
RESEARCH ARTICLE

Abundance estimation for line transect

sampling: A comparison of distance sampling

and spatial capture-recapture models

Nathan J. CrumID*, Lisa C. NeymanID, Timothy A. Gowan

Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St Petersburg,

Florida, United States of America

* nathan.crum@myfwc.com

Abstract

Accurate and precise abundance estimation is vital for informed wildlife conservation and

management decision-making. Line transect surveys are a common sampling approach for

abundance estimation. Distance sampling is often used to estimate abundance from line

transect survey data; however, search encounter spatial capture-recapture can also be

used when individuals in the population of interest are identifiable. The search encounter

spatial capture-recapture model has rarely been applied, and its performance has not been

compared to that of distance sampling. We analyzed simulated datasets to compare the per-

formance of distance sampling and spatial capture-recapture abundance estimators. Addi-

tionally, we estimated the abundance of North Atlantic right whales in the southeastern

United States with two formulations of each model and compared the estimates. Spatial

capture-recapture abundance estimates had lower root mean squared error than distance

sampling estimates. Spatial capture-recapture 95% credible intervals for abundance had

nominal coverage, i.e., contained the simulating value for abundance in 95% of simulations,

whereas distance sampling credible intervals had below nominal coverage. Moreover,

North Atlantic right whale abundance estimates from distance sampling models were more

sensitive to model specification compared to spatial capture-recapture estimates. When

estimating abundance from line transect data, researchers should consider using search

encounter spatial capture-recapture when individuals in the population of interest are identi-

fiable, when line transects are surveyed over multiple occasions, when there is imperfect

detection of individuals located on the line transect, and when it is safe to assume the popu-

lation of interest is closed demographically. When line transects are surveyed over multiple

occasions, researchers should be aware that individual space use may induce spatial auto-

correlation in counts across transects. This is not accounted for in common distance sam-

pling estimators and leads to overly precise abundance estimates.
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Introduction

The cornerstone of effective wildlife population management is the ability to estimate popula-

tion abundance accurately and precisely. Two widely used methods for estimating abundance

are distance sampling (DS) and spatial capture-recapture (SCR), a recent development of

mark-recapture [1], and there are situations in which both methods could be suitable.

Although studies have compared abundance estimates of DS and mark-recapture models [2,

3] and SCR and mark-recapture models [e.g. 4], and demonstrated how these models are

related [5], to the best of our knowledge, DS and SCR model performances have not been com-

pared. We compare DS and SCR abundance estimation herein after providing a brief intro-

duction for both approaches. For in-depth descriptions we refer interested readers to

Buckland et al. [6] for DS and Royle et al. [7] for SCR.

During a DS survey, one or more observers conduct at least one search for individuals of a

species of interest. When observers detect an individual, they record the distance between

themselves and the detected individual. Distances to detected individuals are used to estimate

the scale of a detection function, which describes the probability that an individual is detected,

given its distance from the observer. The detection function and abundance can be estimated

simultaneously as in one-stage, hierarchical distance sampling [8]. Alternatively, a two-stage

approach can be taken where the detection function is estimated first, and abundance second

using a Horvitz-Thompson estimator based on the average detection probability over the sur-

veyed region and the number of individuals detected [6].

There are two primary DS survey types, line transect and point transect [1, 6]. While both

methods are useful, depending on the species or object of interest, we focus solely on line tran-

sect surveys, which involve observers traveling along a transect line and recording the perpen-

dicular distance between detected individuals and the line. Individuals in the population of

interest need not be individually identifiable for DS, although it is assumed that an individual

is seen at most once over a transect line.

A key assumption underlying DS is certain detection on the transect line [6]. However,

detection is often imperfect on the transect line due to availability and perception biases.

For instance, some individuals are unavailable for detection or observers do not detect all

individuals that are located on the transect line and are available for detection, respectively.

When either bias is present, survey or analytical methods can be modified to relax the

assumption of certain detection on the transect line and reduce the negative bias of resulting

abundance estimates [9]. One such approach to estimate perception bias is to use a double-

observer design, or mark-recapture distance sampling (MRDS), which involves two inde-

pendent observers scanning the survey area [6, 9, 10]. The proportion of detections made by

one observer to detections made by both observers is used to estimate the probability of

detection given an individual is located on the transect line [6, 11]. Alternatively, a separate

study may be conducted to estimate detection probability on the transect line for the species

of interest [12–15].

SCR, unlike DS, requires that individuals in the population of interest be individually iden-

tifiable. Identifying marks may be natural, such as humpback whale fluke or tiger stripe pat-

terns [16, 17], a DNA sample collected from hair or scat [18, 19], or human imposed, such as

leg bands on birds [20]. A surveyor attempts to capture or detect individuals, often using an

array of traps or detectors, from the population of interest. When individuals can be detected

at most once during a sampling occasion, multiple sampling occasions are needed for a SCR

analysis. The surveyor records encounter histories for each individual, denoting the occasions

during which each individual was and was not detected. Additionally, the location of each

detector and each detection is recorded for SCR analyses. Encounter histories can be used to
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estimate detection probability, which, along with the number of individuals detected at least

once, informs abundance estimation.

SCR was developed to address two shortcomings of traditional mark-recapture [7, 21, 22].

First, abundance estimates from mark-recapture are not associated with a well-defined study

area, so population density cannot be formally estimated. Second, mark-recapture does not

account for individual heterogeneity in detection probability due to individuals’ locations rela-

tive to detectors. SCR addresses these issues by incorporating the spatial data inherent to an

individual’s encounter history, i.e. where they were detected and where they were not. Specifi-

cally, each individual is associated with an unobservable activity center, which represents the

center of an individual’s movement or average location across sampling occasions. SCR esti-

mates the density of activity centers across a spatial state-space defined by the researcher. The

probability that an individual is detected at a detector on an occasion is modeled as a function

of the distance between the individual’s activity center and the detector. This detection func-

tion is analogous to the detection function used in DS.

SCR models can also accommodate data collected through search encounter field methods

where individuals are identifiable [22]. These field methods include surveying points, plots, or

along lines, such as in DS surveys. Search encounter SCR models differ from traditional SCR

models in that individuals can be detected anywhere in the state space, not just at the location

of detectors. However, to the best of our knowledge, all applications of the search encounter

SCR model treat surveys as a trapping grid, where survey effort and the locations of detections

are aggregated into a grid of cells [e.g., 23–25]. If survey effort occurs in a cell, then the “trap”

at the center of the cell is considered active, i.e., individuals can be detected there. The amount

of survey effort expended within each cell can be used as a covariate on detection probability.

However, when detections can occur away from a transect line, as in DS surveys, an individual

may be detected in cells other than the cell containing the line transect from which the individ-

ual was detected. Therefore, this approach presents a challenge to modeling survey effort when

detections occur away from the line. The search encounter SCR model proposed by Royle

et al. [22], which has yet to be broadly applied, avoids this challenge. It models detection prob-

ability as a function of the distance between an individual’s location and the location of survey

effort, rather than aggregating survey effort into a trapping grid. Like DS models for multiple

occasions, SCR assumes population closure (no births, deaths, immigration, or emigration)

across occasions and, like all mark-recapture models, that heterogeneity in detection probabil-

ity across individuals is modeled. Unlike DS, search encounter SCR models do not require cer-

tain detection along the transect line and can model the space use of individuals across

occasions.

One example of a species whose abundance is often estimated with DS but could be esti-

mated with SCR is the endangered North Atlantic right whale (NARW) Eubalaena glacialis
[26, 27]. Aerial line transect surveys are conducted off the southeastern US coast (SEUS) on

most days with suitable weather each winter (December through March) to monitor the

NARW population while on their winter calving grounds [28, 29]. Each NARW is uniquely

identifiable by callosity patterns on its head [30], and survey protocol dictates that planes

break track to photograph and identify every detected individual and obtain their exact loca-

tion [29]. Although this survey protocol of multiple sampling occasions and identifying indi-

viduals is not needed for DS, this combination produces data that can be modeled with both

DS and SCR.

Conceptually, search encounter SCR may be more appropriate for use in estimating

NARW abundance than DS. NARWs are not always available for detection during a survey

(i.e., are at a depth at which they cannot be seen) and may be missed by observers even when

they are located along the transect line and are available to be detected. SCR estimates the
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probability of detecting an individual located on the transect line based on information from

individual identifications, while DS requires additional data to be collected to correct cases

with imperfect detection on the transect line. Moreover, NARWs often move between sam-

pling occasions, and inference about NARW movement may be of interest. SCR explicitly

models individuals’ space use across sampling occasions, while DS does not.

However, the performance of the search encounter SCR model has not been compared to

DS. Given the lack of understanding around how the increased flexibility of SCR models may

influence abundance estimation, our objective was to compare the accuracy and precision of

abundance and other parameter estimates from DS and SCR models. We analyzed simulated

datasets and NARW data from January 2010 with DS and SCR models for this comparison.

Material and methods

Simulation scenarios

We analyzed simulated line transect datasets with DS and SCR models to compare their per-

formance. For each dataset, we simulated a population of individuals where each individual

was associated with an activity center, s = (sx, sy), located within the state space (study area).

Individuals moved about these activity centers, resulting in locations or movement outcomes,

u = (ux, uy), during each occasion of the simulation. We overlaid transect lines on the state

space, and the probability that an individual was detected on an occasion was a function of the

individual’s distance to the closest point on a transect line. Each transect line was surveyed

during each occasion in these simulations, although this is not a requirement for either DS or

SCR. From each simulation we generated capture histories that included each individual’s

location on the occasions it was detected.

We simulated datasets based on four values of the probability of detection on the transect

line, commonly referred to as g(0), g(0) � (1, 0.8, 0.5, 0.3), because our SCR model allows esti-

mation of g(0) without additional data, while DS models require additional data to be collected

to estimate g(0). These additional data often come in the form of having an additional observer

during surveys (e.g. MRDS) or by estimating g(0) independently of the line transect surveys.

Therefore, we simulated datasets generated from single- and double-observer sampling

designs for each value of g(0) less than one, resulting in seven scenarios (single- and double-

observer designs for g(0) � (0.8, 0.5, 0.3) and a single-observer design for g(0) = 1).

We simulated 1,000 datasets for each scenario with each dataset having a population size of

100 individuals. The number of occasions varied across different scenarios, so that the average

number of detections was similar across scenarios (between 50 and 70). Activity centers were

uniformly distributed across a state space (0� x� 40, 0� y� 40; Fig 1), where we denote the

activity center of individual i: (si,x, si,y).

Individuals’ locations on each occasion were distributed according to a bivariate normal

distribution around their respective activity centers, with movement scale parameter, σm = 2.5,

such that the probability of the location of individual i on occasion j, ui,j, occurring within

some area of space, A, such as a grid cell in a gridded state space, is a function of the distance,

dmovement,i,j, between the individual’s location and its activity center, following:

P ui;j 2 A
� �

¼

Z

A

1
2πσ2m

e
� 12

d2movement;i;j
σ2m

� �

dA ð1Þ

Ten horizontal line transects were surveyed each occasion, although each line need not be

surveyed every occasion in practice (Fig 1). Line transects were defined as y � (11, 13, 15, 17,

19, 21, 23, 25, 27, 29), with endpoints at x = 10 and 30. The probability that individual i was
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detected on occasion j, denoted as yi,j = 1, was a function of g(0) and the distance between the

individual and the closest transect on occasion j, ddetection,i,j, with a scale parameter, σd, of 1/3.

Pðyi;j ¼ 1Þ ¼ g 0ð Þ e
�
d2
detection;i;j

2σ2
d

0

@

1

A ð2Þ

We chose the above sampling configuration and values for σm and σd such that individuals

with activity centers located at the edge of the state space would have a negligible probability of

being detected over the course of sampling. In single-observer scenarios, we simulated whether

an individual was detected or not on an occasion from a Bernoulli distribution. In double-

observer scenarios, we simulated the number of observers that detected an individual on an

occasion from a binomial distribution with two draws.

We were also interested in comparing the performance of DS and SCR models when esti-

mating how density is associated with a spatial covariate. We simulated 250 datasets with 150

individuals, 10 sampling occasions, and g(0) = 0.8 for this spatial covariate scenario. We used

the same state space as in previous scenarios but discretized it into G = 100 4-by-4-unit grid

cells, where each cell was associated with a covariate value (Fig 1). Activity centers were distrib-

uted across cells of the state space according to a multinomial distribution, with the probability

of the activity center of individual i, si, occurring in cell k being a log-linear function of the

Fig 1. Simulated datasets. Examples of simulated datasets following a spatial capture-recapture model where density was uniform

across the state space (top row) or a function of a spatial covariate in the state space (bottom row). Each individual was associated with

an activity center, depicted by the points in the left column. Individuals were located around their respective activity centers on each

sampling occasion, represented for one individual by the open circles in the middle column. The probability of an individual moving to

a particular location during an occasion was a function of the distance from its activity center, with the individual being more likely to

be located close to rather than far from the activity center. These locations were also distributed as a function of the spatial covariate in

the spatial covariate scenario (bottom row). Line transect surveys, represented by the horizontal lines, were conducted during each

sampling occasion. The probability that an individual was detected on an occasion was a function of the distance between its location on

that occasion and the closest point on a transect line, with the probability being higher the closer an individual was to a line (right

column). The locations of detections are depicted by the crossed-out circles in the right column.

https://doi.org/10.1371/journal.pone.0252231.g001
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spatial covariates.

Pðsi 2 cellkÞ ¼
eβ0þβ1Covariatek

XG

n¼1
eβ0þβ1Covariaten

ð3Þ

Here, we set the values for parameters β0 and β1 such that the expected population size,
XG

n¼1
eb0þb1Covariaten , was 150.

Individuals’ locations were modeled on two spatial scales. The coarser scale was the cell in

which an individual was located on an occasion, which followed a multinomial distribution,

with the probability of being located in cell k being a function of that cell’s distance from the

individual’s activity center, with a scale parameter σm = 4, and the cell’s covariate value [31].

Pðui;j 2 cellkÞ ¼
e
� d2
k

2σ2m
þβ1Covariatek

X# of cells

n¼1
e
� d2n
2σ2m
þβ1Covariaten

ð4Þ

Here we used the same β1 parameter describing the effect of the covariate from the activity

center distribution, although SCR models can model these effects separately. Then, for the

finer spatial scale, the individual’s location within a cell followed a uniform distribution.

For this spatial covariate scenario, five single-observer line transects were surveyed each

occasion (Fig 1). Line transects were defined as y � (12, 16, 20, 24, 28) with endpoints x = 10

and 30. The probability that an individual was detected follows from Eq 2, with a detection

scale parameter, σd, of 2/3.

Distance sampling

We formulated our line transect DS models following Kery and Royle [32], who describe hier-

archical, one-stage DS models. We used a Bayesian approach with data augmentation to esti-

mate total abundance within the state space (N), abundance within the sampled region

(Nsampled), the detection scale (σd), and the probability of detection at zero distance from the

survey line (g(0)) in double observer, MRDS scenarios. Ntotal was derived from the estimate of

Nsampled following:

N ¼ Nsampled�
Areastate space
Areasampled

ð5Þ

where Areastate space is the area of the state space. The area sampled, Areasampled, is based on the

cumulative length of transect lines surveyed across sampling occasions and the truncation dis-

tance, which is described below.

Data augmentation is performed by adding M—n latent detection distances to the model,

where M is the largest population size permitted by the model and n is the number of detec-

tions. Abundance within the sampled region followed a binomial distribution:

Nsampled � BinomialðM;ψÞ

where ψ is the data augmentation parameter used to estimate the proportion of the M potential

individuals that were truly part of the population [32]. In uniform density scenarios ψ followed

a uniform distribution:

ψ � Uniformð0; 1Þ

In scenarios where density was modeled as a function of a spatial covariate, ψ was a function of
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expected abundances across grid cells:

ψ ¼

XK

k¼1
λk

M
ð6Þ

λk¼ e
β0þβ1Covariatek ð7Þ

where λk and Covariatek are the expected abundance and covariate value of cell k, respectively,

and β0 and β1 are estimated parameters. Additionally, in the spatial covariate scenario the cell

in which an individual was located followed a categorical distribution:

ui � Categorical
λ1

XK

k¼1
λk
;

λ2
XK

k¼1
λk
; . . .;

λK
XK

k¼1
λk

0

@

1

A

where ui is the cell in which individual i is located.

For line transect data the distances between individuals and transect lines follow a uniform

distribution:

di � Uniformð0; dtruncationÞ

where di is the distance from individual i to the transect line and dtruncation is the truncation

distance, which defines the boundary of the sampled region around a transect. In our analyses

the truncation distance was half the distance between adjacent transect lines. However, our

simulations and the NARW application allowed for detections beyond the endpoints of tran-

sect lines, which is atypical for line transect distance sampling. Distances between individuals

and the endpoints of transect lines follow a triangular distribution, as in point transect distance

sampling [33]:

di � Triangularð0; dtruncationÞ

Additional details describing the simultaneous analysis of detection distances within and

outside transect line endpoints can be found in the S3 Appendix. Finally, the number of times

individual i was detected or not, yi, followed a binomial distribution:

yi � Binomial gð0Þe
�
d2i
2σ2
d ;X

 !

where x, the number of draws, was one for single observer models and two for double observer

models. In double observer models we estimated g(0) from the data with a non-informative

uniform prior distribution, whereas in single observer models g(0) was either fixed at the sim-

ulating value of g(0) or drawn from an informative beta prior distribution. Informative beta

prior distributions had a mean equal to the value of g(0) used to simulate the dataset being ana-

lyzed and a standard deviation of 0.1 in uniform density models and 0.05 in models with spa-

tial covariates. Use of informative priors was intended to replicate the approach of using

independent data to estimate g(0). In all models we estimated σd from the data with a non-

informative uniform prior distribution.

Spatial capture-recapture

We formulated our SCR models following Royle et al. [22]. We again used a Bayesian approach

with data augmentation to estimate total abundance within the state space (N), the movement

scale (σm), the detection scale (σd), and the probability of detection at zero distance from the
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survey line (g(0)). Abundance within the state space followed a binomial distribution:

N � BinomialðM;ψÞ

As in the distance sampling models, ψ followed a uniform distribution in uniform density

models. In models that included a spatial covariate, ψ was a function of expected abundances

across grid cells:

ψ ¼

XK

k¼1
λk

M
ð8Þ

λk¼ e
β0þβ1Covariatek ð9Þ

In uniform density models the activity center of individual i, si, followed a uniform distribu-

tion:

si � UniformðSÞ

where S is the state space. In models with a spatial covariate, the grid cell in which si was

located followed a categorical distribution:

si � Categorical
λ1

XK

k¼1
λk
;

λ2
XK

k¼1
λk
; . . . ;

λK
XK

k¼1
λk

0

@

1

A

The location of individual i on occasion j, ui,j, followed a bivariate normal distribution in

uniform density models:

ui;j � Normalðsi;ΣÞ

Σ ¼
σm 0

0 σm

" #

ð10Þ

In models with a spatial covariate, the grid cell in which ui,j was located followed a categori-

cal distribution:

ui;jjsi � Categorical
γ1

XK

k¼1
γk
;

γ2
XK

k¼1
γk
; . . . ;

γK
XK

k¼1
γk

0

@

1

A

gk ¼ e
�

d2
k

s2
m
þb1�Covariatek

� �

ð11Þ

where dk is the distance from si to the center of cell k. The location of ui,j within a grid cell fol-

lowed a uniform distribution. We estimated σm from the data using a non-informative uni-

form prior distribution. Whether individual i was detected or not on occasion j, yi,j, followed a

binomial distribution:

yi;j � Binomial gð0Þe
�
d2i;j
2σ2
d ;X

0

@

1

A

where di,j is the distance between ui,j and the closest transect line and the number of draws, x,

is two in double observer designs and one in single observer designs. We estimated g(0) and σd
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from the data using non-informative uniform prior distributions. This detection model is

identical to that of our distance sampling model and can accommodate continuous line tran-

sect survey effort. In contrast, Royle et al. [22] present hazard models for detection and

approximated line transect survey effort using a set of evenly spaced points along the transects.

Details for calculating the distance between ui,j and continuous transect lines can be found in

the S3 Appendix.

Analysis of simulated datasets

We used the Nimble package [34] in program R 3.6.2 [35] to write and implement all DS

and SCR models [S3 Appendix]. For each simulated dataset we ran three Markov chain

Monte Carlo (MCMC) chains of 25,000 iterations for each model. We checked for conver-

gence of MCMC chains using the r-hat statistic [36]. We discarded the fewest of 5,000,

10,000, or 15,000 iterations as burn-in for each simulation while ensuring that r-hat values

were less than 1.1 for all parameters. For instance, if all chains converged within the first

5,000 iterations, the first 5,000 iterations were discarded, but if all chains did not converge

within the first 5,000 iterations but did within 10,000 iterations, the first 10,000 iterations

were discarded, and so on. If the chains of any parameter did not converge by 15,000 itera-

tions, all analyses conducted on that dataset were omitted and a new dataset was simulated

and analyzed to replace it. However, we did not simulate new datasets in such cases for the

spatial covariate scenario because of the greater runtime required for those models. We

report the average posterior mean and 95% credible interval, as well as the 95% credible

interval coverage, average root mean squared error (RMSE), and average bias for each

parameter in each scenario. The 95% credible interval coverage was calculated as
Xn

i¼2
Iðθ � θ̂i;0:025Þ � Iðθ � θ̂i;0:975Þ=n, where n is the number of simulations, θ is the true

value of a parameter, θ̂i;0:025 and θ̂i;0:975 are the 0.025 and 0.975 quantiles of the posterior dis-

tribution of parameter θ of the i-th simulation, and I is an indicator function that equals

one if its argument is true and zero if it is false. Average root mean squared error and bias

were calculated as
Xn

i¼1

XT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðθ̂i;t � θÞ
2

q

=T
� �

=n and
Xn

i¼1

XT

t¼1
ððθ̂i;t � θÞ=TÞ=n,

respectively, where T is the number of MCMC iterations after discarding the burn-in, and

θ̂i;t is the estimate of θ at the t-th MCMC iteration for the i-th simulated dataset θ̂t.

Estimating abundance of North Atlantic right whales

Using single-observer DS and SCR models, we estimated abundance of NARWs in the SEUS

from aerial survey data collected between 16 January 2010 and 31 January 2010. Specifically,

we estimated abundance over a 76,800 km2 state space that ranges from 28.0˚ N to 33.8˚ N and

from the coast of Florida, Georgia, and South Carolina to waters 70 m deep (Fig 2). Aerial line

transect surveys were flown for 10 of the 16 days. Subsets of 82 transect lines were flown each

of these 10 days. The transect lines flown ranged from 29.6˚ N to 33.0˚ N and from shore to as

far as 65 km offshore. When a NARW was detected, the aerial survey team broke from the

transect line to photograph the NARW for identification purposes and to document the exact

location of the NARW. See Gowan and Ortega-Ortiz [29] for a further description of field

methods used. Over these 10 survey days 91 individual NARWs were detected (38 on one

occasion, 27 twice, 12 three times, 11 four times, and 3 five times).

We present two DS and SCR models of right whale density to demonstrate the application of

both models to the same dataset. The first assumes density is constant across space, and the sec-

ond models spatial variation in density as a quadratic function of depth analogous to our spatial
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covariate scenario. Additional models that include different detection functions and density

models would be needed to make robust multi-model inference regarding NARW abundance,

however such a model set is beyond the scope of this study. In our DS analyses of right whale

data we fixed the value of g(0) to 0.6 following the work of Hain et al. [37], who found right

whale availability for detection in the Southeast was approximately 0.6. Uncertainty in this esti-

mate of availability was high and including that uncertainty into a prior distribution for g(0) led

to slow model convergence and unreasonably large abundance credible intervals in preliminary

tests; therefore we did not account for this uncertainty in g(0). We used a Bayesian approach for

all models and augmented the encounter histories of the 91 observed individuals with 259

unobserved encounter histories of individuals that may have been part of the population, result-

ing in a maximum possible abundance of 350. Preliminary analyses indicated that enough

unobserved encounter histories were added through data augmentation, as the posterior distri-

bution for abundance was not truncated. We ran three MCMC chains of 20,000 iterations for

the uniform density models and three chains of 40,000 iterations for the models that included

depth as a covariate on density. We discarded 5,000 iterations as burn-in for each model and

report the posterior means and credible intervals of estimated parameters.

Results

Simulations

SCR abundance estimates were positively biased, from 1–9%, across all scenarios (however, see

S1 Appendix, which shows SCR abundance estimates of larger datasets are unbiased), while

the bias of DS abundance estimates was more varied (Table 1). DS models with a fixed g(0)

Fig 2. North Atlantic right whale density. Expected North Atlantic right whale (NARW) density per 400 km2.

NARW density was estimated as a quadratic function of depth within the state space using distance sampling (DS;

bottom left panel and red in top panel) and spatial capture-recapture (SCR; bottom right panel and blue in top panel).

Posterior mean expected density and 95% credible intervals across the range of depth in the state space is illustrated in

the top panel for both DS (red) and SCR (blue) models. Bottom panels illustrate posterior mean expected density

across the state space for DS (left) and SCR (right) models that included depth and depth2 as covariates on density.

https://doi.org/10.1371/journal.pone.0252231.g002
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were negligibly biased (-1%–2%) across all scenarios, while double-observer and informed g(0)

DS models had increasingly positive bias as the true value of g(0) decreased (bias <5% with g

(0) = 0.8 and 25–30% with g(0) = 0.3) (Table 1).

RMSE of SCR abundance estimates was lower than that of all DS models in all scenarios

(Table 1). DS models with fixed g(0) had RMSE 6–22% higher than SCR models across scenar-

ios. RMSE of abundance estimates from informed g(0) and double-observer DS models

increased as the true value of g(0) decreased. Additionally, RMSE of abundance estimates from

these models was 12% and 26% higher than that of SCR in scenarios where g(0) was 0.8. When

g(0) was 0.3 RMSE was 133 and 215% higher than that of SCR (Table 1).

The estimated abundance credible interval range was 17–25% narrower for fixed g(0) DS

models than for SCR models across all scenarios. The credible interval range increased as the

true value of g(0) decreased for double-observer and informed g(0) models, increasing 206%

and 137%, respectively, from when g(0) was 0.8 to 0.3 The credible interval ranges of these two

models were wider than that of SCR in all scenarios except the double-observer scenario with

g(0) equal to 0.8 (Table 1).

Abundance 95% credible interval coverage was nominal, i.e. not significantly different from

95%, for SCR models in all scenarios. Coverage was below nominal for fixed g(0) and double-

observer DS models in all scenarios. Coverage was below nominal for the informed g(0) DS

model when g(0) was 0.8 and was above nominal when g(0) was 0.5 and 0.3 (Table 1).

Both the bias and RMSE of the detection scale estimates were lower for SCR than for all DS

models across all scenarios. Likewise, bias and RMSE of the estimated effect of the spatial

covariate were lower for SCR than for DS in the spatial covariate scenario. The estimated

Table 1. Simulation summary.

g(0) # Occasions # Observers Model Mean 95% CI 95% CI Coverage RMSE Bias

1 4 1 SCR 104.3 (73.0, 143.1) 0.944 18.5 4.3

DS–fixed g(0) 102.2 (72.8, 138.9) 0.854 22.6 2.2

0.8 6 1 SCR 109.1 (75.4, 152.7) 0.945 20.8 9.1

DS–fixed g(0) 101.3 (73.4, 134.9) 0.841 22 1.3

DS–informed g(0) 105.3 (69.9, 162.3) 0.935 23.4 5.3

0.8 5 2 SCR 103.6 (76.2, 136.8) 0.956 15.6 3.6

DS–double observer 103.9 (80.3, 134.1) 0.819 19.7 3.9

0.5 10 1 SCR 105.4 (72.5, 148.6) 0.953 19.2 5.4

DS–fixed g(0) 102.7 (73.9, 137.6) 0.866 21.3 2.7

DS–informed g(0) 113 (66.1, 194.9) 0.98 26.8 13

0.5 7 2 SCR 105 (76.2, 140.6) 0.952 16.2 5

DS–double observer 112.9 (76.5, 173.6) 0.872 31 12.9

0.3 20 1 SCR 103.9 (73.7, 142.7) 0.954 17.6 3.9

DS–fixed g(0) 100.6 (73.8, 132.4) 0.85 20.8 0.6

DS–informed g(0) 130.3 (58.4, 277.7) 0.997 40.9 30.3

0.3 11 2 SCR 104.7 (75.5, 141.1) 0.948 17.1 4.7

DS–double observer 125 (68.8, 233.4) 0.91 53.9 25

0.8 10 1 SCR–spatial covariate 156 (116.1, 209.2) 0.965 18.1 6

DS–fixed g(0)–spatial covariate 153.4 (115.1, 200.3) 0.881 20.3 3.4

DS–informed g(0)–spatial covariate 152.7 (111.6, 204.7) 0.895 19.3 2.7

Model performance based on simulated datasets for spatial capture-recapture models (SCR) and distance sampling models (DS), where g(0) (detection on the transect

line) was either fixed at the true value, informed via a prior distribution, or estimated via a double observer sampling protocol (i.e. mark-recapture distance sampling).

The average posterior mean, 95% credible interval (CI), 95% CI coverage, root mean squared error (RMSE), and bias for abundance are reported for each scenario.

https://doi.org/10.1371/journal.pone.0252231.t001
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movement scale from SCR models was negatively biased across all scenarios. In uniform den-

sity scenarios with g(0) equal to 1, 0.8, and 0.5 all top level parameters (N, g(0), σd, and σm)

converged for>99% of both SCR and DS models. In the scenario with g(0) equal to 0.3, top

level parameters converged in all DS models that fixed the value g(0), in 73.0% of DS models

that drew g(0) from an informative prior distribution, and in 79.3% of SCR models. In the spa-

tial covariate scenario convergence was reached for all top level parameters (N, g(0), β0, β1, σd,

and σm) in 64% of fixed g(0) DS analyses, in 60.8% of informed g(0) analyses, and in 79.2% of

SCR analyses [S1 Appendix].

North Atlantic right whale abundance

The uniform density DS model estimated a population size of 247.5 (210–285 95% CI), while

the uniform density SCR model estimated a population size of 160.2 (134–193 95% CI). The

value of g(0) for the DS model was fixed at 0.6, and the uniform density SCR model estimated

a value of g(0) of 0.832 (0.662–0.984 95% CI). The uniform density SCR and DS models esti-

mated a similar σd of 3.51 km (2.94–4.24 km 95% CI) and 3.47 km (2.91–4.18 km 95% CI),

respectively. The SCR model estimated a σm of 142.6 km (119.3–182.4 km 95% CI).

The SCR and DS models that modeled density as a quadratic function of depth estimated

similar population sizes of 159.0 (131–193 95% CI) and 156.4 (133–182 95% CI), respectively.

Additionally, both models estimated density to be similarly associated with depth (Fig 2). The

SCR model estimated g(0) to be 0.558 (0.441–0.696 95% CI). Again, the SCR and DS models

estimated similar values of σd, 3.79 km (3.11–4.67 km 95% CI) and 3.82 km (3.12–4.69 km

95% CI). The SCR model estimated a σm of 153.9 km (124.0–201.0 km 95% CI).

Discussion

We compared the accuracy and precision of search encounter spatial capture-recapture (SCR)

and hierarchical distance sampling (DS) abundance estimators using simulated data sets and

found that the SCR estimator outperformed all DS estimators. The SCR abundance estimator

had lower RMSE than all DS estimators and had nominal credible interval coverage, whereas

DS estimators had below nominal coverage. Additionally, while the SCR abundance estimator

was slightly positively biased, the DS estimators were as or more positively biased when uncer-

tainty in g(0) was modeled. The search encounter SCR model has not been applied beyond its

conception [22, 38], and we are unaware of any such comparison between DS and SCR mod-

els. However, the search encounter SCR model outperformed DS models in our scenarios, sug-

gesting that future research and use of the search encounter SCR model is warranted.

Assumptions of conventional DS include the following: all animals on the transect line are

detected (g(0) = 1), animals do not move in response to the observer, distance to animals is

measured without error, and animals are detected independently of one another [6]. Our sim-

ulated datasets did not violate these assumptions, other than g(0) 6¼ 1, which we accounted for

in our modeling approaches. Despite this, the DS abundance estimates were overly precise (i.e.

variance was underestimated and credible interval coverage was below nominal) and became

more so in scenarios with more sampling occasions [S1 Appendix]. We suspect that this over-

precision is due to the DS model underestimating variance by not explicitly accounting for the

space use of individuals relative to the spatial configuration of transect lines across sampling

occasions. This space use of individuals can cause spatial autocorrelation in the number of

detections across transect lines. Models have been developed for repeated DS surveys to

account for individuals moving in to and out of the sampled region, i.e., temporary emigration

[39]. Still, variance is not appropriately estimated by these models when individuals have dif-

ferent probabilities of temporarily emigrating, as in our simulations where the overlap of an
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individual’s space use with the sampled region depended on the location of its activity center

[39]. Developments in hierarchical DS have been proposed to account for non-independence

of detections at discrete sites over repeat sampling occasions [40]. Advancing this idea to cases

where the study area is continuous, rather than composed of discrete sites, could address the

over-precision we found in DS abundance estimates. Additionally, variance estimation has

received more attention for two-stage DS models than the one-stage hierarchical model we

applied [41]. However, variance is still underestimated by a two-stage DS model that accounts

for repeated sampling occasions, whether variance is estimated analytically or through non-

parametric bootstrapping [S2 Appendix]. Moving block bootstrapping [42, 43] and parametric

bootstrapping [44] are additional specialized approaches that may provide unbiased variance

estimation but were not tested here. We evaluated simple space use models here that may not

approximate the space use patterns of many species. Moreover, the space use models of our

simulations met the assumptions of the SCR models. Therefore, we did not evaluate whether

SCR abundance estimates are robust to any misspecification of the space use model. Addi-

tional work would be needed to determine if DS underestimates the variance of abundance

and if SCR abundance estimates are robust under other individual space use models.

The DS models required modification to account for the location along the transect line

where individuals were detected, i.e. within or outside the transect line’s endpoints. Detections

within endpoints were generated from line transect sampling, while detections outside end-

points were generated from point transect sampling. This modification is not available in com-

mon analytical tools for DS, such as the Distance package [45] in program R, and required a

custom sampler built through the Nimble package [33; S3 Appendix]. Researchers using DS to

model line transect surveys should be aware that detections outside the endpoints of line tran-

sects should be discarded to meet the assumptions of line transect DS. Survey configurations

with fewer and longer line transects and narrower search widths will require a smaller propor-

tion of detections to be discarded. Retaining these detections in a line transect DS analysis

could lead to an overestimation of the detection scale (more detections occur farther from the

sampler in point transect than line transect sampling with the same detection scale) and an

underestimation of abundance. SCR inherently accounts for this obstacle by explicitly model-

ing the locations of transect lines and individuals and deriving the distance between them.

Therefore, survey effort and detections that are typically discarded in a DS analysis can be

incorporated into a SCR analysis without modification of the SCR model.

The SCR model performed well except for the small positive bias of abundance point esti-

mates. However, this bias decreased in scenarios with more recaptures, suggesting that the esti-

mator has negligible bias for large sample sizes [S1 Appendix]. Additionally, the DS

abundance estimates from models that accounted for uncertainty in g(0) were as or more posi-

tively biased than SCR estimates. The DS abundance estimates from models that fixed g(0) at

the true value were unbiased. However, this approach is not ideal in applications of DS, as g(0)

is unknown and fixing its value does not propagate any of its associated uncertainty into the

abundance estimate [12]. Researchers using these models should be aware of these biases when

analyzing small datasets and should consider using the median of the posterior distribution as

a point estimate for abundance because it is less biased than the mean [S1 Appendix].

DS has been used to produce spatially explicit estimates of North Atlantic right whale

(NARW) abundance [26, 27]; however, SCR should be the preferred approach to estimate

NARW abundance based on common NARW sampling procedures and SCR’s outperforming

DS in our comparisons. NARWs are individually identifiable, and their population is surveyed

by aerial line transect surveys conducted over multiple occasions in the same region [27, 29].

Additionally, g(0) 6¼ 1, because NARWs, like other marine mammals, spend time below the

water’s surface where they are unavailable for detection and may be difficult to detect at the

PLOS ONE Abundance estimation for line transect sampling

PLOS ONE | https://doi.org/10.1371/journal.pone.0252231 May 28, 2021 13 / 17

https://doi.org/10.1371/journal.pone.0252231


surface, depending on environmental conditions and behavior [37, 46]. SCR overcomes these

sources of bias, while design or modeling modifications would be needed for a DS approach,

which would still result in a poorer performing abundance estimator. Furthermore, SCR may

produce more robust abundance estimates across competing model formulations than DS and

therefore be less sensitive to model misspecification. This is evidenced by both SCR models

producing similar abundance estimates (159.0 and 160.2), whereas abundance estimates from

the two DS models were so different that their credible intervals did not overlap. The uniform

density DS model assumes random placement of transect lines and estimated abundance to be

considerably higher than the other three models, which may be due to the non-random place-

ment of transect lines with respect to depth or other environmental characteristics with which

NARW abundance is associated. However, we did not apply any model selection techniques or

goodness of fit statistics that would be needed to make inference on NARW abundance.

Still, a closed population SCR model is not ideal for estimating NARW abundance.

NARWs are a migratory species, and their regional abundance in the SEUS changes through-

out the winter as individuals migrate into and out of the region [47]. Therefore, although we

estimated NARW abundance in the SEUS over a short 2-week interval to try to meet our SCR

model’s assumption that the population is closed [7], NARWs may have arrived or departed

the SEUS during the study period. Future efforts to estimate NARW abundance in the SEUS

using SCR should focus on longer time periods using an open population model, which will

allow for estimation of abundance over time and rates of immigration, emigration, and move-

ment within the SEUS region [48–50].

Additional development of the search encounter SCR model may be needed to accommo-

date NARW social behavior and movement too. SCR assumes individuals in the population of

interest are distributed and detected independently, however NARWs form temporary social

groups [51]. Future work developing methods to account for group fission/fusion dynamics

and the non-independence of detections of individuals in a group could address this violation

of SCR assumptions. Although, Bischof et al. [52] found that SCR abundance estimates are

robust to non-independence of individuals’ activity centers and detections. Furthermore, the

SCR models used herein model the space use of a NARW as distributed about a central activity

center. This type of space use model is often used for species that, unlike NARWs, exhibit

home range behavior. Instead, a movement model could be developed such that the location

of a NARW on one sampling occasion is modeled as a function of its location on the previous

sampling occasion. Similar models have been developed to describe the movement of individ-

uals’ activity centers in open population SCR models [53].

Estimating abundance accurately and precisely is critical to wildlife population manage-

ment and conservation. Both DS and SCR models estimated abundance with bias of less than

10% across most scenarios. Therefore, it is unlikely that using one model over the other would

inform management decisions differently. Still, researchers in the planning and analysis stages

of abundance estimation studies should think carefully about their study system when choos-

ing a modeling approach. We advise them to consider additional simulation studies, because

the costs of sampling and individual identification and value of accurate and precise abun-

dance estimates vary across study systems. Generally, DS will be more cost efficient than SCR

as it does not require repeat sampling occasions or expending effort to identify individuals.

The search encounter SCR model requires multiple sampling occasions and the assumption of

population closure, which a single occasion DS study does not. However, for rare species such

as the NARW, more than one sampling occasion may be required to detect enough individuals

for a DS analysis. Still, DS is a good choice when it is safe to assume that g(0) = 1 or perception

bias and availability biases can be estimated, when individuals cannot be uniquely identified,

and when surveys are conducted over a single sampling occasion. However, researchers must
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be aware that a combination of transect line placement and animal movement over multiple

occasions can lead to overly precise abundance estimates if variance is inappropriately esti-

mated, which may give management decision-makers false confidence and inaccurate infor-

mation. Survey design may ameliorate this issue, with surveys conducted in the same region

over multiple occasions being distributed widely enough in space or time. This could prevent

movement of individuals from causing over-precision in abundance estimates, although sur-

veys should not be so widely distributed in time that abundance changes over sampling occa-

sions. Conversely, search encounter SCR is more flexible and robust than DS for modeling line

transect data but requires that individuals are identifiable and surveys are conducted over mul-

tiple occasions, which is not possible for every study system. SCR relaxes the DS assumption

that detection probability on the transect line is certain without survey design or modeling

modifications by using information from individual recaptures across occasions. Additionally,

SCR can provide inference on space use and resource selection, which are unaccounted for in

DS models and can lead to over-precision and higher error in abundance estimates. Therefore,

SCR should be the model of choice to estimate abundance from line transect data collected

over multiple occasions on a population of identifiable individuals.
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