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ABSTRACT

Aims To estimate the number of people who have ever injected drugs (defined here as PWID) living in Scotland in 2009
who have been infected with the hepatitis C virus (HCV) and to quantify and characterize the population remaining undi-
agnosed. Methods Information from routine surveillance (n=22 616) and survey data (n=2511) was combined using
a multiparameter evidence synthesis approach to estimate the size of the PWID population, HCV antibody prevalence and
the proportion of HCV antibody prevalent cases who have been diagnosed, in subgroups defined by recency of injecting (in
the last year or not), age (15-34 and 3 5-64 years), gender and region of residence (Greater Glasgow and Clyde and the rest
of Scotland). Results HCV antibody-prevalence among PWID in Scotland during 2009 was estimated to be 57% [95%
CI=52—61%], corresponding to 46 657 [95% credible interval (CI) = 33 812—66 803] prevalent cases. Of these, 27 434
(95% CI =14 636-47 564) were undiagnosed, representing 59% [95% CI=43—71%] of prevalent cases. Among the un-
diagnosed, 83% (95% CI = 75-89%) were PWID who had not injected in the last year and 71% (95% CI = 58-85%) were
aged 35-64 years. Conclusions The number of undiagnosed hepatitis C virus-infected cases in Scotland appears to be
particularly high among those who have injected drugs more than 1 year ago and are more than 35 years old.
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INTRODUCTION

Hepatitis C virus (HCV) is a major cause of chronic liver dis-
ease, leading potentially to cirrhosis and hepatocellular
carcinoma [1]. The greatest risk of HCV infection in
resource-rich countries comes from injecting drug use
[2]. With an estimated 16 million people world-wide cur-
rently injecting drugs [ 3], 10 million of whom have already
been infected, in this population HCV represents a signifi-
cant global public health challenge [2].

As spontaneous viral clearance occurs in only approxi-
mately 25% of those diagnosed HCV-antibody-positive [4],
effective treatment strategies are crucial in reducing the
demand on health-care systems from chronic HCV. The de-
velopment of more effective antiviral therapies—with re-
duced toxicity, simplified oral dosing and shortened
regimens—will majorly transform the treatment of HCV
infection in future [5]. For these new therapies to have
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any great impact on the burden of HCV, particularly among
people who inject drugs (PWID) [6], effective targeting of
HCV screening and case-finding initiatives is essential. To
achieve this, understanding the size and characteristics of
the infected populations, involving not just diagnosed indi-
viduals, but importantly those remaining undiagnosed, is
crucial. Reliable estimation of these quantities is not
straightforward, as direct data are not readily available. In-
stead, we rely upon a multiplicity of information, typically
related indirectly to the quantities of interest.

Scotland has an extensive national HCV surveillance
programme established to inform and monitor the impact
of its Government Action Plan [7]. A wealth of epidemio-
logical data on the PWID and HCV-diagnosed populations
is available, more than in most other countries, which
may be exploited usefully in a multiparameter evidence
synthesis (MPES) to estimate anti-HCV antibody preva-
lence (HCV prevalence hereafter). MPES combines direct
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and indirect information, accounting for uncertainty in
and potentially resolving any inconsistencies between data
sources [8—13].

A Bayesian approach to MPES was applied here to:

(a) estimate the number of PWID living in Scotland who
are HCV-prevalent in 2009, and

(b) quantify and characterize the infected PWID popula-
tion remaining undiagnosed.

In addition, the MPES approach enabled estimation of the
total number of PWID; namely, all those who have ever
injected, even though no directly relevant data were avail-
able, due to the inherent difficulties surveying this risk group.

METHODS

The analysis proceeded in two stages. In stage 1, the follow-

ing estimates were obtained:

1.1 Number of HCV-diagnosed PWID, estimated from the
linkage of the Scottish Drugs Misuse Database
(TrtDat) [14] to the Scottish Hepatitis C Diagnosis
Database (DiagDat) [15]. TrtDat records attendance
at drug treatment services, whereas DiagDat records
HCV diagnoses.

1.2 Number of HCV-diagnosed recently injecting PWID,
using data from TrtDat to predict whether HCV-
diagnosed PWID had injected recently.

Note that ‘recently’ is defined as having injected in the
last year (see Discussion for further consideration of this
definition).

In stage 2, estimates of the size of the non-recently
injecting PWID population and both the total and undiag-
nosed HCV-infected PWID populations were derived. This
involved combining information on:

2.1 Size of the recently injecting PWID population from a
capture-recapture (CR) study [16]

2.2 HCV prevalence in recently and non-recently injecting
PWID and proportion that are diagnosed from a Needle
Exchange Surveillance Initiative (NSP) [17,18]

2.3 Number of HCV-diagnosed recently and non-recently
injecting PWID from stage 1.

Bayesian MPES framework

Throughout we adopted a Bayesian framework for estima-
tion [19]. This approach consists of:

(i) Defining prior distributions: before looking at the data,
anything known about the basic parameters (e.g.
HCV prevalence) is expressed as a probability distribu-
tion (the prior distribution). This is flat, with equal
probability across all possible values, when no specific
information is available or peaked otherwise (e.g. if
evidence is available from a previous study).

(ii) Relating data to parameters: the observed data are as-
sumed to be realizations from a distribution (see Model
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details below) and used to construct a ‘likelihood’ func-
tion, which describes the relationship between the
data and the basic parameters, quantifying the support
that the data provide to the possible parameter values.

(iii) Obtaining posterior distributions: the prior distribu-
tion is updated with the information from the data
likelihood to form a posterior distribution, combining
from both prior knowledge and data. In principle, this
distribution is proportional to the product of the prior
and the likelihood. For complex models, however, an
analytical expression for this distribution cannot be
derived easily. Instead, we simulate from the posterior
distribution using a Markov chain Monte Carlo algo-
rithm [20]. We use the posterior samples of the basic
parameters to estimate the key quantities of interest.
All posteriors are summarized in terms of posterior
medians and 95% credible intervals (CI).

A Bayesian MPES approach incorporates data from
multiple sources, potentially including information known
to be affected by biases, which then are modelled explicitly.
The Bayesian approach was implemented in OpenBUGS
[21], with posterior estimates for all parameters of interest
based on 100 000 samples.

Epidemiological model

As HCV prevalence can vary over time and depends upon
demographic characteristics among PWID, we estimated
the size of the HCV-infected population according to: (a) re-
cency of injecting [recent (R) and non-recent (NR)], (b) age
group (15-34 and 35-64 years), (c) gender and (d) region
of residence [Greater Glasgow and Clyde (Glasgow) and the
rest of Scotland]. Denoting by i the recency of injecting,
i€ {R, NR} and d the demographic groups defined by age
(a), gender (g) and region (r), such that d= {a, g, r}, define:
* piq the proportion of the population in demographic
group d with recency of injecting i;
* 7;4 the HCV prevalence in subgroup {i,d};
* 34, the proportion of HCV-infected cases in subgroup
{i,d} that are diagnosed;
o T, the size of demographic group d in the general
population.

Stage 1: Estimating the number of HCV-diagnosed recent
and non-recent PWID

For each demographic group d, the following estimates

were obtained.

1.1 HCV—diagnosed PWID Td (pR,d TTRd 5R,d + PNRA TTNR.d 6NRd)
Since 1991 the DiagDat has recorded information
on all individuals diagnosed HCV-positive in
Scotland [15]. Of the 22 616 individuals aged 15-64
years recorded by the end of 2009 (and not known
to have died by mid-2009), the risk factor for HCV
at time of diagnosis was injecting drug use for 61%,
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other risk factor (e.g. blood transfusion) for 5% and
unknown for 34%. Some diagnosed individuals with
unknown risk were identified as being PWID
through linkage of DiagDat with TrtDat (n=2352),
which contains data on those who had attended
drug-treatment services since April 1995 [14]. Of
the remainder with unknown risk, the proportion
who were PWID was estimated based on the ob-
served proportion and the model in Fig. 1. Figure 1
shows the data structure of DiagDat linked to TrtDat,
where HCV-diagnosed individuals are subdivided into
recent PWID, non-recent PWID and non-PWID in
2009. The parameters p; (j=1,...,21) denote the
probabilities of possible subdivisions at
branching.

For example, p; represents the probability that
an HCV-diagnosed individual with unknown risk

each

group at diagnosis is a PWID; p;, represents the
probability that an HCV-diagnosed individual,
with PWID risk at diagnosis and ever-injector
status in TrtDat in 1995-2008, was a recent
PWID in 2009; and p;, represents the proba-
bility that an HCV-diagnosed individual, with
unknown risk group at diagnosis and ever-injector
status in TrtDat in 1995-2008, was a recent
PWID in 2009.

TrtDat 1995-2009
8,935

Py
AN S ST
TrtD%t 2009 D15

1—ps
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1.2 HCV-diagnosed recent PWID Typg a7r.q0r.q

While the information held on DiagDat cannot dis-
tinguish between a recent and non-recent PWID,
TrtDat records whether an individual injected in
the last month. However, this can only be considered
to reflect recent behaviour in those last registered
with a drug service in 2009. For those last registered
prior to 2009, a prediction of their recent/non-
recent PWID status in 2009 was made based on
individual characteristics relating to injecting behav-
iour using a regression approach (see Supporting
information, Appendix S1 for details).

In Fig. 1,
branching, y; (j=1, ..., 21), was assumed to be a realiza-
tion from a binomial distribution with unknown probabil-
ity, pj, and denominator equal to its ‘parent’, n;, such that
y;~ Binomial(n;, pj). For example, the number of PWID in

the number of individuals at each

the unknown risk group is assumed to be from a binomial
distribution with probability p; and denominator equal to
the number in the unknown risk group (n; =7603). To
identify the total number of recent and non-recent PWID,
it was necessary to constrain some of the unknown prob-
ability parameters. Table 1 gives details of these con-
straints and the prior distributions employed in the model.

Inference about the parameters in the regression model
and the p; (j=1,..,21) were made simultaneously,
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Figure | Individuals aged |5-64 years diagnosed with hepatitis C virus (HCV) in Scotland by the end of 2009 (and not known to have died) by risk
group, as recorded on the Hepatitis C Diagnosis Database (DiagDat) and linked Drugs Misuse Database (TrtDat) data. Recent and non-recent PWID

(people who inject drugs) refers to status in 2009
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Table 1 Prior assumptions for the parameters in the stage 1 model.

Parameter Prior assumption

Comment

bj Uniform (0,1)
(forj=1,24,...,11)

D3 Uniform (0.6, p»)
prob(PWID | unknown risk

group at diagnosis)

bis P13="P12
prob(recent injector 2009 |

PWID risk group at diagnosis

and never injector in TrtDat

1995-2008)

P16 P16~ Uniform (0, p;.4)
prob(recent injector 2009 |

PWID risk group at diagnosis

and not in TrtDat)

bis Pi15=Pi14
prob(recent injector 2009 |

PWID risk group at diagnosis

and never injector in TrtDat 2009)

bis Pig="Pi7
prob(recent injector 2009 |

unknown PWID risk group at

diagnosis and never injector in

TrtDat 1995-2008)

P21 p21 ~ Uniform (0, p;9)
prob(recent injector 2009 |

unknown PWID risk group at

diagnosis and not in TrtDat)

) 220) P20="P19
prob(recent injector 2009 |

unknown PWID risk group at

diagnosis and never injector

in TrtDat 2009)

Flat prior distribution

The prevalence of PWID in Scotland’s HCV-diagnosed has been
estimated as 83% (95% CI = 81-87%) [22], which would imply
that 18 771 of the 22 616 diagnosed are PWID. 13 800 were
known PWID from DiagDat, leaving 4971 unknown PWID.
This gives the probability that a diagnosed individual with
unknown risk was a PWID as 0.65 (95% CI = 59-77%)

The probability that a known PWID ‘never injector’, linked to
TrtDat in 1995-2008, had recently injected was assumed to be
equal to that for a known PWID ‘ever injector’ linked to TrtDat
in 1995-2008

The probability that a known PWID, not linked to TrtDat, had
recently injected was assumed to be lower than that for a known
PWID ‘ever injector’ who linked to TrtDat in 2009

The probability that a known PWID ‘never injector’, linked to
TrtDat in 2009, had recently injected was assumed to be equal
to that for a known PWID ‘ever injector’ linked to TrtDat in
2009

The probability that an unknown PWID ‘never injector’, linked
to TrtDat in 1995-2008, had recently injected was assumed to
be equal to that for an unknown PWID ‘ever injector’ linked to
TrtDat in 1995-2008

The probability that an unknown PWID, not linked to TrtDat,
had recently injected was assumed to be lower than that for an
unknown PWID ‘ever injector’ who linked to TrtDat in 2009

The probability that an unknown PWID ‘never injector’, linked
to TrtDat in 2009, had recently injected was assumed to be
equal to that for an unknown PWID ‘ever injector’ linked to
TrtDat in 2009

CI = confidence interval; PWID = people who inject drugs; DiagDat = Hepatitis C Diagnosis Database; TrtDat = Drugs Misuse Database.

providing estimates of the number of diagnosed PWID and
diagnosed recent PWID in each demographic group
(OpenBUGS model code in Supporting information,
Appendix S6).

Stage 2: Estimating the number of HCV-infected recent and
non-recent PWID and the number undiagnosed

The following estimates for each demographic group d

were combined using MPES:

2.1 Number of recently-injecting PWID Typg 4
The CR study [16] generated estimates (Supporting
information, Appendix S2) of the number of current
PWID in Scotland in 2009 by age, gender and re-
gion, which provide information on the size of the
recent PWID population via a prior distribution.
Note that this prior is bimodal (Fig. 2 and
Supporting information, Appendix S2), as the CR

© 2015 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

results were obtained by averaging estimates over
different models [16].

2.2 HCV prevalence in recent and non-recent PWID
(TR TNr.a) @and proportion diagnosed (g 4, Ong.a)
NSP is a voluntary anonymous survey of PWID,
conducted nationally at approximately 100 selected
needle exchange services [17,18]. Participants pro-
vide a blood-spot sample for HCV testing and infor-
mation on any previous HCV diagnosis. From the
2008-09 survey, data on HCV prevalence in PWID
(n=2511), both recent (n=1738) and non-recent
(n=772), and on the diagnosed proportion in these
groups were available (Supporting information, Ap-
pendix S2). A recent PWID was defined in NSP by
injection in the last month: a sensitivity analysis
using injection in the last 6 months instead found
the main results unchanged. NSP participants

Addiction, 110, 1287-1300
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Figure 2 Capture—recapture (CR) estimates of the number of recent people who inject drugs (PWID) used as prior distribution for Typgry in
evidence synthesis model and posterior distributions for size of the recent PWID population as estimated by evidence synthesis models, with and

without bias adjustment parameters, by region of residence, gender and age.
bias adjustment parameters (baseline model), - posterior distribution for model without bias adjustment parameters (sensitivity 2)
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CR prior distribution, - - - - posterior distribution for model with
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attend services providing injecting equipment and
other harm-reduction services and so are poten-
tially more likely to have been tested for HCV than
those not attending these services, which could re-
sult in an overestimate of the proportion diagnosed.
This potential bias has been modelled explicitly by
including an additional unknown age-specific bias
parameter, b , representing the log odds ratio of
the NSP estimated relative to the ‘true’ diagnosed
proportion (Supporting information, Appendix S3).
2.3 Number of HCV-diagnosed PWID, Ty (pr g 7r.a0r.a+
PNR.ATNR.4ONR.a) and HCV-diagnosed recent PWID,
Tapr.a7r.a0r.q (estimated in stage 1)
TrtDat records data at the first attendance in at least
6 months to a particular drug treatment service.
This source is thus probably biased towards recent,
rather than non-recent, PWID, generating an over-
estimate of the number of diagnosed recent PWID
from stage 1. The stage 2 model includes an addi-
tional age-specific parameter to account for this po-
tential bias, bf , representing the ratio of the TrtDat
estimated to the ‘true’ number of diagnosed recent
PWID (Supporting information, Appendix S3).

Model details

All subgroups were modelled simultaneously. Estimation of
unknown parameters of interest was based on the joint

posterior distribution, with likelihood a product of indepen-
dent binomial likelihoods for the NSP data and independent
normal likelihoods for the stage 1 estimates (Supporting
information, Appendix S4 and OpenBUGS model code in
Supporting information, Appendix S6). Figure 3 presents
schematically the relationship between the unknown pa-
rameters and the data sources.

Table 2 gives details of the prior distributions and con-
straints that were specified in the model.

RESULTS
Stage 1
Estimated number of HCV-diagnosed recent and non-recent PWID

The estimated numbers of HCV-diagnosed recent and non-
recent PWID in Scotland in 2009 are 6639 (95%
CI=5205-8282) and 12593 (95% CI=10859-14 513),
respectively, totalling 19268 (95% CI=19259-20512)
HCV-diagnosed PWID (Table 3).

Seventy-three per cent (95% CI=61-91%) of diag-
nosed individuals with unknown risk at diagnosis are esti-
mated to be PWID (ps3 in Fig. 1). This increases the total
number of diagnosed PWID by approximately 40% com-
pared with ignoring this unknown risk group, from 61%
to 86% of all those diagnosed.

The estimated proportion of diagnosed PWID who are
recent PWID varies from 0.27 to 0.44 across demographic
groups. Lower proportions are estimated for the older age

Proportion PWID Bias parameter HCV prevalence

Proportion diagnosed Bias parameter

Recent Non-recent | |(n0. of diagnosed || Recent Non-recent Recent Non-recent (proportion
PWID WID recent PWID) || PWID PWID PWID PWID diagnosed)
PR ‘ [ pyxr | \ TNR ) b”\

\

\ N

HCV-diagnosed
(recent PWID)

\\bD(Tpr ROR) /

H(\ dnduosod -
(all T’\\ 1D)

\T(prmRrOR + pNRTNR

DiagDat and
linked TrtDat

CR

/\/ /\,,

oN

Ve .
”\"’f K/\

—
Log odds of
proportion diagnosed

T
Log odds of
proportion di: 1{,11050\
(recent PWID ‘/'

[ (non-recent PWID)

\\oglt (0R) +b/@ onp) +0°

NSP

Figure 3 Relationship between the parameters and the data sources. Circles denote the unknown parameters (or functions of parameters) which
are to be estimated. Squares denote the data sources. A link between a parameter (or function of parameters) and a data source indicates that the

data source provides information on that parameter (or function of parameters). p : proportion of the population in risk group; z : hepatitis C virus

(HCV) prevalence; o : proportion of HCV-prevalent cases that are diagnosed;

T total population size; bP - bias parameter for the number of diagnosed

people who inject drugs (PWID) recently; b’ bias parameter for proportion diagnosed
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Table 2 Prior assumptions for the parameters in the stage 2 model.
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Parameter Prior assumption

Comment

PR.d
size given by the CR study [16]
Uniform (0,1)

Normal (0,10000)

With a lower bound of

TR TNR.d OR.ds ONR.s PNR.A
D 2
log(ba ) , by

log (0.5) and an upper bound of log [5]

Also, log (bY) < log (b%), b < b5

Posterior distribution of recent PWID population

Flat prior distribution

Flat prior distribution

Values outside the range of 0.5-5 were thought to
be implausible

It was expected that any bias would be greater in
the older age-group (a = 2) than the younger
age-group (a=1)

CR = capture-recapture; people who inject drugs.

group compared with the younger, for women compared
with men and for those living in Glasgow compared with
the rest of Scotland.

Stage 2

The results presented in the following sections are from the
baseline model with bias parameters. Results from other
models are given in the Sensitivity analysis section.

Estimated number of recent and non-recent PWID

The estimated numbers of non-recent PWID are considerably
higher than of recent PWID, particularly in the older age
group (Table 4). The number of recent PWID in Scotland in
2009 is 15411 (95% CI=13243-17134) compared to
67246 (95% CI=45200-102662) non-recent PWID.
Note (Fig. 2) that the posterior distributions for recent PWID
are slightly bimodal, reflecting the bimodal CR prior.

HCV prevalence estimates

Prevalence estimates vary between subgroups from 37 to
81%, with a higher prevalence in Glasgow than in the rest
of Scotland, and in the older versus younger age groups
(Table 4). In Glasgow, the prevalence is higher in non-recent
than recent PWID in men, but the reverse is found in
women. Outside Glasgow, HCV prevalences for recent and
non-recent PWID are similar. The estimated total number
of HCV-prevalent cases in Scotland in 2009 is 46 657
(95% CI=33812-66803), involving 7559 (95%
CI=6579-8501) recent and 39121 (95% CI=26310-
59 094) non-recent PWID.

HCV diagnosed and undiagnosed estimates

The estimated proportion diagnosed ranges from 30 to
56% and is generally higher in the younger than the older
age groups (Table 5).

The estimated total number of undiagnosed-HCV-
prevalent PWID in Scotland in 2009 is 27434 (95%
CI=14 63647 564), with more than 80% of undiagnosed

© 2015 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

cases being non-recent PWID and more than 65% in the
older age-group.

Bias parameter estimates

Estimates of the number of diagnosed recent PWID gener-
ated from the DiagDat/TrtDat data in stage 1 are larger
than expected, based on the other data sources, by a factor
of 1.30 (95% CI=0.87-2.23) in the younger age group
and 3.81 (95% CI=2.45-4.93) in the older age group.
This bias parameter estimate is clearly larger in the older
age group than the younger, suggesting there are fewer
than a third as many diagnosed recent PWID aged > 35
than estimated in stage 1.

The estimated odds ratio of the NSP reported to the ‘true’
diagnosed proportion is 0.99 (95% CI=0.53-2.11) in 15—
34-year-olds and 1.75 (95% CI=0.85-3.06) in 35-64-
year-olds. Although there is a suggestion of an age difference
in the bias parameter estimates for the NSP diagnosed data,
due to uncertainty there is no clear evidence of a difference.

Model fit

The overall model fit was assessed using deviance summa-
ries. The baseline model provided a nearly exact fit, as the
numbers of data points and parameters are similar (Table 6).

Sensitivity analysis

The inclusion of bias-adjustment parameters was driven by
expert knowledge of the data sources and their potential
biases. No direct empirical evidence was available to inform
the bias parameters; hence, the expert knowledge com-
prised plausible upper and lower bounds for their prior dis-
tributions (Table 2). To assess sensitivity to this expert
judgement, alternative models including one in which the
data sources were assumed to be unbiased, were explored:
Sensitivity 1: Model with unbounded bias parameters;
Sensitivity 2: Model without bias parameters; and
Sensitivity 3: Model without either bias parameters or
CR informative prior for pg.

Addiction, 110, 1287-1300
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Table 5 Posterior medians and 95% credible intervals for number of hepatitis C virus (HCV) prevalent diagnosed and undiagnosed cases

for people who inject drugs (PWID) recently and non-recently in Scotland during 2009, by region of residence, gender and age.

Number of HCV
diagnosed (Tp7d)

Number of HCV
undiagnosed (Tpz(1 — 9J))

Proportion
diagnosed (o)

Glasgow Recent PWID Males 15-34
Males 35-64
Females 15-34
Females 35-64
Total number
Non-recent PWID  Males 15-34
Males 35-64
Females 15-34
Females 35-64
Total number
Rest of Scotland ~ Recent PWID Males 15-34
Males 35-64
Females 15-34
Females 35-64
Total number
Non-recent PWID  Males 15-34
Males 35-64
Females 15-34
Females 35-64
Total number
All Scotland Recent PWID
Non-recent PWID
15-34 years
35-64 years
Males
Females
Glasgow
Rest of Scotland
Total

6 (205, 547)

8 (212, 508)
231 (133, 356)
113 (72, 180)
1033 (695, 1446)

873 (677, 1033)
3777 (3484, 4045)
683 (555, 785)
1610 (1471, 1745)
6937 (6446, 7381)

796 (458, 1204)
513 (357, 806)
445 (255, 671)
156 (99, 251)
1937 (1281, 2685)

1614 (1193, 1975)
4725 (4191, 5232)
1094 (857, 1297)
1877 (1631, 2119)
9301 (8379, 10164)

2973 (1992, 4098)
16237 (14965, 17411)

6095 (5951, 6238)
13121 (12535, 13 710)

13000 (12457,13538)
6217 (5943, 6492)

7973 (7701, 8245)
11244 (10703, 11 782)

19216 (18614, 19823)

464 (283, 742)
731 (469, 1008)
250 (143, 417)
152 (84, 238)
1611 (1162, 2128)
1144 (432, 3181)
6265 (2711, 12802)
1028 (390, 2927)
3499 (1313, 8887)
12443 (5868, 23 697)

1319 (839, 1857)
684 (431, 1055)
666 (418, 968)
233 (132, 362)
2922 (2122, 3843)

1278 (467, 3650)
4991 (2008, 11 056)
1036 (363, 3127)
2405 (850, 6212)
10215 (4719, 20 095)

4537 (3386, 5846)
22872 (11008, 42050)

7354 (4056, 15 239)
19651 (9451, 36 045)

17455 (9228, 30603)
9802 (5003, 18 692)

14071 (7152, 25614)
13159 (7080, 23 591)

27434 (14 636,47 564)

43% (25%, 62%)
30% (20%, 48%)
48% (28%, 67%)
43% (27%, 64%)
40% (26%, 54%)

43% (24%, 63%)
38% (23%, 57%)
40% (21%, 61%)
32% (16%, 55%)
36% (23%, 53%)

38% (22%, 54%)
43% (29%, 62%)
40% (23%, 58%)
40% (25%, 61%)
40% (26%, 54%)

56% (34%, 74%)
49% (30%, 69%)
51% (28%, 72%)

44% (24%, 68%)
48% (33%, 65%)

40% (26%, 53%)
43% (30%, 59%)

46% (29%, 60%)
41% (27%, 59%)

44% (31%, 59%)
40% (26%, 56%)

36% (24%. 53%)
46% (33%, 61%)

42% (30%, 57%)

Table 6 Goodness-of-fit statistics for model parameters. D is the
deviance evaluated at the maximum likelihood result, D is the
posterior mean deviance, pp is the number of parameters and DIC
is the deviance information criterion [23,24].

Number of

data items D D pp DIC

Baseline model 48 243 47 44 91
NSP (HCV prevalence) 16 037 16 15 31
NSP (proportion diagnosed) 16 1.01 15 14 30
DiagDat/TrtDat 16 1.04 16 15 30

A model that fits well D will be approximately equal to the number of

data items and D will be approximately equal to the number of degrees
of freedom (the difference between the number of data items and the
number of parameters). The DIC is equal to the posterior mean deviance
D with the addition of a penalty term for the number of parameters p;,
DiagDat = Hepatitis C Diagnosis Database; TrtDat = Drugs Misuse Data-
base; HCV = hepatitis C virus; NSP = Needle Exchange Surveillance
Initiative.

© 2015 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

When the bounds for the bias parameters are removed
the non-recent PWID estimates increase greatly, due to a
higher upper limit for the 95% credible interval estimate
of the risk group size (sensitivity 1).

There is evidence that without bias adjustment
(sensitivity 2) there is some lack of fit, with estimates of
the number of recent PWID from this model being in con-
flict with those from the CR prior (17811 and 15618,
respectively) (Table 7 and Fig. 2). Without the CR prior
(sensitivity 3), the estimated number of recent PWID are
even higher (27977), further supporting the hypothesis
that the lack of fit was due largely to this conflict between
the CR study and the other data.

The main results and conclusions presented were based
on the baseline model with bias adjustment parameters, as
this gave the best model fit according to deviance statistics
when incorporating all available relevant sources of infor-
mation (Supporting information, Appendix S5).

Addiction, 110, 1287-1300



Undiagnosed hepatitis C in PWID in Scotland 1297

’ S _ - DISCUSSION
9] n 0 ©
2 a AR .
E - S Key findings
3 =) X N -
o S — . . .
-‘E E ce é o For the first time, using MPES, we have obtained estimates
Z ER == of the size of the HCV undiagnosed populations, which are
= < AN N <K
2 z b oo particularly valuable for the planning of future health-
£ - Z NRECE service demands and for identifying specific subgroups to
B é target in prevention programmes. Other modelling has
=}
5 § seas demonstrated that new HCV treatments could have a sub-
o]
;g E § % § § stantial impact on reducing HCV transmission among
; E) Q| oo lg lg PWID [6,25]. Accurate assessment of the magnitude of
| [c el
E ? E RAGTD that effect, as well as implementation of treatment strate-
o E | nhxwno gies, will require reliable knowledge of the diagnosed and
5] £ 2 MmO A I~
’% 21 | 2% 8 undiagnosed PWID populations. We estimated that of
_5 the 46000 prevalent HCV infections among PWID in
g e = = Scotland in 2009, 59% were undiagnosed and 83%
5 5:” 2 § § (95% CI=75-89%) of the undiagnosed had not injected
= )
§ A % SN that year. While some non-recent PWID will be in contact
; § S Qg with drug treatment services, an appreciable number may
M —~ o0 o0
= A oo = not. Reaching this population may prove challenging, but
g § 5 é/ ;.5 :OD/ it is necessary to implement diagnosis and treatment
E £ A : = programmes. Our analysis has also highlighted a need to
8 SN U A target diagnosis programmes towards older age groups.
% E We estimated that 71% (95% CI = 58-85%) of undiagnosed
fo g Y PWID in 2009 were aged 3 5-64 years, compared with 55%
= —
B =38 of all new HCV diagnoses in Scotland in 2009-12 in the
§ 2 ARSI : same age group [26]. Furthermore, as these older individ-
T > 60 ,
f; S| a § 5 ﬁ 5 uals are at greater risk of progressing to advanced stages of
5 v —~
2 = E L Lex HCV disease, they have a pressing need for prompt
I~ o ™
§ = | g a A § treatment.
g S | x —~ In Glasgow, HCV prevalence estimates are especially
E high in the older group due to a historical injecting epi-
a = demic which started in the early 1980s, and resulted in
é NI @ § a rapid rise in the number of PWID before the establish-
3 § E 22 ment of needle/syringe exchange in the city.
E 8| g 29 Linkage of TrtDat to DiagDat enabled a better-
£ E horr informed estimate of the number of PWID among the
% g % % g % HCV-diagnosed for use in the evidence synthesis than
E‘ I A5 83 was obtainable from DiagDat alone. Through modelling
S) D~ oM N
ﬁ Z | eRIH the probability of linkage to TrtDat and the recent/non-
E recent status of PWID explicitly, estimates of the size of
_é I subgroups that were not observed directly (e.g. PWID
= E § EAR-S in the unknown risk group) were obtained. This in-
= N
E - o creased the estimated number of diagnosed PWID from
) N N <H N
ES E A IS 61 to 86% of all those diagnosed, comparable to a simi-
2 § S | 22=23 lar estimate from a CR study of the Scottish HCV-
A
s laseR diagnosed population [22].
a = 5] +H M 0 o
£ = S PO NRTo RN NG
= A 2= N =~ N
Q
g
g .
5 3 Limitations
3 S = N ™
t E ‘E E %’ Producing reliable estimates of the number of individuals
2B 22
2 e ‘é’ ‘é ‘§ with anti-HCV antibodies depends upon information on
& &3 33 the size of the PWID population. The CR study provides
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estimates of the number of recent PWID, but no data on
the size of the non-recent PWID population exist. This is,
by nature, a difficult risk group to identify and survey. Re-
cent PWID were estimated to account for only 19% (95%
CI=13-26%) of the ever-PWID population, similar to
modelling projections for Scotland for 2010 of 19% [25]
but smaller than estimates for England in 2005 of 40%
[12].

The definition of non-recent PWID is variable, even
among the data sources used here, and cannot be
interpreted as long-term cessation of injecting. The CR
study provides estimates of the number of PWID injecting
during a particular year (2009), but in other data sources
‘recent’ was defined as injecting in the last month.
However, this definition of recent does not capture all infre-
quent but at risk of continuing injectors, and nor does the
CR definition of ‘last year’ injectors, due to the high uptake
of methadone treatment in the PWID population. We were
limited by the definitions in the data available; however, a
challenge for the future is the collection of data in which
a broader definition of recent PWID, which includes
infrequent injectors and reflects that people temporarily
cease injecting due to opioid substitution therapy and
prison, is used.

The sensitivity analyses highlighted a discrepancy
between the number of recent PWID estimated by the CR
study alone and the number suggested by the other data,
which was resolved by inclusion of bias-adjustment
parameters. The propensity of a recent PWID to contact
drug treatment services and hence be reported in TrtDat
may not be the only reason for bias; the regression analysis
may not have captured fully the characteristics that
distinguish recent from non-recent PWID. In the absence
of data on timings or characteristics of the transition from
injecting to non-injecting, a more comprehensive model-
ling of injecting careers, allowing prediction of the
recent/non-recent status at any point in time, was impossi-
ble. Furthermore, to discriminate more clearly between the
sensitivity analyses and estimate more accurately the
magnitude of the biases in the data would require improved
external data, ideally on the sizes of the recent and
non-recent PWID populations, which are currently non-
existent due to the challenge of surveying these
populations.

Findings in relation to other evidence

We have presented estimates of HCV-antibody preva-
lence in PWID in Scotland from the combined use of
survey and surveillance data relating to PWID and
HCV prevalence. The flexibility of the MPES approach
allowed us to combine the information from each data
source simultaneously; to account for any potential
bias; and to propagate the full uncertainty of each

© 2015 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

contributing data item through to the final estimates.
This approach overcomes the limitations of more tra-
ditional methods of prevalence estimation [13,27].
MPES methods have been employed successfully to
estimate the prevalence and
diseases, including HIV [9], toxoplasmosis [8] and in-
fluenza [28,29], as well as for HCV prevalence estima-

incidence of other

tion in other countries [12,31,30]. To our knowledge,
however, this is the first synthesis that allows estima-
tion of undiagnosed HCV prevalence. Evidence synthe-
sis that accounts for expert knowledge of biases and
other limitations of available data may be of value to
other countries, particularly those with a mixed
evidence base for HCV infection.

Implications

HCV testing in drug treatment services has been found
recently to be effective in increasing the numbers of
PWID diagnosed in Scotland [32,33]. Targeting older in-
dividuals with a history of injecting drug use through
primary care can also be an effective case-finding ap-
proach [34]. However, such approaches will require fully
engaged general practitioners (GPs) and community-
setting practitioners in high HCV-prevalence areas, and
widespread adoption, to diagnose the vast majority of
PWID.

Our modelling has focused upon HCV in the PWID pop-
ulation. While these individuals account for the majority of
the HCV burden, the contribution of other risk groups may
also be important. HCV prevalence varies by ethnicity and
it is thought that South Asian individuals may have an in-
creased prevalence [12]. Future work will extend the evi-
dence synthesis to include ethnicity, thus estimating the
prevalence of undiagnosed HCV for the whole population
in Scotland.
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