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Abstract
Purpose The application of contrast and tracing agents is essential for lung imaging, as indicated by the wide use in recent 
decades and the discovery of various new contrast and tracing agents. Different aerosol production and pulmonary adminis-
tration methods have been developed to improve lung imaging quality. This review details and discusses the ideal character-
istics of aerosol administered via pulmonary delivery for lung imaging and the methods for the production and pulmonary 
administration of dry or liquid aerosol.
Methods We explored several databases, including PubMed, Scopus, and Google Scholar, while preparing this review to 
discover and obtain the abstracts, reports, review articles, and research papers related to aerosol delivery for lung imaging 
and the formulation and pulmonary delivery method of dry and liquid aerosol. The search terms used were “dry aerosol deliv-
ery”, “liquid aerosol delivery”, “MRI for lung imaging”, “CT scan for lung imaging”, “SPECT for lung imaging”, “PET for 
lung imaging”, “magnetic particle imaging”, “dry powder inhalation”, “nebuliser”, and “pressurised metered-dose inhaler”.
Results Through the literature review, we found that the critical considerations in aerosol delivery for lung imaging are 
appropriate lung deposition of inhaled aerosol and avoiding toxicity. The important tracing agent was also found to be 
Technetium-99m (99mTc), Gallium-68 (68Ga) and superparamagnetic iron oxide nanoparticle (SPION), while the essential 
contrast agents are gold, iodine, silver gadolinium, iron and manganese-based particles. The pulmonary delivery of such 
tracing and contrast agents can be performed using dry formulation (graphite ablation, spark ignition and spray dried powder) 
and liquid aerosol (nebulisation, pressurised metered-dose inhalation and air spray).
Conclusion A dual-imaging modality with the combination of different tracing or contrast agents is a future development 
of aerosolised micro and nanoparticles for lung imaging to improve diagnosis success.
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Abbreviations
Ag  Silver
AgNP  Silver-based nanoparticle
Au  Gold
AuNP  Gold-based nanoparticle
CA  Contrast agent
CHF  Chronic heart failure
COPD  Chronic obstructive pulmonary disease
COVID-19  Coronavirus disease 2019
CT  Computed tomography
DOTA  Dodecane tetraacetic acid
DTPA  Diethylenetriamine pentaacetic acid
EANM  European Association of Nuclear Medicine
FeNP  Iron-based nanoparticle
FPF  Fine particle fraction
68Ga  Gallium-68
Gd  Gadolinium
HU  Hounsfield units
I-CA  Iodonated-based contrast agent
MDP  Methylene diphosphonate
MnNP  Manganese nanoparticle
MPI  Magnetic particle imaging
MRI  Magnetic resonance imaging
MRP1  Multidrug resistance protein-1
NIV  Non-invasive ventilation
OB  Olfactory bulb

PE  Pulmonary embolism
PEG  Polyethylene glycol
PET  Positron emission tomography
pMDI  Pressurised metered-dose inhaler
PVA  Polyvinyl alcohol
SASD  Supercritical  CO2-assisted spray drying
SPECT  Single-photon emission computed 

tomography
SPIONs  Super paramagnetic iron oxide nanoparticles
T1  Longitudinal
T2  Transverse
99mTc  Technetium-99m
TEM  Transmission electron microscopy
WHO  World Health Organization

Introduction

Lung disease is one of the major causes of illness-related 
death, accounting for approximately six million deaths 
worldwide in 2019 (12% of total deaths) [1]. This number 
can remain unchanged in the future, as predicted by The 
Global Burden of Disease study, in which chronic obstruc-
tive pulmonary disease (COPD) and lower respiratory infec-
tion will be the third and fourth cause of death globally in 
2030, respectively [2]. Furthermore, lower respiratory 
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infection is predicted to rise in the future, particularly in 
tropical countries, due to the increased infectious activity 
of non-tuberculous mycobacteria, which tends to infect peo-
ple with either genetic or acquired structural typical lung 
diseases, such as COPD and cystic fibrosis [3]. This condi-
tion is worsened by the emergence of coronavirus disease 
2019 (COVID-19), which has become a global pandemic 
and has caused more than 6.24 million deaths around the 
world, as reported by the World Health Organization (WHO) 
[4]. Aside from the high mortality rate, lung disease is also 
predicted to be one of the global burdens of severe health-
related suffering until 2060 [5]

The economic burden is one of the global impacts of 
lung diseases, caused by either unnecessary drug overpre-
scription or treatment failure due to over-or underdiagnosis, 
respectively [6]. For example, studies on COPD misdiag-
nosis revealed that the underdiagnosis and overdiagnosis 
prevalence of this disease was 56.7–81.4% and 29.0–65.0%, 
respectively [7], leading to 55.4% dissipation of treatment 
cost [8]. The misdiagnosis of lung disease not only aggra-
vates the economic burden but also can increase mortality 
due to false medical treatment. For instance, lung cancer is 
frequently misdiagnosed as tuberculosis in a country with 
tuberculosis prevalence. This phenomenon highlights the 

importance of lung diagnosis to reduce the lung disease 
burden and its mortality rate [9].

Lung imaging, comprising of computed tomography 
(CT), magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), and single-photon emission com-
puted tomography (SPECT), is a standard method in lung 
disease diagnosis, as presented in Table 1. Nevertheless, 
each modality for lung imaging has weaknesses, such as 
the limited spatial resolution in molecular imaging-based 
modality [10–12]. To increase the performance of such a 
diagnosis method, micro and nano-inhalable particles have 
been investigated and applied for decades as a tracing agent 
or contrast agent [13–15]. As a tracing agent, the lung depo-
sition of an inhaled particle can be detected due to the nature 
of the particle; for example, Technetium-99m (99mTc) emits 
gamma-ray, which can be detected by SPECT, resulting in 
an image of the lung [13]. On the other side, the contrast 
agent can alter the result of existing imaging methods (CT 
and MRI), providing brighter or darker regions for better 
diagnosis or interpretation [16–18].

To date, 38 tracing and contrast agents have been 
approved for commercial use [30–32], and the development 
of new agents is underway to improve the safety aspect and 
image quality [17, 18, 23, 33, 34]. This review aimed to 

Table 1  Detection mechanism in lung imaging

AgNP, silver-based nanoparticle; AuNP, gold-based nanoparticle; CA, contrast agent; CT, computed Tomography; FeNP, iron-based nanoparti-
cle; 68Ga, Gallium-68; I-CA, iodonated-based contrast agent; MnNP, manganese nanoparticle; MRI, magnetic resonance imaging; PET, positron 
emission tomography; SPECT, Single photon emission computed tomography; SPIONs, super paramagnetic iron oxide nanoparticles; T1, longi-
tudinal; T2, transverse; 99mTc, Technetium-99m

Detection source Imaging method Advantages Disadvantages

Element Mechanism

Tracing agent
99mTc Gamma energy (140 keV) SPECT Trace amount is required (nanomo-

lar) [19]
Radiations, limited spatial resolution 

(~ 15 mm), no lung morphology 
image [12]

68Ga Positron (Emax = 1899 keV) PET Trace amount is required (nanomo-
lar) [19]

Radiations, limited spatial resolution 
(~ 6 mm), no lung morphology 
image [12]

AuNP X-ray absorption CT Therapeutic effect (photothermal and 
radiosensitiser) [20, 21]

higher concentration required com-
pared to other CAs [22]

AgNP X-ray absorption CT Antimicrobial activity [23] Easy to be deposited in other tissues 
after pulmonary delivery [24]

Contrast agent
FeNP Shortening the T1 relaxation time of 

nearby water
MRI Magnetic hyperthermia therapy [25] Inflammatory response and extrapul-

monary toxicity were observed 
upon inhalation [26]Imaging electronic magnetisation of 

SPIONs
MPI

GdNP Shortening the T1 and T2 relaxation 
time of nearby water

MRI Radiosensitiser [27] Toxicity of free ion [14]

MnNP Shortening the T1 relaxation time of 
nearby water

MRI Enhancement of photo- and chemo-
therapy [28]

Neurotoxicity upon inhalation [29]

I-CA X-ray absorption CT Low cost [30] IODINE sensitivity and high osmo-
lality [30]
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address the challenges of pulmonary delivery for lung imag-
ing, as well as the aerosol formulations that have been com-
mercially approved or are still in development study. There 
have been reviews on the application of nano or micropar-
ticles for imaging diagnosis purposes (CT: [15, 22]; MRI: 
[14, 35, 36]; PET: [37]; SPECT: [38, 39]), but there is no 
review which discusses the application of aerosol for lung 
imaging. This review is focused on understanding the criti-
cal parameters of aerosol delivery into the lung, which are 
essential for formulating micro- or nanoparticles for pul-
monary delivery. Furthermore, the fundamental concepts 
of different aerosol production methods that contribute to 
the development of aerosolised contrast and tracing agent 
for lung imaging quality improvement are also discussed. 
We explored several databases, including PubMed, Scopus, 
and Google Scholar, during preparing this review to dis-
cover and obtain the abstracts, reports, review articles, and 
research papers related to aerosol delivery for lung imaging 
and the formulation and pulmonary delivery method of dry 
or liquid aerosol. The following search terms were used: 
“dry aerosol delivery”, “liquid aerosol delivery”, “MRI for 
lung imaging”, “CT scan for lung imaging”, “SPECT for 
lung imaging”, “PET for lung imaging”, “magnetic particle 
imaging”, “dry powder inhalation”, “nebuliser”, and “pres-
surised metered-dose inhaler”.

Challenges of aerosol delivery for lung imaging

Pulmonary delivery for contrast or tracing agent administra-
tion route has provided an image for lung disease diagnosis 
for decades [13]. Furthermore, an attempt to discover new 
inhalable particles with increased image quality and safety 
profile has also been reported in recent years [17, 18, 23, 33, 
34]. For instance, Silva et al. reported the development of a 
dual-modality contrast agent consisting of Fe and gold (Au) 
for detection using MRI and CT, respectively [20]. Despite 
its success in lung imaging and potential for future develop-
ment, several challenges need to be overcome in designing 
inhalable particles for tracing or contrast agents.

Toxicity

The first challenge is attributed to the toxic nature of dif-
ferent tracing and contrast agents. The established tracing 
agents are typically an element with radioactive hazards 
due to ionising radiation or particle emission. Nevertheless, 
typical radionuclides used for diagnosis are considered safe 
due to the low radiation energy and short half-life [13]. 
99mTc, Tc, is the most widely used diagnostic radionuclide, 
including in lung scintigraphy. It has a half-life of 6 h and a 
gamma energy of 140 keV, yet sufficient for diagnosis pur-
poses. [40]. Another radionuclide used for lung scintigraphy, 
Gallium-68 (68Ga, a positron-emitting radionuclide), has a 

shorter half-life (67.71 min) with Emax of 1899 keV [41]. 
The amount of radioactive element used for the diagnostic 
purpose is also meagre; for instance, the typical radioac-
tivity of 99mTc for clinical use is 185–925 MBq, equal to 
only 0.95–4.70 ng of Tc metal [19]. On the other hand, a 
significantly higher amount of element is required for the 
contrast agent, leading to potential toxicity in the human 
body. Another issue in the use of radioactive tracing agents 
is the possibility of free radionuclide release from radiola-
belled compound or complex, leading to free radionuclide 
extrapulmonary distribution. For instance, free pertechnetate 
has been found in thyroid upon lung scintigraphy due to 
unstable radiolabelled compound or complex [42]. Although 
such extrapulmonary distribution will not harm the organs, 
free radionuclides in significant amounts can disturb lung 
scintigraphy [43, 44]. Therefore, standard quality control for 
radiopharmaceuticals, e.g., radiochemical purity, should also 
be performed in the lung scintigraphy.

As an endogenous element in the human body, the use of 
iron (Fe) as a contrast agent is considered safe since ionic 
Fe presents as a complex with binding protein and the metal 
one has a low bio-solubility. Different binding and regula-
tory proteins are available for Fe absorption in the human 
digestive system without toxic effects [45]. However, such 
absorption facilitation is significantly limited in the respira-
tory tract, which might induce local adverse effects, such 
as inflammatory response. Furthermore, the inhaled Fe can 
easily be transported to other organs and causes more severe 
effects, including pro-atherosclerotic effect and alteration of 
autonomic regulation [26]. Similar to Fe, the inhalation of 
different elements for contrast agents can potentially induce 
intra- or extrapulmonary side effects, where the result can 
be even worse for exogenous substances, i.e. Au [46], gado-
linium (Gd), and silver (Ag) [47]. In general, although the 
toxicity of these elements is enhanced in the ionic form [32], 
the nanoparticle form can also induce cell death due to the 
easy cellular uptake, resulting in cellular toxicity [26]. The 
toxicity of the iodinated contrast agent relies on the molecu-
lar form, in which inorganic iodine and ionic compounds 
exhibit higher toxicity [30].

Continuous efforts have been made toward minimising 
the toxicity of contrast agents, including the formulation of 
the stable complex to avoid the release of free ionic elements 
and interaction with cellular membranes, proteins, and other 
biological structures [30, 48]. Another attempt to reduce the 
toxicity is minimising cellular uptake, and particle absorp-
tion into the systemic circulation, which can be achieved by 
preparing micron or sub-micron size particle since effective 
cellular membrane penetration can only effectively occurs in 
size of < 200 nm [49]. Although larger particles can still be 
engulfed by alveolar macrophage, this type of cell is able to 
generate protein complex to minimise the toxicity of quan-
titatively large metallic element absorption, such as Fe [50].
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Radio‑protection of radioactive aerosol or gas

Radioactive contamination is one of the concerns dur-
ing the utilisation of radiopharmaceuticals in the medical 
field. Common liquid radiopharmaceuticals typically pose 
a low contamination risk, requiring simple handling dur-
ing preparation and administration to the patients. On the 
other hand, radioactive aerosol poses a relatively higher risk 
due to its nature that easily diffuses into the air. Brudecki 
et al. reported that the activity of 99mTc aerosol in a typical 
ventilation-perfusion SPECT facility ranged from 99 ± 11 to 
6.1 ± 0.5 kBq  m−3, resulting in daily intake by male techni-
cians, female technicians, male nurses and female nurses of 
5.4 kBq, 4.4 kBq, 3.0 kBq and 2.5 kBq, respectively [51]. 
Although such internal contaminations are considered safe 
for the medical staff (over three orders of magnitude lower 
than the dose limit), the contamination level should be kept 
as low as possible to avoid the reduction of gamma camera 
performance [52].

Lung deposition

Aside from toxicity and radio-protection concern, designing 
the inhalable particle size should also consider lung deposi-
tion since particle larger than 5 µm is most likely deposited 
in upper airways, followed by rapid pulmonary clearance 
and resulting in poor lung image in the healthy lung [39]. 
The presence of disease in the lung is most likely to alter the 
particle deposition due to the decrease in airway cross-sec-
tion. Several studies, as presented in Table 2, revealed that 
most lung diseases enhanced lung deposition, although the 
deposition pattern has become more heterogenous as some 
areas are poorly ventilated and less penetrated by inhaled 
particles [53]. Such a condition will lead to great disadvan-
tages in lung disease therapy since the drug bioavailabil-
ity will be under or over the therapeutic window in some 
areas, resulting in underdose or toxic effects, respectively 
[54, 55]. For diagnostic purposes, the heterogenous deposi-
tion of inhaled particles might not be disadvantageous since 
less penetrated lung area can be an indication of a certain 
disease. Nevertheless, a particular aerodynamic size range 
is still required to ensure that the lung deposition is adequate 
for generating a good diagnostic image [53].

As seen in Table 2, the lung deposition of inhaled parti-
cles with an aerodynamic size of 1–5 μm was typically not 
affected or increased in the presence of lung diseases. Brown 
et al. suggested that although obstructed airways in diseased 
lungs should have reduced lung deposition, mucociliary 
clearance impairment and slow-deep breathing patterns can 
enhance the deposited particles and make them similar to 
those of the healthy lung [56]. Higher particle deposition 
in the diseased lung is also possible, as reported by Furi 
et al., since narrower airways induce airflow turbulence 

resulting in higher inertial impaction. Such a higher deposi-
tion might also be induced by the use of polydisperse parti-
cles (82–5960 nm), where larger particles will be retained in 
the upper airways, while smaller ones penetrate deeper lung 
[57]. In contrast, monodisperse particles are most likely to 
give more heterogenous lung deposition since large parti-
cles will only be deposited in the upper area, and ultrafine 
particles tend to be exhaled [58–60]. To ensure the size of 
inhalable particles falls within the desirable range, especially 
for underdeveloped products, in vitro aerosolisation devices, 
e.g., cascade impactor, can be utilised for quality control 
[54].

It can be concluded that the inhalable powder should be 
designed in a size of 200 nm–5 µm to minimise systemic 
absorption and to reach deep lung deposition for the best 
quality image and to minimise systemic absorption, respec-
tively, although the presence of a particular disease induc-
ing airways obstruction requires smaller inhaled particles 
to reach deep lung effectively. Different formulations and 
aerosol delivery methods have been developed to achieve 
this purpose, as discussed in the next section (Fig. 1).

Formulation and aerosol delivery method 
into respiratory airways

Dry aerosol

Dry formulation provides a stable form, which can be stored 
for a long time. However, the main challenge of this form is 
the preparation method, which might require a sophisticated 
instrument to produce an ideal dry aerosol for pulmonary 
delivery [54].

Graphite ablation

Graphite ablation method is used in Technegas to produce 
99mTc-radiolabelled carbon aerosol with a size of < 100 nm 
for lung ventilation scintigraphy [70]. 99mTc-pertechnetate in 
saline solution yielded from 99Mo/99mTc generator is used as 
99mTc source in this method. The 99mTc-radiolabelled carbon 
aerosol generation method has been detailed in a review by 
Wiebe et al. as illustrated in Fig. 2 [71]. In brief, 99mTc solu-
tion is added to a crucible, followed by evaporation at 70ºC 
for 6 min in an ultrapure argon environment. Subsequently, 
graphite and 99mTc are ablated by an alternating-current 
arc generated between the terminals holding the crucible. 
Aerosolised carbon nanoparticles are produced by heating 
at 2750 °C for 15 s in an ultrapure argon environment [13].

Carbon nanoparticle generated from the graphite abla-
tion method has a size of < 140 nm with a gas-like charac-
teristic upon aerosolisation, which provides an ideal lung 
deposition for imaging purpose [13, 71]. Many studies 
reported different sizes of carbon aerosol from Technegas, 
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depending on the particle collection and characterisation 
methods [72]. For instance, the use of electrostatic pre-
cipitation and transmission electron microscopy (TEM) by 
Senden et al. reported size of 30–60 nm, while a 400-mesh 
filter coupled with glass-fibre filter paper and photo cor-
relation spectroscopy resulted in a size of 97–140 nm [71, 

73]. A size of ~ 100 nm observed from Technegas is most 
likely due to the aggregation upon particle collection [71].

As an inhalable particle, carbon aerosol with a size 
of < 140 nm will follow Brownian diffusion upon inhala-
tion, leading to deposition in the alveolar region and lower 
respiratory tracts [54]. Such lung deposition is considered 

Table 2  The inhaled particle deposition in different clinical lung conditions

AAT, a1-antitrypsin; CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; DEHS, di-2-ethylhexyl sebacate; C/P ratio, central to 
peripheral ratio; OLD, obstructive lung disease; RLD, restrictive lung disease

Clinical indication Inhaled particles Aerodynamic size Key findings References

(AAT) deficiency 99mTc-AAT (nebulisation into human 
airways)

4 μm No significant difference in lung deposi-
tion in the healthy and diseased lung 
(C/P ratio 1.48–1.66)

[61]

CF 99mTc-AAT (nebulisation into human 
airways)

4 μm No significant difference in lung deposi-
tion between the healthy and diseased 
lung (C/P ratio 1.37–1.48)

[61]

99mTc-iron oxide (nebulisation into 
human airways)

4.6–4.9 μm No significant difference in lung deposi-
tion between the healthy and diseased 
lung (C/P ratio 1.02–1.78)

[56]

Levofloxacin (nebulisation into lung 
model)

3.65 μm Lung deposition in CF was higher (30–
50%) than in healthy lung (15–30%)

[62]

99mTc-DTPA-Tobramycin (nebulisation 
into human airways)

eFlow: 3.95 μm Lung deposition in CF was lower 
(26.6%) than in healthy lung (40.0%)

[63]

LC: 3.54 μm No significant difference in lung deposi-
tion between the healthy and diseased 
lung (44.3–45.2%)

COPD Diesel exhaust particle 10–500 nm The deposition fraction increased with 
increasing the severity of the disease. 
The deposition fraction of particles 
of < 100 nm was decreased in COPD 
patients

[58]

Polystyrene latex nanospheres (Electro-
spray aerosol generation into human 
airways)

50 and 100 nm The deposition fraction was significantly 
lower in the lung with emphysema 
compared to healthy ones (p = 0.001–
0.01)

[64]

Polystyrene latex nanospheres (Electro-
spray aerosol generation into human 
airways)

50 nm Exhaled particle in COPD was signifi-
cantly higher (0.128) compared to the 
healthy one (0.074) ( p = 0.01)

[59]

99mTc-carbon/Technegas (aerosolisation 
into human airways)

100 nm No significant difference in lung deposi-
tion, retention, and clearance in COPD 
and healthy lung

[65]

Particulate matter in the air of industrial 
area

82–5960 nm Lung deposition was significantly higher 
in the diseased lung compared to 
healthy ones

[57]

Asthma Nanocarbon (spark generator) 23 nm The efficient respiratory deposition was 
higher in subjects with asthma

[66]

Aerosolisation into lung model man: 8.1 μm chi: 6.1 μm The deposition is significantly higher 
in the upper airways of the asthmatic 
model compared to healthy ones

[67]

99mTc-BDP/FF combination (nebulisation 
into human airways)

BDP: 1.5 μm FF: 1.4 μm No significant difference in lung deposi-
tion in the healthy and diseased lung 
(54.9–56.2%)

[68]

OLD, RLD DEHS (aerosolised into human airways) 0.02–0.24 μm Lung deposition was increased in OLD 
and unchanged in RLD compared to 
healthy ones

[69]
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an ideal particle distribution for lung imaging [74]. Such 
particle size for inhalable particles theoretically can easily 
penetrate the cellular membrane and induce toxicity [49]. 
Nevertheless, the clinical use of Technegas for more than 
three decades proves the safety of the 99mTc-labelled carbon 
aerosol [13, 71]. This safety profile can be explained by the 

fact that the amount of carbon nanoparticles inhaled is very 
low, which means the toxicity effect can be neglected [75]. 
Furthermore, a study by Zhang et al. revealed that carbon 
nanoparticles with a size of < 100 nm showed no toxicity 
in RAWS264.7 cells, and a toxic effect was observed in the 
nanoparticle in size of > 250 nm [76]. A review by Pacurari 

Fig. 1  The fate of inhaled particles depends on their size [26, 54]

Fig. 2  Production of 99mTc-carbon aerosol by graphite ablation method. Adapted from Wiebe et al. [71]
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et al. also demonstrated that multi-walled carbon nanotubes 
with smaller sizes were less potent in inducing lung fibrosis 
upon inhalation [77].

Due to an ideal lung distribution and no toxicity, 99mTc-
labelled carbon aerosol has been widely used in lung imag-
ing to diagnose different lung-related diseases, such as 
COPD, pulmonary embolism (PE), and tracheobronchitis 
[38, 78, 79]. Nasr et al. reported that lung scintigraphy 
by 99mTc-labelled carbon aerosol in COVID-19 patients 
has successfully diagnosed COPD and PE [74]. The same 
method has also found the presence of tracheobronchitis in 
COVID-19 patients by observing an increase in tracheobron-
chial uptake of 99mTc-labelled carbon aerosol, as reported by 
Verger et al. [70]. In conclusion, graphite ablation method 
generates radiolabelled carbon aerosol ideal for lung ven-
tilation scintigraphy. Nevertheless, graphite ablation is a 
sophisticated method and can only be performed using a 
commercial aerosol generator called Technegas.

Spark ignition

Spark ignition method has been utilised to produce different 
nanoparticles, including alloy, composite, metal, oxide, and 
semiconductor [80]. This method generates nanoparticles as 
an aerosol via spark discharge from two heated conducting 
electrodes with gas flow, as illustrated in Fig. 3 [81]. Similar 
to graphite ablation, this method spontaneously produces 
nanoparticles directly from large and solid material, result-
ing in spherical particle with a size of < 10 nm that tends to 
agglomerate into a larger particle (~ 20 nm) [80].

Gold nanoparticle (AuNP) has been formulated into nano 
aerosol by spark ignition method as a CT contrast agent. 
Kreyling et al. successfully produced 20 nm-sized AuNP by 
this method and used radioactive gold (195Au) as a material 
for tracing purposes. An intratracheal inhalation into Wistar-
Kyoto rats demonstrated that approximately 30% of AuNP 
reached the respiratory tract, followed by rapid mucociliary 

Fig. 3  Aerosolisation devices for liquid formulation: A nebuliser, B pressurised-metered dose inhaler (pMDI), C air sprayer [114–116]
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clearance, and about 80% of AuNP deposited in alveoli was 
moved from the inner surface into the interstitium within 
24 h. Although Kreyling et al. did not perform a CT scan to 
evaluate the contrast agent performance, the primary depo-
sition of inhaled AuNP in the alveolar region indicates its 
potential for lung imaging. Nevertheless, an extrapulmo-
nary deposition was also found, mainly in the liver, which 
increased up to 28 days [33]. Therefore, the toxicity in other 
organs should be carefully observed to ensure the safety of 
the AuNP administration.

Another CT contrast agent that has been formulated into 
nano aerosol by spark ignition is AgNP, which was investi-
gated for its potential toxicity upon inhalation. Campagnolo 
et al. delivered ~ 25 nm AgNP, generated by spark ignition, 
into pregnant C57BL/6 female mice via nose-only inhala-
tion, resulting in AgNP accumulation in placentas, albeit 
very low, and increasing the expression of pregnancy-rele-
vant inflammatory cytokines in the placentas [82]. A bioki-
netic study of spark-ignited AgNP in Wistar-Kyoto rats 
administered via tracheal inhalation was also reported by 
Kreyling et al. Tracing method using radioactive 105AgNP 
showed that 105AgNP was mainly excreted via larynx into 
the gastrointestinal tract due to poor solubility in the lung 
fluid [83]. These findings imply that the extrapulmonary 
toxic effect of inhaled AgNP can be minimised by lowering 
the solubility of the nanoparticle in lung fluid to enhance the 
mucociliary clearance and reduce the epithelium penetration.

Spray drying

Spray drying method has been widely investigated for pre-
paring dry powder for drug administration via pulmonary 
delivery. The ability to incorporate different nanoparticles 
into size-controllable powder makes spray drying a promis-
ing method for developing inhalable powder for lung imag-
ing purposes [54]. In general, spray dryer is classified based 
on droplet generation and powder collection system. A 
conventional instrument utilises a gas atomiser and cyclone 
or bag filter for droplet generation and powder collection, 
respectively [54]. In a gas atomiser system, the liquid for-
mulation is atomised by pressurised nitrogen gas, in which 
droplet diameter is affected by the liquid feed and gas flow 
rate. Droplet diameter can be increased by the increase of 
feed rate and reduced by increasing the gas flow rate. The 
cyclone separation system utilises the gravitational force of 
rotating flow to collect the powder with high inertia [84]. 
The new instrument, the so-called nano spray dryer, uses a 
nebuliser to generate droplets and an electrostatic separation 
system to collect powder [85].

Despite the better particle engineering offered by a 
nano-spray dryer, only conventional spray dryer type has 
been utilised for the preparation of an inhalable powder 
containing 99mTc-diethylenetriamine pentaacetic acid 

(DTPA) for lung imaging, as reported by Yang et al. in 
this study, a clinical trial in nine healthy subjects dem-
onstrated that inhaled powder reached lung at 50–70 L/
min peak inhalation flow rate. Yang et al. concluded that 
total and regional lung depositions were not significantly 
affected by inhaler resistance. Instead, such lung deposi-
tions are significantly influenced by inhalation rate and 
particle size [86]. Despite the success in a clinical trial, 
the spray drying of radioactive material is a sophisticated 
process, particularly in avoiding the leakage of radioac-
tive dust from the instrument. It requires tight containment 
and radioactive material entrapment to ensure the safety 
of the personnel from radioactive contamination [87]. In 
contrast, a non-radioactive contrast agent formulation can 
be carried out using a typical spray dryer without any addi-
tional equipment. Furthermore, a combination of different 
nanoparticles or elements for dual-imaging or theranos-
tic purpose can simply be performed by pre-mixing prior 
to spray drying, as reported by Julián-López et al. who 
developed an iron-silica hybrid using a home-made con-
ventional spray dryer [88].

Aside from conventional and nano-spray dryer, super-
critical  CO2-assisted spray dryer has also been utilised 
to produce a dry powder with complex structures, such 
as aerogel. Such a technique allows the material to pass 
through the supercritical region with the assistance of 
supercritical fluid, resulting in the absence of interfacial 
stress [89]. The application of supercritical  CO2-assisted 
spray drying (SASD) for the preparation of inhalable pow-
der containing contrast agents has been reported in the 
literature.

However, the SASD method poses challenges, including 
sophisticated instrumentation, high costs, and the pres-
ence of organic solvent residuals in the end product [89], 
which hampers further development in inhalable powder 
technology [20, 90–92]. For instance, a nanohybrid for 
dual-imaging consisting of strawberry-like gold-coated 
magnetite nanocomposites was developed by Silva et al. 
by SASD method. Using chitosan as a filler, the spray 
drying process resulted in powder with an aerodynamic 
diameter of 2.6–2.8 μm and a fine particle fraction (FPF) 
of 48–55%, which is sufficient for deep lung deposition 
[20]. Nevertheless, supercritical  CO2-assisted spray drying 
poses challenges, namely high costs, complex instrumenta-
tion, and the presence of organic solvent residuals in the 
end product [89].

Although gold and iron NP are the only investigated 
contrast agent as inhalable powder via spray drying 
[90–92], this method is suitable for formulating other con-
trast or tracing agent into dry powder. The ability to design 
particle size, structure, and composition makes spray dry-
ing a promising method to produce inhalable powder for 
lung imaging.
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Liquid aerosol

Liquid aerosol for pulmonary delivery is a simpler and 
cheaper formulation than the dry one. The drug formula-
tion can be dissolved in a suitable solvent, followed by aero-
solisation using relatively unsophisticated devices compared 
to those used for dry aerosol. Another characteristic of liq-
uid aerosol is the immediate solubility upon deposition in 
the lung airways, avoiding a mucus trap and mucociliary 
clearance [54]. Therefore, the pulmonary clearance profile 
of inhaled aerosol is merely affected by the cargo’s charac-
teristics, i.e. size and solubility, simplifying the designing 
process of inhalable particles [93]. Aside from the afore-
mentioned advantages, the application of liquid aerosol in 
pulmonary delivery also poses challenges, namely the dif-
ficulty in aerosol size adjustment and the lower drug stabil-
ity in liquid formulation compared to that in the dry one 
[94]. Standard devices used to produce liquid aerosol are 
nebuliser, pressurised metered-dose inhaler (pMDI), and air 
spray [55].

Nebulisation

Nebuliser is the oldest aerosol device and the most widely 
used for pulmonary drug administration. This device can 
produce aerosol from liquid formulation using different 
instrument types, including ultrasonic, jet and vibrating 
mesh (Fig. 3a). Ultrasonic nebuliser applies high-frequency 
vibration of the piezoelectric element that transforms liquid 
formulation into tiny droplets due to sound wave effect. This 
device type might generate heat upon aerosolisation, which 
may impact the drug cargo's stability. [93]. A jet nebuliser 
uses compressed gas that passes through a narrow gap to 
generate lower pressure and faster gas flow. Subsequently, 
such a gas flow draws and leads the liquid formulation to hit 
the baffle for the generation of tiny droplets. Jet nebuliser has 
two types of valves: the first valve opens during inhalation to 
increase the aerosol flow, while the second one opens dur-
ing exhalation for gas release to the atmosphere, avoiding a 
reverse gas flow. A vibrating mesh nebuliser applies mesh 
vibration to generate tiny droplets from liquid formulation 
[55].

To date, nebulisation is the most widely investigated 
method to deliver contrast or tracing agent via pulmonary 
delivery for lung imaging, with 31 publications in the past 
decade (Table 3). Such an extensive investigation of the 
nebulisation method is most likely due to the simple oper-
ating technique during aerosolisation from liquid formula-
tion [93]. This simple method can also be used to aerosolise 
radioactive material since a commercial nebuliser equipped 
with the lead container, e.g. SmartVent™, is available for 
this purpose [95]. Furthermore, different types of nebulisers 

lead to dissimilar performance, providing device options to 
adapt to various drug cargo types [96].

Among different types of nebulisers, a vibrating mesh is 
the most widely used in clinical or laboratory practice, as 
seen in Table 3. The reason behind the wide use of vibrat-
ing mesh nebulisers has been investigated by Galindo-Filho, 
et al., where the comparative study of jet and vibrating 
mesh nebulisers is carried out either in healthy subjects or 
COPD patients. In healthy subjects, vibrating mesh nebu-
liser delivered more than twofold 99mTc-DTPA into the lung 
compared to jet nebulisers [96], while in COPD patients, 
vibrating mesh nebuliser delivered more than threefold 
99mTc-DTPA into the lung [97]. Galindo-Filho et al. sug-
gested that such a difference is caused by different droplet 
sizes generated by both nebulisers, where jet and vibrat-
ing mesh nebuliser generated droplets with a size of 5 and 
3.4 µm [96]. As discussed earlier, a particle size of < 5 µm is 
essential for deep lung deposition [54]. Aside from compar-
ing different types of nebuliser, a comparative study between 
99mTc-sulfur colloid powder prepared by Palas rotating brush 
generator and 99mTc-DTPA aerosolised with nebuliser has 
also been reported in the literature. Kuehl et al. reported 
that there is no significant difference in both administration 
methods (6.81–9.08%) since the particle sizes were similar 
(2.5–2.8 µm) [98].

Table 3 also shows that most of the literature was clinical 
studies with 99mTc-DTPA. It is understandable since 99mTc-
DTPA is one of the radiopharmaceuticals recommended by 
the European Association of Nuclear Medicine (EANM) 
guideline and can easily be administered into the lung [99]. 
As seen in Table 3, nebulised 99mTc-DTPA is mainly used 
to investigate the effect of particular pulmonary delivery 
equipment, e.g. positive expiratory pressure device, on the 
aerosol performance of lung deposition [97, 100–105]. Other 
studies with 99mTc-DTPA focus on distinguishing different 
lung diseases [74, 106, 107], understanding the physiology 
of lung disease [108], and investigating the new application 
of ventilation scintigraphy [109].

Besides the clinical application, nebuliser can also be 
used for development study of a new contrast agent admin-
istration via pulmonary delivery, including AuNP [110], 
gadolinium nanoparticle (GdNP) [16, 34, 111], Iodine-based 
contrast agent (I-CA) [18],  MnCl2 [112], silver nanoparticle 
(AgNP) [23, 24], and superparamagnetic iron oxide nano-
particle (SPION) [17, 113]. Such a study aimed to determine 
lung deposition and clearance [111], investigate biokinetics 
and toxicity [110, 112], and evaluate the lung image quality 
generated after inhalation [16, 18].

Despite the simple use of a nebuliser to produce aerosol 
for pulmonary delivery, this device also has challenges that 
need to be solved, namely stability issues in liquid formula-
tion and difficulty in particle engineering. The first chal-
lenge can be overcome by preparing the drug solution into a 
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lyophilised formulation that can be rehydrated prior to use. 
Such a lyophilisation method has been applied in radiop-
harmaceutical kits formulation that can be rehydrated and 
radiolabelled by 99mTc-pertechnetate in saline solution [94]. 
Therefore, this method can also be applied in the develop-
ment of other contrast and tracing agents. Another challenge 
is the limitation of the nebuliser in particle engineering, 
unlike spray drying, which can easily design the inhalable 
powder, e.g. size and porosity [54].

Pressurised metered‑dose inhaler (pMDI)

Pressurised metered-dose inhaler (pMDI) releases liquid 
formulation mixed with propellant from a pressurised can-
ister, allowing droplets generation for aerosol inhalation 
(Fig. 3b) [123]. Due to the portable size and simplicity of 
use, patients can use pMDIs for inhalation treatment without 
any help from a medical worker [115]. The main drawback 
of pMDI is the incompatibility of particular drug cargo 
with the propellant mixture or pressurised storage. To date, 
99mTc-labelled radiopharmaceutical is the only substance 
administered by pMDI for investigating the lung deposition 
of particular drugs and the performance of additional equip-
ment for pulmonary delivery [123–126].

Radiotracing studies of pMDI-delivered aerosol revealed 
that lung deposition is influenced by the aerosol size, liquid 
formulation, and additional inhalation equipment. Clinical 
study of pMDI-aerosolised Beclomethasone and Fluticasone 
with hydrofluoroalkane (HFA) as a propellant in patients 
with asthma has been reported by Leach et al. This study 
demonstrated that the lung deposition of 99mTc-Beclometh-
asone was significantly higher than that of 99mTc-Fluticasone 
(55 vs. 24%), which can be explained by the difference of 
aerosol size (0.7 vs. 2.0 µm) [126]. A study reported by 
Ditcham et al. demonstrated that the deposition of inhaled 
99mTc-Albuterol aerosol with a facemask was higher (18.1%) 
than that with a spacer mouthpiece (22.5%) [123]. A study 
comparing the lung deposition of radiolabelled drug-aerosol 
in healthy subjects and patients with asthma reported that the 
deposition patterns were similar in healthy and people with 
asthma (22–25%) [124]. Nevertheless, the lung deposition 
of pMDI-aerosol might be different in other lung diseases, as 
observed in a study using aerosol generated by other devices 
[13, 74].

Although the development of a pMDI-aerosolised con-
trast agent has not been reported, the delivery of nano-
structured particles via pMDI is feasible, as reported by 
Taylor et al., where glycopyrronium/formoterol fumarate 
or phospholipid porous particles was 99mTc-radiolabelled 
and administered via pMDI into five healthy male subjects. 
A gamma scintigraphy assessment revealed that 38.4% of 
emitted dose reached the lung, 61.4% was detected in the 

oropharyngeal and stomach, and < 0.25% of the emitted dose 
was detected in the exhalation filter [125].

Air spray

The last method that has been investigated for the deliv-
ery of an inhalable tracing agent is air spraying method, 
which is similar to the atomisation method used in spray 
dryer for droplet generation. In brief, pressurised medical 
air and pumped liquid formulation are applied to generate 
an atomising flow of 0.5 L  min−1 with a median particle 
size distribution of 40–60 μm. Although such a distribution 
range is theoretically too large for desirable lung deposition, 
the preclinical study of 99mTc-labelled porcine surfactant in 
six sedated 1-day-old piglets nasal-mask continuous posi-
tive pressure airway demonstrated 40% lung deposition after 
28 min inhalation [116]. Such relatively high lung depo-
sition compared to other aerosolisation methods, such as 
nebulisation [101, 119], can be due to the difference in an 
animal model or the presence of a continuous positive pres-
sure airway [104]. Therefore, a comparative study should be 
performed between air spray and other nebulisation methods 
with identical experimental conditions to compare better.

Conclusion and future perspective

The use of contrast and tracing agent in lung imaging has 
been applied in the last decades, with 38 commercially avail-
able products. A high surface area, non-invasive adminis-
tration, the potential to avoid extrapulmonary toxicity, and 
the availability of various administration devices make pul-
monary delivery the best option for administering contrast 
and tracing agents to obtain optimal image quality. The key 
performance parameter of inhalable aerosol is the particle 
size affecting the lung deposition and clearance, eventu-
ally determining the image quality and toxicity profile, 
respectively. Another critical parameter of inhaled contrast 
and tracing agents is the elemental form, such as ionic or 
nanoparticle form, affecting the lung clearance profile. The 
research outputs reviewed here show that different aerosoli-
sation methods are suitable depending on the characteristics 
of contrast and tracing agents, such as the graphite ablation 
method for a radionuclide-based tracing agent. Nevertheless, 
graphite ablation and nebulisation are the most widely used 
aerosolisation method for dry and liquid aerosol production, 
respectively.

Further development of aerosol delivery for lung imaging 
should also consider the combination of more than one ele-
ment to improve the image quality or provide a dual-imaging 
modality. For instance, the combination of Fe and Au pro-
vides a dual contrast agent using MRI and CT scans. Such a 
combination can be prepared upon preparing nanoparticles, 
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resulting in dual elements nanoparticle, or combined upon 
aerosol preparation, such as during spray drying. The latter 
method can be performed easily since the combination of 
available formulas is feasible as long as the formulas are 
compatible. Another further development of new aerosol 
for lung imaging is using an animal model, which mainly 
focuses on small animals, such as a mouse. Due to the dis-
tant physiological and anatomical gap between the animal 
model and human lung, the use of small animals in pre-clin-
ical study typically has low translational success. Therefore, 
the use of relatively larger animals, such as piglets or ferrets, 
should be considered in future studies.
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