addition to geographical variability found among TPA samples taken from different

countries, an analysis of the temporal occurrence of TPA allelic profiles (Fig 3) in the Czech

Republic between 2004–2017 revealed an increasing number of identified allelic profiles and

also differences in the spectra of identified allelic profiles over the years. While the first finding

corresponds to the increasing number of collected samples during recent years, the second

observation is consistent with the dynamic character of TPA strains in the infected population.

While some allelic profiles remained for the whole study period (e.g., allelic profile 1.1.1.),

other allelic profiles showed an increasing prevalence (e.g., 1.3.1.), while others slowly disap-

pear (e.g., 1.1.8.) and some emerged (e.g., allelic profile 1.26.1. which appeared for the first

time in 2012/2013 and persisted until 2017). While these findings are at least partly attributable

to the random distribution of allelic profiles and to sampling bias, they could also point to pos-

sible differences in the fitness and/or pathogenicity of particular allelic profiles. As of now, we

are still some distance from a determination of the full genetic diversity of TPA isolates in the

global population and also from understanding the role of genetic differences in syphilis epide-

miology. Mapping the genetic diversity of TPA strains in the context of additional clinical data

will likely help answer at least some of these questions including connection of diverse genetic

profiles with several patients´ characteristics.
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15. Grillová L, Bawa T, Mikalová L, Gayet-Ageron A, Nieselt K, Strouhal M, et al. Molecular characterization

of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typ-

ing scheme. PLoS One. 2018; 13: e0200773. https://doi.org/10.1371/journal.pone.0200773 PMID:

30059541
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48. Strouhal M, Šmajs D, Matějková P, Sodergren E, Amin AG, Howell JK, et al. Genome differences

between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A.

Infect Immun. 2007; 75: 5859–66. https://doi.org/10.1128/IAI.00709-07 PMID: 17893135

49. Godornes C, Giacani L, Barry AE, Mitja O, Lukehart SA. Development of a Multilocus Sequence Typing

(MLST) scheme for Treponema pallidum subsp. pertenue: Application to yaws in Lihir Island, Papua

New Guinea. PLoS Negl Trop Dis. 2017; 11: e0006113. https://doi.org/10.1371/journal.pntd.0006113

PMID: 29281641
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