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Abstract
Backgrond and Objective  Crohn’s disease (CD) is a chronic inflammatory bowel disease that affects a wide age range. Hence, 
CD patients receive a variety of drugs over their life beyond those used for CD itself. The changes to the integrity of the 
intestine and its drug metabolising enzymes and transporters (DMETs) can alter the oral bioavailability of drugs. However, 
there are other changes in systems parameters determining the fate of drugs in CD, and understanding these is essential for 
dose adjustment in patients with CD.
Methods  The current analysis gathered all the available clinical data on the kinetics of drugs in CD (by March 2021), focus-
ing on orally administered small molecule drugs. A meta-analysis of the systems parameters affecting oral drug pharma-
cokinetics was conducted. The systems information gathered on intestine, liver and blood proteins and other physiological 
parameters was incorporated into a physiologically based pharmacokinetic (PBPK) platform to create a virtual population 
of CD patients, with a view for guiding dose adjustment in the absence of clinical data in CD.
Results  There were no uniform trends in the reported changes in reported oral bioavailability. The nature of the drug as well 
as the formulation affected the direction and magnitude of variation in kinetics in CD patients relative to healthy volunteers. 
Even for the same drug, the reported changes in exposure varied, possibly due to a lack of distinction between the activity 
states of CD. The highest alteration was seen with S-verapamil and midazolam, 8.7- and 5.3-fold greater exposure, respec-
tively, in active CD patients relative to healthy volunteers. Only one report was available on liver DMETs in CD, and indicated 
reduced CYP3A4 activity. In a number of reports, mRNA expression of DMETs in the ileum and colon of CD patients was 
measured, focussing on P-glycoprotein (p-gp) transporter and CYP3A4 enzyme, and showed contradictory results. No data 
were available on protein expression in duodenum and jejunum despite their dominant role in oral drug absorption.
Conclusion  There are currently inadequate dedicated clinical or quantitative proteomic studies in CD to enable predictive 
PBPK models with high confidence and adequate verification. The PBPK models for CD with the available systems param-
eters were able to capture the major physiological influencers and the gaps to be filled by future research. Quantification 
of DMETs in the intestine and the liver in CD is warranted, alongside well-defined clinical drug disposition studies with 
a number of index drugs as biomarkers of changes in DMETs in these patients, to avoid large-scale dedicated studies for 
every drug to determine the effects of disease on the drug’s metabolism and disposition and the consequential safety and 
therapeutic concerns.
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1  Introduction

Crohn’s disease (CD) is a chronic inflammatory bowel dis-
ease (IBD) that can affect any part of the gastrointestinal 
(GI) system. The mucosal layers of the intestine, ileum and 
colon segments are predominantly affected [1, 2]. Although 

duodenum and jejunum involvement is not as common, 
these segments play a major role in drug pharmacokinetics 
(PK), as they represent the largest surface area and have 
an abundance of metabolising enzymes and transporters [3, 
4]. Most CD patients are diagnosed before the age of 30, 
and patients are susceptible to cancer and arthritis, as well 
as cardiovascular, respiratory, kidney and liver diseases [5, 
6]. Hence, over a lifetime, these patients receive many dif-
ferent drugs beyond those aimed to control CD itself. It is 
estimated that the prevalence of CD is up to 322 per 100,000 
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Key Points 

There was no uniform and simple trend linking the 
changes in physiology/biology in Crohn’s disease 
patients to changes in drug bioavailability and disposi-
tion.

Inadequate clinical and proteomics data were identified 
as hurdles to incorporate relevant information into physi-
ologically based pharmacokinetic models for creation of 
reliable predictive virtual populations of Crohn’s disease 
patients. Initial assessment of the models identified the 
major physiological influencers and the knowledge gaps 
for prudent prediction of altered pharmacokinetics in 
Crohn’s disease.

The major aims of the current report are twofold:

1.	 Gather evidence regarding changes to the fate of drugs 
in CD, with a view to indicating any trend that can be 
discerned.

2.	 Extract relevant systems information for PBPK in CD 
and create a repository that helps with the creation of 
CD population files in PBPK modelling.

We also conducted a preliminary application of PBPK for 
CD for two case examples (the benzodiazepine midazolam 
and the corticosteroid budesonide) for verification and test-
ing the adequacy of the model versus existing major gaps. 
The two drugs are both substrates of cytochrome P450 3A4 
(CYP3A4). However, as would be expected from their dif-
ferent uses, there are subtle differences between midazolam 
and budesonide that may be used to identify the influence 
of different systems parameters. Midazolam is a well-known 
CYP3A4 probe, which allows investigation of the influence 
of CD on the liver and intestine separately by comparing 
relative PK in CD patients versus healthy volunteers after 
an intravenous (IV) and oral dose. The investigated dosage 
form is given as a solution, allowing for assessment of the 
effects on the upper intestine. On the other hand, budeson-
ide is a substrate for several enzymes (CYP3A4, CYP2C9 
and CYP1A2) and P-glycoprotein (p-gp), which allows us to 
investigate the influence of other factors beyond CYP3A4. 
Budesonide is a very high extraction ratio drug (Eh = 0.9) 
[14]; hence, it allows the assessment of the effects from 
changes to mesenteric blood flow (cardiac output) in CD. 
Budesonide is given in a controlled-release formulation, 
where its release is triggered by entering a basic environ-
ment (pH > 5.5); it is expected to be sensitive to changes 
that occur in the lower intestine. The two drugs are highly 
bound to albumin (80–90%). Both drugs have shown signifi-
cant alteration in oral bioavailability in CD patients, based 
on clinical studies. Moreover, they are clinically relevant 
to CD patients, as IV midazolam is used before endoscopy 
procedures as an anxiolytic, while oral budesonide is used 
for treatment of CD itself.

2 � Methods

2.1 � Data Gathering and Analysis for Kinetics 
of Orally Administered Drugs in the Crohn’s 
Disease (CD) Population

A systematic review of the reported PK in the CD population 
was conducted with the specific aim of assessing any expo-
sure (bioavailability/clearance) changes compared to what 
was known for the same drug in healthy volunteers. A litera-
ture search concluded by March 2021 was run in PubMed 

persons in Europe, with corresponding numbers in Asia and 
North America being 67.9 and 319, respectively [7]. Despite 
the high prevalence of CD, unlike other organ impairments 
such as those related to renal or hepatic function [8, 9], there 
are no mandatory requirements by regulatory agencies for 
clinical studies to be conducted on drugs entering market, to 
assess variable exposure to drugs in these patients. It might 
be assumed that changes to the fate of drugs in CD, based 
on the current knowledge on drug studies in CD, indicates 
minimal variations from healthy volunteers, which has led 
to a lack of legislation. However, this is not the case, and 
the more likely reason is associated with practical issues in 
adding further dedicated studies to those already in place for 
renal and hepatic impairment. Indeed, many other comor-
bidities may be excluded from clinical trials during drug 
development, for example, a typical, similar case would be 
patients undergoing bariatric surgery [10]. The issue of a 
lack of diversity in patient populations during drug devel-
opment has been addressed in recent guidance by the US 
Food and Drug Administration (FDA), which encouraged 
the sponsors to broaden the inclusion criteria for clinical 
studies [11].

Following several position papers on special popula-
tions [12, 13], the possibility of using physiologically based 
pharmacokinetic (PBPK) models to fill in the gaps in guid-
ing informed dosage adjustment (when necessary) in a 
sub-group of patients, as an alternative to leaving the drug 
labels silent, seems a prudent approach until dedicated stud-
ies become available. Indeed, the recent FDA guidance for 
the conduct of renal impairment studies during drug devel-
opment [9] has mentioned PBPK as a potential approach for 
informing prescribers regarding any actions until adequate 
data are gathered from dedicated clinical studies or real-
world data analysis.
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(http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/) using the terms 
(“Crohn’s disease” and “inflammatory bowel diseases”) in 
combination with (“pharmacokinetic”, “bioavailability”) for 
oral and IV drug formulations (Fig. 1). The search was not 
limited to particular time periods. Only original research 
articles concerning small molecule agents were included. 
An initial screening of titles and abstracts was carried out 
to identify the inclusion of a PK analysis of the drug in CD 
adult patients. This was followed by extended screening of 
the results to identify the presence of the required PK data 
to allow the drug exposure/clearance analysis. Restriction 
of the search to reports where PK were assessed in both CD 
and healthy volunteers within the same study could severely 
reduce the number of cases for analysing the trends. The 
same was true in narrowing the studies only to those con-
ducted in the fasting state or excluding the studies due to 
small sample size. Whenever a drug lacked the information 
in healthy volunteers in the same study, a literature search 
was done by the name of the drug and the terms “pharma-
cokinetic” and “bioavailability”. Hence, the only exclusion 
was dis-similarity of the trial methodology (dosage regi-
mens, fed or fasted state, formulation and route of adminis-
tration) between the studies conducted in CD patients versus 
those in healthy volunteers, particularly when a large dose 
normalisation was required.

The area under the curve (AUC) of the concentra-
tion–time profile for each of the drugs both in CD patients 

and healthy volunteers was the basis for the calculation 
of the relative drug exposure following dose normalisa-
tion (when needed) and the relative clearance (CL) when 
accounting for IV drug in each group, respectively. Since the 
values of the two populations could arise from different stud-
ies, we had to ensure the nature of the AUC for comparison 
was the same (e.g. extrapolated AUC​0–∞, steady-state AUC​
ss or truncated AUC​0–t). All drugs without information on 
AUC (for oral) and CL (for IV) from healthy volunteers in 
studies reasonably similar in design to those performed in 
the CD population were excluded, since no reliable relative 
bioavailability or clearance could be inferred.

The calculation of relative exposure and clearance 
between the CD and healthy population (CD/healthy), a

b
 , and 

its 95% confidence interval (CI), applied Fieller’s Theorem 
[15–17], as per Eq. 1:

where a is the mean AUC for the CD population and b is 
the mean AUC for the healthy volunteer population, t

�,df  
is the inverse of the cumulative t distribution (two tailed) 
for a significance level of α (0.05), and degrees of freedom 
(df) is equal to na + nb − 2, where na and nb are the number 
of participants in the study for the estimation of a and b, 
respectively, and SE a

b
 is the combined standard error for the 

ratio a
b
 , and it is calculated from Eq. 2:

where the quantity g is given by Eq. 3, and SEa and SEb are 
the standard error of the means a and b, respectively:

2.2 � Demography of the CD Population

In general, CD is more common in the Caucasian population 
than in people of African and Hispanic ethnicities in North 
America. Various prevalence values are reported for Europe, 
North America, Oceania, Africa, South America and Asia 
in the literature [7, 18, 19].

For adults, the peak incidence of CD is between the 
ages of 20 and 40, with a less common second peak around 
the age of 60–70, making the demography of CD bimodal 
[20–22]. The incidence of CD is marginally higher in 
females compared with males, as suggested by several stud-
ies [23–28].

(1)CI a

b
(1−�) =

a

b × (1 − g)
± t

�,dfSE a

b

(2)SE a

b

=
a

b × (1 − g)
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2

a

a2
+

SE
2

b

b2

(3)g =
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× SE
2

b
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.

Fig. 1   An illustration of the process of literature search in relation 
reports on the systemic exposure of drugs in adults Crohn’s disease 
relative to healthy volunteers (carried out using PubMed; March 
2021). PK pharmacokinetics

http://www.ncbi.nlm.nih.gov/pubmed/
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In our study, the demography used mimics the demogra-
phy of the corresponding clinical studies that we were simu-
lating for the model verification.

2.3 � Systems Parameters Defining Physiologically 
Based Pharmacokinetics (PBPK) in CD Patients

A meta-analysis of the literature data was conducted to iden-
tify the relevant sources of changes in the bioavailability of 
oral drugs, and to extract data related to the physiological 
and anatomical changes of the intestine and whole body in 
CD patients. The literature search was run in PubMed (Octo-
ber 2021), using the following terms (“small intestine pH”, 
“large intestine pH”, “gastric emptying time”, “intestine 
transit time”, “serum albumin”, “alpha acid glycoprotein”, 
“liver blood flow”, “portal vein flow”, “superior mesenteric 
artery blood flow”, “cardiac output”, “ABC transporter”, 
“solute carrier transporter”, “metabolising enzymes”, 
“CYP” and “proteomics”) in combination with “Crohn’s 
disease”. Screening of titles and abstracts was carried out 
to identify the studies with a clear indication of the required 
information in CD patients. No time frame of the research 
was applied.

Inclusion of data was restricted to original articles, 
studies that provided information where determination of 
the mean, SD and CI is possible, studies that reported the 
level of the parameter at the baseline (before the treatment 
intervention), and studies including both CD patients and 
healthy volunteers. Only the adult population and English 
publications were considered. Studies that did not report 
the values of the CD group separately from other diseases 
were excluded. Some studies included non-IBD patients as 
the control group instead of healthy volunteers. When such 
studies are included in the analysis (owing to the low num-
ber of the available studies), it is indicated in the results 
section. For all parameters, differentiation of the results 
based on active or inactive CD phase is considered. If it was 
not clearly indicated in the study whether the patients were 
active or inactive, they were considered mixed (active and 
inactive).

The activity of CD disease is defined by a subjective scor-
ing index based on the clinical manifestation of the patient 
in most of the included studies. The most common scoring 
systems used are the Harvey-Bradshaw Index (HBI) [29] 
and Crohn’s Disease Activity Index (CDAI) [30]. In the case 
of reporting the activity based on an objective index where 
biomarkers, endoscopy or other markers are assessed, this is 
reported in the results section if applicable. Clinical remis-
sion does not always reflect histological/endoscopic remis-
sion, hence the reported activity according to the symptom-
based scores and the objective markers [31, 32].

For drug metabolising enzymes and transporters (DMET) 
expression, all studies are included if a fold change of CD 

value to control is reported or can be determined without 
distinguishing between inflamed or non-inflamed tissue. 
If both values from inflamed and non-inflamed tissues are 
separately available, only the values of inflamed tissues are 
included. Only studies or values that reported the expression 
level in CD patients and not in a mixed set of IBD (ulcerative 
colitis [UC] and CD) patients are included. Several reports 
did not provide the raw values; thus, the values used here 
are based on a digitally extracted estimate from the figures. 
As only a few reports are available, the weighted ratio was 
calculated from all the included studies regardless of the 
nature of the assay used to determine the expression.

The identified physiological aspects that can alter oral 
drug bioavailability depending on the nature of the drug 
and formulation are summarised in Fig. 2. Previous review 
[33] and analysis [34] covered some of the aspects consid-
ered in our analysis in CD patients, which was checked to 
assure inclusion of the collected available data. The col-
lected information was stratified based on different segments 
of the intestine, differentiation between active and inactive 
CD, sex and fasting state whenever possible. Figure 3 shows 
a Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) diagram of the flow for inclusion 
and exclusion of studies in the meta-analysis. Inadequate 
or incomplete information is highlighted, as such infor-
mation can compromise the accuracy of the PBPK model 
projections.

The collected physiological parameters were analysed 
based on the weighted mean and overall standard deviation 
using the reported mean and SD as previously reported [35]. 
Similarly, we followed the previously reported procedure for 
converting median values and ranges to mean and SD when 
not provided in the publications [36].

2.4 � PBPK Application for Obtaining Systems 
Parameters and Its Applications for Verification 
of the CD Model

Reverse translation Two CYP3A substrates, midazolam and 
budesonide, were investigated by means of PBPK model-
ling, utilising the Simcyp® Simulator M-ADAM absorption 
model. The details of model assumptions and infrastructure 
for a multilayer gut wall [37] and the general attributes of the 
advanced dissolution, absorption and metabolism (ADAM) 
model are described elsewhere [38]. However, to build a CD 
population with all relevant known physiological differences 
in intestine and other organs, we had to incorporate relative 
changes in each parameter into the population library files 
within the simulator, based on our analysis of the systems 
parameters described in the previous section. Additionally, a 
reverse translation approach was used based on a midazolam 
IV clinical study in CD [39] to determine the value of the 
liver CYP3A4. Hence, the value of hepatic clearance (CLH) 
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was used to estimate the intrinsic unbound metabolic clear-
ance (CLu-int), knowing the hepatic blood flow (QH) and 
fraction unbound in blood (fuB) according to Eq. 4:

The relative reduction in intrinsic clearance (CLint) in CD 
patients compared to healthy volunteers [39, 40] was consid-
ered as a reflection of reduced hepatic CYP3A4 expression. 
These changes were incorporated in the CD population file 
that was used in modelling other cases. The input parameters 
used to create the inactive and active CD population frame-
work are summarised in Table 1.

The study design taken from each clinical case was used 
for building and verifying the drug PBPK models in healthy 
volunteers (drug PBPK models in healthy volunteers: bude-
sonide IV [41], budesonide oral as Entocort® [42], mida-
zolam oral [40]) in the Simcyp® Simulator V19 and using 
the default healthy volunteer population. The study design 
included the information on age range, female-to-male ratio, 
fasting status and dosage regimen. The clinical studies for 
budesonide in the CD population were conducted under dif-
ferent conditions [39, 42–44]. Our focus was on the study 
that showed a significant difference [42] in budesonide 
bioavailability in CD patients compared to healthy volun-
teers. Midazolam was studied in only one study for assess-
ing bioavailability difference in CD [39]. The drug-specific 
parameters of budesonide were mainly taken from the report 
by Effinger et al. [45], since there is no budesonide default 

(4)CLu - int =
QH × CLH

fuB × (QH − CLH)
.

library in the library set of compounds in the Simcyp® simu-
lator. For midazolam, the available Simcyp® drug model 
from the compound library was used as a starting point; this 
is verified and published in several reports and frequently 
used in regulatory submissions [46, 47]. The key modifica-
tions that we had to make, for the purpose of later applica-
tions in CD, were the selection of the M-ADAM absorption 
model option (in preference to the default ADAM) and the 
selection of full-PBPK (as opposed to the default of mini-
mal-PBPK). Input parameters used in the Simcyp® simula-
tor for building budesonide and midazolam drug profiles 
are summarised in Tables S1 and S2, respectively (see the 
Electronic Supplementary Material).

Application The observed concentration–time profiles of 
budesonide and midazolam were derived using GetData 
Graph Digitizer 2.26. We considered females and males as 
having different CYP3A4 abundance in all simulations (one 
of the options in the Simcyp® simulator), as this is more 
consistent with the gender difference reported for CYP3A4 
substrate clearance values [48]. All trial sizes were based on 
100 participants (ten participants in ten trials). Details of the 
trial design for clinical studies of budesonide IV [43], bude-
sonide controlled-release formulation [42] and midazolam 
oral solution [39] are in Table S3 (see the electronic supple-
mentary material). The simulated concentration–time pro-
files of budesonide and midazolam were visually inspected 
by comparing the mean and 95% prediction interval against 
the observed clinical data. The similarity of the predicted 
relative mean values of maximum drug concentration (Cmax), 

Fig. 2   Illustration of physiological parameters that were the subject 
of the systematic literature review and subsequent meta-analysis in 
relation to CD. The arrows represent the general trend seen in active 
(black arrow), inactive (grey arrow) and mixed (undistinguished 
active and inactive) [stripe arrow] CD patients. The question marks 
represent the parameters that are not incorporated in the model due to 
unavailability of data in the targeted population, inconsistencies in the 

methods or unclear utility in Simcyp® simulator. (Figure is adapted 
using a public domain image by Mikael Häggström, CC0, via Wiki-
media Commons: https://​commo​ns.​wikim​edia.​org/​wiki/​File:​Adult_​
male_​with_​organs.​png). AGP acid glycoprotein, CD Crohn’s disease, 
DMET drug metabolising enzymes and transporters, GI gastrointes-
tinal

https://commons.wikimedia.org/wiki/File:Adult_male_with_organs.png
https://commons.wikimedia.org/wiki/File:Adult_male_with_organs.png
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Fig. 3   PRISMA flowchart of studies systemically reviewed to be included in the meta-analysis of the physiological parameters related to CD. 
CD Crohn’s disease, CI confidence interval, PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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AUC​0–∞ and time to reach Cmax (Tmax) to the observed oral 
budesonide and midazolam values were assessed.

2.5 � Global Sensitivity Analysis (GSA)

The impact of the identified systems parameters in Table 1 
on the PK properties of the oral drugs of interest is investi-
gated utilising the Global Sensitivity Analysis (GSA) func-
tion within Simcyp®. GSA is important as the physiological 
alterations encountered by CD patients vary in their effects 
on different oral drugs based on several disease and drug 
factors. The determination of the impact spectrum and iden-
tification of the key parameters were performed based on 
physicochemical and PK attributes of budesonide and mida-
zolam and the integrated systems data in the CD population 
framework. The frequency distributions of the investigated 
systems parameter values, within the selected range for each 
parameter, were considered to be uniform. The applied range 
of the lower bound and upper bound was based on the col-
lected literature systems parameters in healthy volunteers 
and the active CD population. The Morris method for deter-
mining GSA was selected, where it defines the parameters’ 
impact based on their influence on the output variable. It also 
accounts partly for the interaction between the investigated 
parameters [49].

The influence of the different systems parameters on 
altered bioavailability is reflected in the simulated PK prop-
erties Cmax, AUC and Tmax of budesonide and midazolam 
oral formulations based on their trial specifications. The 
influential parameters determined by the GSA were com-
pared with the extracted available literature data, to identify 
the gaps in the key parameters and to guide the decision for 
future research needed to be carried out to fill these gaps, to 
allow for the reliable prediction of active and inactive CD 
PBPK population models.

3 � Results

3.1 � Altered Kinetics of Orally Administered Drugs 
in the CD Population

The systematic data analysis on the exposure of orally 
administered drugs in the CD population relative to healthy 
volunteers, based on the criteria set in Sect. 2, is summarised 
in Fig. 4. Knowing there are several modified physiological 
parameters in the GI tract of CD patients, the number of 
cases that passed the rigor of the inclusion criteria was not 
sufficiently high to indicate a consistent trend. For instance, 
the exposure of CYP3A substrates did not show the same 
magnitude of change [39, 42, 43, 50–56] in the same phase 
of the disease (active/inactive). Also, when S- and R-vera-
pamil [50] and midazolam and budesonide [39] were given 

to the same CD patients, the exposure behaviour was not 
similar. The results from different studies on the same drug 
were also inconsistent, as seen with budesonide and mesa-
lamine [39, 42, 43, 57, 58]. It should be noted that the type 
of formulation and other attributes of the drugs could play 
a role in these observations. Although S-verapamil showed 
the highest level of increased relative exposure (8.7-fold, 
with 9.6-fold higher Cmax), since there was no comparative 
IV data in the CD population, these could not be assigned 
solely to changes in bioavailability. The relative fold changes 
in exposure for midazolam and budesonide were 5.3 and 
1.9 higher, respectively. There were comparative IV data 
for CL in CD and healthy populations to discern the source 
of variation [39, 43].

A number of studies showed comparable exposure in 
CD patients and healthy volunteers [43, 51, 53, 54]. p-gp 
substrates (propranolol, fexofenadine and budesonide) did 
not show the same direction of change [39, 42, 59, 60]. Of 
the three drugs, fexofenadine is a p-gp probe, while pro-
pranolol and budesonide are metabolised by CYP enzymes. 
The activity of the CD patients in the propranolol study 
was determined based on the erythrocyte sedimentation 
rate (ESR). The details of the relative exposure of orally 

Fig. 4   The exposure to given oral doses of drugs given to Crohn’s 
disease (CD) patients relative to healthy volunteers. The lower panel 
represents controlled-release formulations, and the upper panel shows 
the values in the case of immediate-release/solution formulations. 
The markers represent the mean of relative exposure and the bars rep-
resent the 95% confidence intervals. The black, grey and patterned 
fill of markers indicates active, inactive and a mixture of CD patients, 
respectively. All studies were done under fasted conditions unless 
indicated as ‘fed’
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administered drugs in CD patients are in Table S4 (see the 
Electronic Supplementary Material).

Some of the included drugs were studied under specific 
conditions that might have contributed to the outcome. One 
of the two prednisolone studies included had inactive CD 
patients as the control group, and the diseased group was a 
mix of active UC and CD patients, where the activity was 
determined by clinical, biochemical, endoscopic and biopsy 
criteria [53]. Yet, the exposure result was similar to the other 
study, where the control group was healthy volunteers and 
only CD patients were in the test group [52]. For mesala-
mine, one of the two included studies had CD patients in 
the remission state or with low activity only [57]. In the 
other mesalamine study, six out of the nine CD patients had 
undergone resection of the terminal ileum, where they have 
reported lower AUC values [58]. A similar observation was 
reported with cyclosporine [54] and metronidazole [51] in 
patients with a history of bowel resection, indicating a lower 
absorption profile compared with other CD patients with an 
intact intestine.

The reports on CL values for various drugs following IV 
administration to CD patients showed no substantial differ-
ence compared to healthy volunteers except in the case of 
midazolam, which was 3.7-fold lower (Fig. 5). Since all the 
other drugs included in the comparison were also CYP3A4 
substrates, midazolam being distinct from the other drugs 
cannot be related to the route of metabolism alone. The 
details of the relative CL for drugs administered via the IV 
route in CD patients are in Table S5 (see the Electronic Sup-
plementary Material).

3.2 � Demography of the CD Population

Although the simulation of a large group of CD patients 
requires implementation of the general demography for the 
CD population, the objective in our study was not to simu-
late such a large CD cohort, but was to focus on replicating 
the observed clinical studies on the kinetics of midazolam 
and budesonide. Hence, we only applied the demography of 
the patients reported in each study, rather than the overall 
demography of CD patients in the general population.

3.3 � Major Systems Parameters Defining PBPK in CD 
Patients

Intestinal pH The pH values of the small and large intestines 
of CD patients were reported in five studies (Fig. 6a) based 
on the criteria previously described in Sect. 2 [61–65]. The 
CD activity in one study was based on the level of serum 
proteins [65], but it did not show difference in the alteration 
of the pH compared to the other studies where the CDAI 
was used to indicate the activity of CD. All the studies were 
relatively small (≤ 15 CD patients). From our meta-analysis 

(Fig. 6b), only the pH of the large intestine in inactive CD 
patients showed a statistically significant increase relative to 
healthy volunteers. The reports were not consistent, but the 
reported pH of the proximal small intestine showed a general 
trend towards higher values, particularly in the active stage. 
The trends for the distal small intestine and large intestine 
were slightly more divergent, showing pH values to be 
higher, similar or lower than those for healthy volunteers 
(Fig. 6a). Only two studies reported the pH values for the 
active and inactive groups separately. No pH data in CD 
patients were reported in the fed state, although pH values 
are reported in a mix of IBD (UC and CD) patients in the fed 
state. Details of the reported values in the literature are given 
in Table S6 (see the Electronic Supplementary Material).

Gastric emptying time Ten studies reported gastric emptying 
time in CD patients alongside the control groups, under fed 
[42, 66–70] and fasted conditions [71–74]. Under fed condi-
tions, a general trend of a higher gastric emptying time in 
CD patients was observed, while a similar value was seen 
under fasted conditions (Fig. 7a). Two studies had non-IBD 
patients as the control group [73, 74] and one had a mix of 
healthy and non-IBD patients [72], where gastric empty-
ing time was measured under fasted conditions. Our analy-
sis showed statistical significance of the gastric emptying 
time in both active and inactive CD patients compared to 
healthy volunteers only under fed conditions (Fig. 7b). Five 
of the included studies reported mixed active and inactive 

Fig. 5   The clearance of drugs in Crohn’s disease (CD) patients rela-
tive to corresponding values in healthy volunteers following intrave-
nous (IV) dose. The markers represent the mean of relative clearance 
and the bars represent the 95% confidence intervals. The black and 
patterned fill of markers indicates active or a mixture of active/inac-
tive CD patients, respectively. All drugs are substrates of CYP3A to 
varying degrees
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CD patients without distinguishing between the two states 
of the disease [42, 67, 70–72]. The sizes of the studies were 
between six and 96 CD patients. Details of reports on gastric 
emptying time in CD patients are provided in Table S7 (see 
the Electronic Supplementary Material).

Intestinal motility and transit time Three studies reported 
the small intestine transit time in CD patients alongside the 
control healthy groups [42, 62, 71], and three studies had 
non-IBD patients as the control group [73–75]. The obser-
vations from these studies are summarised in Fig. 8a. One 

Fig. 6   The pH of the proximal 
and distal small intestine (SI) 
and the large intestine in active 
and inactive Crohn’s disease 
(CD) populations compared to 
healthy volunteers in the fasted 
state. Part a shows the reported 
pH values. Part b shows the 
weighted mean pH from all the 
studies and the associated 95% 
confidence intervals. The white, 
black, grey and patterned fill 
of markers indicates healthy, 
active, inactive and a mixture of 
CD, respectively

Fig. 7   The gastric emptying 
time (GET) in Crohn’s disease 
(CD) patients compared to 
healthy volunteers in fasted and 
fed states. Part a shows the val-
ues of GET in each study. Part 
b shows the weighted value of 
GET from all studies associated 
95% confidence intervals. The 
white, black, grey and patterned 
fill of markers indicates healthy, 
active, inactive and mixture of 
CD, respectively
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study reported the transit time in the fed state and in the 
colon [42], which does not allow for comparative analysis 
of the changes between the diseased and healthy states. The 
highest reduction in small intestine transit time was seen in 
a study in which patients with inactive CD who had under-
gone ileocecal resection [62] were compared with controls. 
A statically significant prolonged small intestine transit 
time in active CD and shortened time in inactive CD com-
pared to healthy volunteers are indicated from our analysis 
(Fig. 8b). The sizes of the studies were between nine and 96 
CD patients. Details of all studies on intestinal transit time 
in CD patients are included in Table S8 (see the Electronic 
Supplementary Material).

Vascularity and haemodynamics of blood flow The intes-
tine morphology and vascularity differ in the active stage 
of the disease and in the stage where the inflammation is 
controlled. The key identified differences were linked to gut 
blood flow and, hence, oral drug PK; our focus here is on the 
change of the superior mesenteric artery (SMA) blood flow 
rate, as it represents an important aspect for oral drugs with 
high extraction. Ten studies reported the SMA blood flow 
in CD patients alongside that of healthy volunteers (Fig. 9a) 
[76–85] based on our inclusion criteria. The meta-analysis 
showed a statistically significant increase in the SMA flow 
in both active and inactive CD patients relative to healthy 
volunteers (Fig. 9b), with a higher increase recorded in the 
active CD phase. One study used X-ray alongside clinical 
signs to indicate the disease activity [77]; the alteration in 

the SMA of both active and inactive CD patients was very 
similar to the observed alteration in other studies where the 
CDAI was used. The sizes of the studies were between nine 
and 74 CD patients. Details of all studies on intestinal transit 
time in CD patients are included in Table S9 (see the Elec-
tronic Supplementary Material).

There are few studies measuring the blood flow of the 
portal vein. An increase is seen in the portal vein blood flow 
[83, 86], which is ~ 50% higher in active and inactive CD 
patients than in healthy volunteers [87].

Another aspect is the intestine regional blood flow, which 
was shown to differ between intestinal regions based on the 
activity of the disease, where the colonic blood flow was sig-
nificantly increased in the active stage, while the ileum blood 
flow was significantly decreased in the inactive stage com-
pared with healthy levels [88]. Other changes encountered 
by the intestine due to inflammation in CD that might affect 
the PK of oral drugs are reported. These include dilation of 
the blood vessels [78, 89], change of the intestine vascular-
ity [90–92], change of intestine blood perfusion [90–94], 
increase in the thickness of the intestine wall (active CD 
> 4 mm) [78, 80, 81, 83, 89, 93], submucosal fibrosis and 
muscularisation [91] and wrapping of the intestinal wall in 
fat wrap [95], but they are beyond the focus of this analysis.

Expression of DMETs in the intestine The effect of CD 
inflammation on the expression of DMETs has not been 
extensively studied. In total, we found 13 publications 
that measured DMETs from CD patients in inflamed and 

Fig. 8   The small intestine tran-
sit time (SITT) and the colonic 
transit time (TT) in Crohn’s dis-
ease (CD) patients compared to 
healthy volunteers. Part a shows 
the values of TT in each indi-
vidual study. Part b shows the 
weighted values for SITT from 
all studies and the associated 
95% confidence intervals. The 
white, black, grey and patterned 
fill of markers indicates healthy, 
active, inactive and mixture of 
CD, respectively
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non-inflamed intestinal tissues. Seven reported drug metab-
olising enzymes (DMEs) (mainly CYPs) [96–102], seven 
reported ABC transporters [96–101, 103, 104] and six 
reported solute carrier (SLC) and/or solute carrier organic 
anion (SLOC) expression [98, 101, 105–108]. In addition, a 
case report study on a duodenum biopsy reported an increase 
in p-gp expression of greater than twofold in a CD patient, 
as compared with healthy specimens [109].

Four studies were excluded from our analysis. Two had 
combined UC and CD patients, considered gene expression 
values from rectum inflamed tissue [96] and non-inflamed 
tissue from upper and lower segments of the intestine, and 
had no control group to extract fold change values for use in 
our analysis [101]. One study reported the expression value 
of DMEs from the ileum and colon combined, which did not 
allow for differential analysis of the expression based on the 
segment [102]. The last study had the values reported in a 
previous study compared to healthy instead to non-inflamed 
tissue [104].

The available abundance data are of two kinds: relative 
abundances of proteins measured at the protein level by 
immunoblotting techniques, and reports of mRNA levels 
being used as proxies for the protein abundances. The gold 
standard for measuring absolute abundances of proteins in 
complex mixtures is now generally considered to be tan-
dem mass spectrometry (LC/MS-MS) of protein digests, 
and in no case has such an analysis been reported. Six of 
the included publications had healthy volunteers as the con-
trol group [97, 98, 100, 103, 106, 107], while the rest had 

non-IBD patients as the control group [99, 105, 108]. DMET 
abundances in the ileum, which is known to have a more 
dominant role in oral drugs than the colon, were reported in 
six studies. There are no reports of expression of DMETs in 
the upper intestine segments (duodenum, jejunum) in CD, 
but these are rarely affected by inflammation and are, there-
fore, less relevant.

The lack of a clear distinction between active and inactive 
CD in the available studies makes it hard to determine the 
extent of inflammation-caused changes in DMET expression 
in the different phases. Only one study compared expres-
sion levels in active and inactive CD patients [98]. In both 
disease phases, the investigated DMETs were altered com-
pared with control, but, unsurprisingly, alterations were 
more pronounced in active CD patients. The expression of 
absorption, distribution, metabolism and excretion (ADME) 
proteins was reported in samples that were not differentiated 
for being in an active or inactive state of the disease [100, 
105], with an indication that the active state does not affect 
the expression of CYP3A4 and p-gp [100]. The degree of 
change of expression from normal was shown to be propor-
tional to the tissue inflammation [103, 105, 106].

The reported expression data show high variability in 
the changes (CD/control) of the ileum (Fig. 10a) and colon 
(Fig.  10b) DMETs of CD patients. From our analysis, 
OATP2B1 showed the highest increase in its expression 
in the ileum and colon, seven- and eightfold, respectively. 
Another protein, ASBT, showed the highest reduction in 
its expression in CD (~3.5- and 35-fold in the ileum and 

Fig. 9   The superior mesenteric 
artery (SMA) blood flow (mL/
min) in Crohn’s disease (CD) 
patients compared to healthy 
volunteers. Part a shows 
the SMA blood flow from 
each study. Part b shows the 
weighted value of SMA blood 
flow from all the studies and 
the associated 95% confidence 
intervals. The white, black, grey 
and patterned fill of mark-
ers indicates healthy, active, 
inactive and mixture of CD, 
respectively
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colon, respectively). In general, limited numbers of DMET 
isoforms were studied and very few were reported in more 
than one publication. UGTs are strikingly absent from these 
reports, with only UGT1A3 reported. In addition, there is no 
in vitro activity data on the human CD population. Details of 
the studied DMET abundances are summarised in Table S10 
and S11 (see the electronic supplementary material).

Expression of drug metabolising enzymes and transporters 
in the liver There is no available direct information on the 
abundance or activity of DMETs in the livers of CD patients. 
One study reported a reduction of the hepatic extraction 
ratio (EH) in eight active CD patients using midazolam as 
a CYP3A4 probe [39]. From this study, we calculated the 
fraction of drug entering the liver and escaping first pass 
hepatic metabolism and biliary secretion (FH) in CD patients 
as 0.89 and in healthy volunteers as 0.57 [40]. This shows 
that the liver clearance (CYP3A4 activity) is decreased in 
CD and midazolam absorption has increased by ~ 56% com-
pared with samples from healthy volunteers. We used an FH 
relative change (CD patients/healthy volunteers) of 1.5 as 
a reflection of the fold reduction in CYP3A4 abundance. 
Although, the FH value is not linearly related to the change 
in abundance or activity of CYP3A4, and a back-calculation 
of intrinsic clearance through Eq. 4 would be needed.

We assessed the suppression of CYP3A4 by back-cal-
culation from the observed midazolam clearance after IV 
administration and accounted for the changes to blood flow 
and protein binding. An alternative approach would be to 
estimate the level of suppression based on the inflamma-
tory proteins circulating in blood, particularly interleukin-6 
(IL-6) [110–115]. The suppressive level of hepatic IL-6 is 
not known in CD patients. However, considering relative 
higher levels of IL-6 in the blood stream of CD patients 
[116, 117], some inferences on the lower level of CYP3A4 
could be made. A recent simulation study has used such an 
approach [118]. Broadening the cases related to 3A4 activ-
ity in gut and liver as well as proteomics analysis of tissue 
samples from CD patients will give more confidence on the 
quantitative level of the changes that occur in these patients.

Blood proteins (albumin and α1-AGP) Human serum albu-
min (HSA) and α1-acid glycoprotein (α1-AGP) levels show 
dysregulation during CD. Dysregulation of drug–blood pro-
tein binding levels would be expected to affect the bioavail-
ability of drugs, depending on the extent of drug–protein 
binding.

A literature search for HSA in CD patients and healthy 
adults identified a total of 27 studies (Fig. 11a). In 26 stud-
ies, participants with active and inactive CD had a lower 

Fig. 10   The drug metabolising enzymes and transporters (DMETs) 
expression in Crohn’s disease (CD) patients relative to healthy vol-
unteers. Part a shows the expression in ileum based on individual 

studies, and part b shows corresponding values in the colon. The bars 
represent the 95% confidence intervals (no bar means there was only 
a single measure)
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albumin level compared with controls [52, 55, 57, 119–142], 
where one study used serum sialic acid as the activity indi-
cator [134], which did not show a difference in the albumin 
changes compared to other studies that used the CDAI and 
HBI, and one study showed a slightly higher albumin level in 
inactive CD patients, where all participants had undergone 
an ileocecal resection [62]. Our analysis showed a statisti-
cally significant decrease in HSA in both CD phases, with 
active CD exhibiting a higher drop relative to healthy vol-
unteers (Fig. 11b). The sizes of the studies were between 
nine and 247 CD patients. Details of HSA level studies in 
CD patients are summarised in Table S12 (see the Electronic 
Supplementary Material).

Among active CD patients, females showed a greater 
depletion in HSA than males, with both being significantly 
lower than healthy values [143]. The HSA level was signifi-
cantly lower when the same set of CD patients was exam-
ined in active state compared with after remission [144]. The 
results of this study are in agreement with other publications 
where active CD patients showed a significant drop in albu-
min compared with inactive CD patients [57, 62, 145].

Importantly, the albumin level is not always low in CD 
patients, as illustrated by two large-scale publications of 
117 [146] and 6082 [147] CD patients. The percentage of 
the patients who encountered a severe drop in their albumin 
(< 30 g/L) during active inflammation did not exceed 22%.

A total of eight studies were identified reporting α1-AGP 
levels in CD patients based on our research criteria [119, 

120, 135, 142, 148–151]. The number of CD patients was 
between two and 51. The reported values of α1-AGP in 
active and inactive CD patients compared to healthy vol-
unteers (Table  S13; see the Electronic Supplementary 
Material) showed that only active CD patients had a sig-
nificantly higher level compared to healthy volunteers, 
with the weighted mean determined to be 1.59 g/L (95% 
CI 0.75–2.97) compared with 0.85 g/L (95% CI 0.37–1.7) 
in healthy volunteers [135, 142, 148–150]. The α1-AGP 
of the inactive CD patients was in close proximity to that 
of healthy volunteers, with weighted means (95% CIs) of 
1.15 g/L (0.7–1.8) and 0.86 g/L (0.34–1.8), respectively.

3.4 � Verification Status PBPK Model with Current 
Systems Data

We created two separate files for the CD patients within 
the Simcyp® simulator for the active and non-active stage, 
respectively, based on all available data gathered in the 
report. The created CD populations were alternately applied 
to budesonide and midazolam (IV and oral administration). 
The simulations of budesonide and midazolam in Fig. 12 
show the overlay of plasma concentration–time profiles of 
Simcyp® healthy volunteers and active and inactive CD 
population models on the observed clinical data in CD.

As seen from the overlay of the created populations and 
the PK parameters predicted/observed ratio (Table 2), the 
inactive population did not capture the observed clinical 

Fig. 11   The human serum albumin (HSA) level (g/L) in Crohn’s dis-
ease (CD) patients compared to healthy volunteers. Part a shows the 
HSA level reported in individual studies. Part b shows the weighted 
HSA level relative to healthy volunteers from all the studies and the 

associated 95% confidence intervals. The white, black, grey and pat-
terned fill of markers indicates healthy, active, inactive and mixture of 
CD, respectively
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outcome. Both the budesonide and midazolam simulations 
were greater than twofold relative to the observed.

The simulated PK of oral budesonide was compared with 
the clinical observations using two different models, one 
assuming normal levels of albumin and another assuming 
lower albumin than healthy individuals. Although both pre-
dictions were within twofold of the observed data, the pre-
dictions assuming normal levels of albumin were closer to 
the observed values. PK parameters were all within twofold 
of the observed data as well (Tables 3 and 4). The reason 
the active CD model (with normal albumin levels) was con-
sidered superior to the alternative model with low albumin 
levels was the fact that the latter was crossing the observed 
plasma concentration on the borders of the 95% predic-
tion interval. The 95% prediction interval of the simulated 

midazolam shows that none of the active CD models were 
able to capture its in vivo plasma concentration (Tables 3 
and 4). Thus, these models cannot be relied on as reproduc-
ible PBPK models for the CD population. A global sensitiv-
ity analysis was, therefore, carried out to identify the litera-
ture gaps that primarily determine the observed alteration of 
the bioavailability in CD patients.

3.5 � GSA

All the identified systems parameters that are altered during 
the course of CD were included in the GSA, but only the 
parameters that showed the highest influence on AUC, Cmax 
and Tmax are shown in Fig. 13a–c. The other parameters with 
low impact are excluded from the presented output data.

Fig. 12   Simulation of concentration–time profile of midazolam 
(MDZ) following oral (PO) administration of 0.1 mg solution in 
the fasted state [39] and budesonide (BDS) after administration of 
an 18-mg controlled-release PO dose in the fed state and a 0.5-mg 
intravenous (IV) dose [42], 43. Observed data (green circles) are 

compared with the 95% prediction interval (grey region) and the cen-
tral tendency of profile (yellow line) generated from physiologically 
based pharmacokinetic models of active and inactive Crohn’s disease 
patients and healthy volunteers
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Cardiac output is found to have the highest influence on 
AUC, Cmax and Tmax of the budesonide PK parameters inves-
tigated. HSA comes second for AUC and Cmax and third 
for Tmax. Gastric emptying time is one of the highest con-
tributors in Cmax and Tmax observations. When it comes to 
CYP influence, liver CYP3A4 is the most impactful on all 
three investigated parameters, while small intestine CYP3A4 
abundance has its highest impact on Tmax.

Liver CYP3A4 abundance was found to be the major 
influencer of midazolam AUC, while small intestine 
CYP3A4 abundance is the major influencer of Cmax. Gas-
tric emptying time has an important influence on Tmax. HSA 

comes second for AUC and Cmax and third for Tmax, and liver 
CYP3A4 abundance comes second for Tmax and third for 
Cmax. Cardiac output, upper intestine pH and small intestine 
transit time have varying influences on the three investigated 
PK parameters.

4 � Discussion

The systematic data analysis for the kinetics of drugs in CD 
patients demonstrated clearly that the internal exposure to 
given doses of drugs can be significantly different from that 

Table 2   Comparison of the predicted and observed PK parameters of oral midazolam and budesonide in inactive CD populations

AUC​ area under the curve, CD Crohn’s disease, CI confidence interval, Cmax maximum drug concentration, PK pharmacokinetics, Tmax time to 
reach Cmax, F oral bioavailability 

Parameter Midazolam oral solution, fasted Parameter Budesonide controlled release, fed

Predicted Observed
Mean ± SD

Predicted/
Observed

Predicted Observed
Mean (95% CI)

Predicted/
Observed

AUC​0–∞ (nM*h) 2.1 14 ± 6.38 0.15 AUC​0–∞ (nM*h) 46.7 114 (81.4–159.5) 0.41
Cmax (nM) 1.3 8.4 ± 5.13 0.16 Cmax (nM) 6.22 14.3 (6–13.7) 0.43
Tmax (h) 0.39 0.53 ± 1.3 0.5 Tmax (h) 4.8 6 (3–8) 0.8
F % 22 31 ± 22 0.8 F % 10 20.5 (8.8–15) 0.5

Table 3   Comparison of the predicted and observed PK parameters of oral midazolam and budesonide based on in active CD population with 
reduced HSA

AUC​ area under the curve, CD Crohn’s disease, CI confidence interval, Cmax maximum drug concentration, HSA human serum albumin, PK 
pharmacokinetics, Tmax time to reach Cmax, F oral bioavailability 

Parameter Midazolam oral solution, fasted Parameter Budesonide controlled-release, fed

Predicted Observed
Mean ± SD

Predicted/
observed

Predicted Observed
Mean (95% CI)

Predicted/
observed

AUC​0–∞ (nM*h) 2.4 14 ± 6.38 0.2 AUC​0–∞ (nmol*h/L) 61.6 114 (81.4–159.5) 0.54
Cmax (nM) 1.45 8.4 ± 5.13 0.2 Cmax (nM) 7.8 14.3 (6–13.7) 0.55
Tmax (h) 0.37 0.53 ± 1.3 0.7 Tmax (h) 4.84 6 (3–8) 0.81
F % 27 31 ± 22 0.9 F % 14 20.5 (8.8–15) 0.7

Table 4   Comparison of the predicted and observed PK parameters of oral midazolam and budesonide in active CD populations with normal 
HSA

AUC​ area under the curve, CD Crohn’s disease, CI confidence interval, Cmax maximum drug concentration, HSA human serum albumin, PK 
pharmacokinetics, Tmax time to reach Cmax, F oral bioavailability

Parameter Midazolam oral solution, fasted Parameter Budesonide controlled release, fed

Predicted Observed
Mean ± SD

Predicted/
Observed

Predicted Observed
Mean (95% CI)

Predicted/
Observed

AUC​0–∞ (nM*h) 5 14 ± 6.38 0.36 AUC​0–∞ (nM*h) 104.6 114 (81.4–159.5) 0.92
Cmax (nM) 2.31 8.4 ± 5.13 0.3 Cmax (nM) 14.1 14.3 (6–13.7) 0.99
Tmax (h) 0.45 0.53 ± 1.3 0.85 Tmax (h) 4.75 6 (3–8) 0.8
F % 34 31 ± 22 1.1 F % 21 20.5 (8.8–15) 1.02
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of healthy volunteers. However, there is no consistent and 
uniform effect for different drugs or formulations to enable 
a “one size fits all” recommendation for alteration of a dos-
age regimen or, indeed, of keeping it the same as for other 
patients. Unlike in the case of hepatic and renal impairment, 
where there are regulatory requirements to assess the poten-
tial changes in the kinetics, there are no such requirements. 
Moreover, whilst the changes, if there are any, in the cases of 
renal and hepatic impairment are in one direction (reduced 
clearance), the changes in the case of CD patients seem to 
happen in both directions; exposure may be increased or 
decreased compared with healthy volunteers.

The classification of CD can be addressed differently  
when considering the clinical representation of the patient 
or the objective disease biomarkers. The most commonly 
used classification of CD in the literature is the symptoms-
based system, classifying CD into active and inactive. This 
is simple, but not very accurate, due to patient variations and 
the apparent lack of use of more reliable objective markers 
to define disease activity. For example, magnetic resonance 
enterography (MRE) can reliably evaluate small bowel CD 
activity [152], which was not reported in any of the stud-
ies assessing the CD activity of this segment. A new clas-
sification of CD was introduced based on the localisation 
(ileal and colonic) of the disease and its relevant clinical 
presentation and biomarkers profile [153]. If this classifica-
tion were to be considered, several PBPK population models 
of CD would be distinct according to the different clinical 
phenotypes.

Fistula and stricture are common complications of CD 
that can present alongside the initial diagnosis of CD or 

occur later [154]. Epithelial to mesenchymal transition 
(EMT) and inflammatory biomarkers are associated with 
their formation. Such complications do not heal with the 
control of inflammation, and no preventive treatment is in 
place. Developing an appropriate PBPK model for such 
CD patients should be done independently from the current 
models, as their presence alters CD from an inflammatory 
disease phenotype to a strictured or fistulated phenotype. 
Currently, this is hard to apply, as various drawbacks prevent 
accurate assessment of CD activity. The literature does not 
usually distinguish between CD types based on the location 
of the disease; rather, it distinguishes the disease, based on 
the clinical profile of the patient, as active and inactive CD.

When examining the systemic exposure of CYP3A oral 
substrates, which represent the majority of drugs with avail-
able clinical data, a trend of higher exposure is more com-
mon, but cannot be generalised, as the available data on 
active and inactive CD are clouded by uncertainties, which 
hinders obtaining a definite conclusion. The same applies for 
the clearance of IV drugs. For the non-CYP3A substrates, no 
clear trend could be concluded. A higher variability is seen, 
but is inferred from a small number of studies. The changes 
are multi-factorial, and the interplay of the drug/formulation 
with the changes in CD can help in postulating the likely 
effects. This necessitates further clinical data to establish the 
disease impact and the magnitude of its activity.

Hence, application of PBPK might be the best chance 
for rationalising the dosage changes (when needed) in 
CD patients, as suggested in the case of bariatric surgery 
patients, who also do not get dedicated studies for various 
drugs coming to the market [10].

Fig. 13   Relative sensitivity of budesonide (BDS) and midazolam 
(MDZ) kinetics to the systems parameters from global sensitivity 
analysis based on physiologically based pharmacokinetics in Crohn’s 

disease: a area under the curve (AUC), b maximum drug concentra-
tion (Cmax) and c time to reach Cmax (Tmax). GET gastric emptying 
time, SITT small intestine transit time
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To develop the CD PBPK population, the current systems 
data defining active and inactive CD patients are captured in 
this article, whether obtained from independent studies or 
from a reverse translation approach. The data are not abun-
dant, and some parameters lack definition. More dramatic 
alteration is seen with active disease patients relative to 
patients in remission. The predominant alterations are seen 
with the increase of SMA flow, small intestine transit time 
and reduction of albumin, where the dysregulation severity 
in HSA level, SMA and the intestine flow were reported 
to correlate with the active disease severity [88, 94, 136, 
155–157]. The increase of gastric emptying time and small 
intestine transit time will affect the absorption rate and solu-
bility of oral drugs.

Although an increase of gut wall thickness can affect gut 
fluid dynamics, a meta-analysis was not carried out for this 
parameter even though it showed an approximately twofold 
increase in active CD patients compared to healthy volun-
teers in the few studies encountered [78, 80, 81, 93, 158]. 
This is because the utility of the intestine loop morphol-
ogy is not clear in the Simcyp® M-ADAM model; instead, 
the villous morphology is established in Simcyp®. For CD 
patients, reduction of the duodenum and ileum villous length 
was reported in paediatric patients [159]. From the carried 
GSA in this study, the villous morphological changes had 
little impact on midazolam and budesonide AUC and Cmax, 
and only a very limited impact was seen on midazolam Tmax; 
thus, this was not incorporated in our model.

Enterocyte turnover rate is another aspect not included 
in our model. Turnover of the epithelial cells in CD patients 
was reported to be faster than in healthy volunteers, but the 
measurement varies from one study to another. Moreover, 
some of these reports are on preclinical models of CD, rather 
than real patients [160]. There are also reports on faster pro-
duction of cytokines, cadherin or other proteins [161–164] 
and the excretion of bile acids [165] as an indicator of the 
different cell turnover. Therefore, currently, it is difficult to 
reach a consensus regarding a specific value for enterocyte 
turnover in CD patients, despite general agreement that it 
would be faster than in healthy individuals.

The intestine microbiota is an important aspect to include 
when creating a CD virtual population. Unfortunately, the 
topic suffers from the same problem, as it is not clearly 
defined for the different clinical phenotypes of the disease, 
and the diversity of the addressed bacteria and their role 
hinders its accurate representation in the current, developed 
models. CD patients suffer from change in the intestine 
microbiota, which might alter the intestine environment and 
homeostasis [166–168], affecting oral drug bioavailability, 
although, the evidence for such effects is lacking and most 
oral drug absorption takes place before the drug comes into 
contact with the microbiota. In future work, focus on this 
topic should be prioritised, especially if the studied drugs are 

activated/metabolised by the bacterial enzymes of the intes-
tine [169, 170]. Dysregulation of DMETs in the liver has not 
been addressed except for the reduction of CYP3A4 activity 
in active CD patients [39]. This reduction might be a major 
contributor in the significant difference of the systemic expo-
sure seen with CYP3A substrates midazolam, verapamil and 
budesonide in the CD population. In patients with primary 
sclerosing cholangitis (PSC), a comorbidity associated with 
CD [171], investigators reported an insignificant reduction 
of liver CYP3A4 expression and a notable increase of OSTβ 
in participants with diseases other than   CD  [172, 173]. 
This supports the possible deterioration of liver metabolism 
in CD and promotes investigation into the abundance and 
activity of liver DMETs in the CD population, with and 
without relation to comorbidities. Liver DMETs alteration 
will cause a considerable change in drug clearance, as the 
liver is the major xenobiotic-metabolising organ [174].

CYP3A4 expression has shown different results in the 
ileum and colon [97, 99, 100], but overall, a reduction of its 
expression is seen. Similar observations are seen with p-gp 
expression [97–100, 103]. The intestine CYP3A4 reduction 
influence might seem less pronounced, but the simulation 
of midazolam and budesonide based on the liver CYP3A4 
alteration did not capture the clinical data and the intestine 
involvement is greater than anticipated based on our GSA 
results. Other non-CYP DMEs abundance/activity should be 
addressed in the liver and the intestine, as they metabolise 
about 30% of approved drugs [175]. Undesired drug–disease 
interactions can occur, which might result in several compli-
cations and delays in disease control.

Intestinal permeability is another major player in the 
observed changes. It is altered in response to the elevation 
of inflammatory biomarkers changing the drug transporter 
expression during the course of CD [176–178]. The availa-
ble data on the intestine transporters in CD are mainly based 
on gene expression levels. The gene expression analysis does 
not have a high correlation with direct protein expression 
measurements for all proteins [179–190]. Establishing a 
relationship that would reflect the correlation between pro-
tein mRNA expression and direct concentration is challeng-
ing, as it was found that in around 60% of proteins, mRNA 
levels do not highly correlate with abundance [191].

Propranolol, a CYP (2C9, 1A2, 2D6) and p-gp substrate, 
showed a significant difference between its exposure in 
CD patients and that in healthy volunteers [59, 192]. More 
severe inflammation indicated by higher ESR was associ-
ated with higher propranolol concentration. When ESR was 
low, the concentration of propranolol in rheumatoid arthritis 
patients was similar to that in the healthy group, but this was 
not the case in the CD group, as the concentration remained 
significantly higher [59]. This might be attributed to locali-
sation of the inflammation to the intestine in CD causing 
alteration of the DMET protein abundances. Therefore, 
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systemic exposure of oral drugs in CD cannot be explained 
by the liver factors alone or intestine factors alone.

In vitro data for DMETs are lacking in the CD popula-
tion; these data would allow identification of the intestinal 
intrinsic clearance and the microsomal fraction unbound to 
enable reproducible and more accurate prediction of oral 
drug PK, and differentiation between the involvement of the 
main metabolising organs.

In inflammatory conditions, albumin synthesis by the 
liver can be shifted [193, 194]. Albumin reduction will affect 
the drug fraction unbound in the plasma (fuP). This will 
affect drug disposition and lead to an increase in free drug 
plasma concentration. The volume of distribution (Vss) and 
clearance are sensitive to fuP values [195, 196]. Underpre-
diction of fuP can lead to underprediction of clearance and 
hinder the prediction accuracy for drugs with a high protein 
binding affinity [197, 198]. Correlation between albumin 
elevation and IL-6 reduction was reported as an indicator of 
medication effectiveness and progression to a remission state 
in CD patients [144] and also to the severity of the disease 
of IBD patients (CD and UC) [199]. The displacement of 
the high extraction ratio drugs like budesonide from plasma 
proteins will be of similar magnitude to the displacement of 
low extraction ratio drugs.

Patients who underwent resection surgery would suffer 
from consequences that might alter the physiological aspects 
that affect oral drugs absorption. Short bowel syndrome 
(SBS) is a disorder where patients suffer from malabsorption 
due to bowel resection [200]. SBS complications, alteration 
in the gut microbiota, reduction of gastric emptying time and 
small intestine transit time, higher intestine pH, reduction 
of the absorption area and altered transporters profile [62, 
201–207], can affect the absorption of a wide range of drugs 
[208]. Further to these complications, the bile acid compo-
sition is altered as a result of its malabsorption [209, 210], 
especially when the surgical procedure included removal of 
the upper intestine parts (jejunum and ileum), where the bile 
acids get absorbed [211, 212]. Surgeries targeting the ileum 
could lead to loss of ASBT transporter, a major contributor 
in the absorption of bile acid [213]. Loss of the bile acid 
would affect the absorption and solubilisation of lipophilic 
drugs such as cyclosporine [214], lovastatin [215] and ampi-
cillin [216], impairing their bioavailability. Along with the 
size of the resection, the location of the surgery influences 
the extent of the impact on absorption following resection. 
Colostomy’s influence is expected to be more restrained, 
affecting special formulation drugs directed to be released in 
the lower segments of the intestine. Ileostomy, on the other 
hand, could lead to more drastic absorption alteration, since 
it represents a larger surface area and higher abundance of 
DMETs, where most conventional oral formulations are 
absorbed [54, 217]. Therefore, caution should be taken 
when dealing with patients with prior bowel surgery, as their 

physiological profile can be significantly different from that 
of other CD patients. Thus, rectification of the created PBPK 
model is necessary to deliver a more accurate insight into the 
appropriate dose adjustment for these patients.

The case of oral budesonide requires further investigation 
as the different studies reporting its bioavailability in CD 
did not show significant variation from healthy volunteers 
[39, 43, 44] except for one [42]. The different studies fol-
lowed different dose regimens under fed and fasted condi-
tions, but this was reported to carry no significant effect on 
the drug PK. The male-to-female proportion and the inclu-
sion of active and inactive study participants varies among 
the studies and could contribute to the disparities noticed 
between studies. Budesonide is a high extraction ratio drug 
that is highly affected by the blood flow, which is subject to 
individual variability. The fed state results in increasing the 
splanchnic blood flow, which leads to increased absorption 
[218]. This indicates that when an oral high extraction drug 
is under investigation, many different factors contribute to 
its PK behaviour, and these factors are changeable, specifi-
cally in a disease situation, where the change is caused by a 
combination of organ dysfunction and alterations in physi-
ological factors all together at the same time.

The budesonide immediate-release and controlled-release 
formulations encountered varying changes in systemic 
exposure, which might be linked to the additive relation-
ship of CYP3A4 and p-gp, as it is a substrate of both. The 
function of CYP3A4 and p-gp as a barrier for drug absorp-
tion [219–221] has been supported by in silico modelling 
[222–225] and in vitro experiments [226, 227]. The dif-
ference between immediate-release and controlled-release 
formulations for combined CYP3A4 and p-gp substrates 
was examined, and no significant differences in the AUC 
between the two formulations were reported [17].

The active CD model only captured the budesonide [42] 
plasma concentration–time profile in CD patients, but not 
the midazolam profile [39]. A previously reported CD popu-
lation PBPK model was capable of capturing budesonide 
based on modifying several parameters in CD [45]. The 
patients included in the budesonide study were both active 
and inactive CD patients, while in the corresponding mida-
zolam study, there were only active CD patients. Therefore, 
the models applied to the selected drugs fully characterised 
in CD patients following IV and oral dose (budesonide and 
midazolam) are not sufficient to produce robust PBPK mod-
els that can predict the likely outcome of PK studies.

To provide a map for future studies, we conducted a 
global sensitivity analysis showing variations in the inten-
sities of the effects of the most influential physiological 
parameters on midazolam and budesonide PK. The observed 
variations are attributed to different factors related to the 
drug’s nature and formulation, in addition to the patient 
activity state, where the budesonide study included a 
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mixture of active and inactive patients and the midazolam 
study included only active state participants.

New oral molecules have been investigated and intro-
duced for the treatment of CD. Filgotinib and upadacitinib 
are Janus kinase (JAK) inhibitors that have successfully 
passed phase II of the clinical trials, with promising efficacy 
and safety profiles. Other JAK agents are still under develop-
ment [228]. Sphingosine 1-phosphate (S1P) modulators such 
as ozanimod, etrasimod and amiselimod are another class of 
oral drugs that has shown promising clinical results for CD 
[229]. Other oral anti-trafficking therapies and PDE4 inhibi-
tors did not pass clinical trials for CD, but showed efficacy 
for UC [230]. The use of a reliable PBPK model would aid 
in the drug development process and give insight into what 
to expect from the drug in such a special population.

Therefore, going forward, differentiation between active 
and inactive CD is essential. This is identified from the avail-
able literature data collected for the systems parameters as 
well as limited clinical observations and PBPK simulations. 
However, the definition of the activity state of the disease 
in all of the included studies was hard to unify. The activity 
state was mainly based on subjective clinical patient data, 
with or without objective biomarkers participating in this 
variability. Due to the multifactorial physiological altera-
tions of active and inactive CD, attempts to explain observed 
changes to oral bioavailability in the CD population using 
single attributes of drugs or simplified modelling is not 
successful.

5 � Conclusion

The most influential parameters determining the changes 
to bioavailability of the two investigated drugs in the CD 
population were the expression/activity of liver and intestine 
enzymes. Both of these parameters currently lack a reliable 
value in CD patients. This gap stands between the aspiration 
to apply PBPK for predicting the alterations of drug fate in 
CD populations to guide dosing, and the practical ability to 
do such predictions. Therefore, we urge all researchers in 
this field to boost efforts to generate such information, which 
should be provided separately for the active and inactive 
status of CD patients when possible.
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