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Abstract

INTRODUCTION: Alzheimer’s disease (AD) is the predominant dementia globally,

with heterogeneous presentation and penetrance of clinical symptoms, variable pres-

ence of mixed pathologies, potential disease subtypes, and numerous associated

endophenotypes. Beyond the difficulty of designing treatments that address the core

pathological characteristics of the disease, therapeutic development is challenged

by the uncertainty of which endophenotypic areas and specific targets implicated

by those endophenotypes to prioritize for further translational research. However,

publicly funded consortia driving large-scale open science efforts have produced mul-

tiple omic analyses that address both disease risk relevance and biological process

involvement of genes across the genome.

METHODS:Herewe report the development of an informatic pipeline that draws from

genetic association studies, predicted variant impact, and linkage with dementia asso-

ciated phenotypes to create a genetic risk score. This is paired with a multi-omic risk

score utilizing extensive sets of both transcriptomic and proteomic studies to identify

system-level changes in expression associated with AD. These two elements com-

bined constitute our target risk score that ranks AD risk genome-wide. The ranked

genes are organized into endophenotypic space through the development of 19 bio-

logical domains associated with AD in the described genetics and genomics studies

and accompanying literature. The biological domains are constructed from exhaustive

Gene Ontology (GO) term compilations, allowing automated assignment of genes into

objectively defined disease-associated biology. This rank-and-organize approach, per-

formed genome-wide, allows the characterization of aggregations of AD risk across

biological domains.

RESULTS: The top AD-risk-associated biological domains are Synapse, Immune

Response, Lipid Metabolism, Mitochondrial Metabolism, Structural Stabilization, and
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Proteostasis, with slightly lower levels of risk enrichment present within the other 13

biological domains.

DISCUSSION: This provides an objective methodology to localize risk within specific

biological endophenotypes and drill down into themost significantly associated sets of

GO terms and annotated genes for potential therapeutic targets.
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1 BACKGROUND

Alzheimer’s disease (AD) is a complex, heterogeneous, neurodegen-

erative disease defined by the extracellular aggregation of amyloid

plaques and the intracellular accumulation of neurofibrillary tangles

composed of paired helical filaments of hyperphosphorylated tau

protein.1 While amyloid and tau are hallmarks of the disease, recent

large-scale multi-omic analyses emphasize the complexity of inter-

woven biological processes associated with AD pathogenesis. Over

a decade ago the National Institute on Aging and the Alzheimer’s

Association began a joint initiative to capture this complexity within

a disease ontology, the Common Alzheimer’s and Related Dementias

ResearchOntology (CADRO).2 Thegoal behindCADRO’sdevelopment

was to articulate the biological processes and cell types involved in

AD pathology and progression and since its launch has been employed

to characterize candidate AD therapeutics in clinical trials and track

the diversification in investigational areas over time.3 Establishing

a diverse target portfolio enhances the potential for translational

impact; the availability of therapeutic targets implicated in a variety

of disease-linked biology enables intervention through distinct mech-

anisms, which may be necessary to address the heterogeneous AD

population and to be deployed in a coordinated manner.4 While useful

to classify the mechanism of action of trial therapeutics, the align-

ment between the gene target of a trial agent and its ontological

classifier is performed manually based on the judgment of domain

experts,which cannotbe scaledgenome-widewithout computationally

amenable definitions.

A driving force behind the diversification of the AD target portfo-

lio is an expanding view of AD biology due, in part, to recent efforts

that have amassed a wealth of disease-relevant molecular data from

various patient cohorts. The Accelerating Medicines Partnership for

Alzheimer’sDisease (AMP-AD) consortium, for example, has generated

multiple omics datasets from post mortem brain samples (eg, includ-

ing genomic, transcriptomic, proteomic, metabolomic) and made these

data openly available on the AD Knowledge Portal.5 These systems-

level investigations into AD are a rapidly increasing information

domain, and each new study contributes large datasets that provide

an objective view of disease processes across different biological van-

tage.However, eachof thesedatasets can suggest hundredsof genes as

potential new therapeutic targetswithout clear priority. Genome-wide

association studies (GWAS) alone have identified over 75 risk loci,6 and

analyses of transcriptomic7–10 and proteomic11,12 data have identified

dozens of co-expression modules that consist of hundreds to thou-

sands of genes or proteins each. Currently over 600 targets have been

nominated by AMP-AD researchers for further therapeutic devel-

opment (agora.adknowledgeportal.org). Furthermore, each of these

studies implicates a diverse set of biological processes and endophe-

notypes that are altered in the genesis of, and response to, late-onset

progressive neurodegeneration in AD. The difficulty in performing a

unified analysis of these divergent datasets is twofold: (1) there is no

objective categorization of genes into disease-relevant endopheno-

types and (2) there is no genome-wide methodology to integrate and

assess AD-associated risk measured in different studies.

In this paper, we describe data integration across modalities to

score, rank, and organize potential AD therapeutic targets genome

wide. First, we identified 19 biological domains that correspond to

AD-associated endophenotypes and define them using sets of Gene

Ontology (GO) terms, with the intent to keep each domain siloed in a

biologically coherent fashion. This provides an objective strategy to

characterize gene targets into AD endophenotypes. Second, we devel-

oped a target risk score (TRS) that integrates signatures of risk from

genetic association studies as well as signatures of differential expres-

sion in transcriptomic and proteomic data. We show that these tools

can be applied to assess which specific genes within large datasets

are elevated in disease risk and to group the most risk-enriched genes

within common biological domains, providing a framework for analysis

that can be employed across research studies. While we observed that

AD risk was distributed across all 19 biological domains, we found that

the biological domains demonstrating the greatest AD risk association

were Synapse, Immune Response, Lipid Metabolism, Mitochondrial

Metabolism, Structural Stabilization, and Proteostasis. Each domain

can be examined in more detail by elaborating specific elements of

a biological process that are particularly risk-enriched. For exam-

ple, we identify electron transport chain complex I-related factors

within mitochondrial metabolism as one such focal point. The system

described here represents the most comprehensive to date, providing

genomic coverage of risk mapped onto known AD endophenotypes,

spanning 27 genetic association studies, transcriptomic signatures

from 1699 brains, proteomic signatures from 1188 brains, and 7127

GO terms structured within the 19 biological domain classifications.

These tools are openly available to the research community as a part

of the Target Enablement to Accelerate Therapy Development in AD

https://agora.adknowledgeportal.org
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RESEARCH INCONTEXT

1. Systematic review: The data relevant to the review cov-

ered two areas: multi-omic assessment of AD risk and

disease-linked endophenotypes. The authors reviewed

the pertinent data in the literature in PubMed in addition

to data within public repositories, such as AD Knowledge

Portal, the GWAS Catalogue, and the Gene Ontology. All

data sources employed are appropriately cited.

2. Interpretation: The analysis in this paper shows that

endophenotypes identified in AD are enriched in multi-

omic association, supporting the linkage between AD

pathogenesis and themapped biological domains.

3. Future directions: The work in this paper broadly

defines theendophenotypic areas involved indiseasepro-

gression, develop and demonstrate a machine-readable

methodology for categorizing large datasets, and a

scoring methodology for determining gene-based risk

genome wide. These methods will be employed in

expanded multi-omic data harmonization; further, each

domain will be further subdivided by risk enrichment for

greater biological process resolution.

(TREAT-AD) efforts to facilitate the continued diversification of the

AD drug development pipeline.

2 METHODS

2.1 Alzheimer’s disease biological domains

The development of the biological domains broadly encompasses two

distinct processes: (1) the selection and (2) definition of each biolog-

ical domain. The selection of the biological domains is guided by the

attempt to exhaustively identify the endophenotypes and biological

areas linked to ADpathogenesis. One of themost developed resources

describing AD-relevant endophenotypes is the Common Alzheimer’s

and Related Dementias Research Ontology (CADRO).2 As CADRO is

already in standard use for drug development classification, we lever-

aged this resource to help guide the initial stages of identification

of relevant biological domains of AD (Table S1). The identification of

biological domains was expanded beyond CADRO to be maximally

inclusive of data derived from large-scale consortia studies in differ-

ent areas of disease relevance (Figure S1). Definition of the biological

domains required a strategy that was (1) objective, (2) automatable, (3)

easily intelligible, and (4) communallymodifiable. Based on these crite-

ria,weelected touse anexhaustive elaborationofGOtermsassociated

with each biological domain as the core definition (Figure S2 and Table

S2, see supplemental methods for more details).

2.2 TRS development and process

The goal behind the generation of the TREAT-AD TRS is to develop

a scoring infrastructure to assess AD risk association genome wide,

leveraging and integrating all available data types. The contributing

data types may evolve over time. Here we have initiated the process

drawing from genetics, transcriptomics, and proteomics. The compos-

ite scoring method delineated below, and further elaborated in the

supplementalmethods, enables us to rank all genes for associationwith

AD pathogenesis.

2.2.1 Genetic risk score component

The genetic component of AD risk, or genetic risk score, queries all

ensemble gene loci for genetic associations with AD-relevant traits

across a range of studies (both GWAS/GWAX and quantitative trait

locus [QTL]; see Table S3 for all studies queried). Variant-level associa-

tionswere assigned to genes, and summarymetricswere calculated for

each gene to capture pan-study association strength and rank the pre-

dicted severity of both coding and non-coding variants. Additionally,

phenotype ontologies were queried to identify genes with pheno-

typic annotations that overlap with either AD [MONDO:0004975] or

dementia [MONDO:0001627] (additional details in the supplementary

methods). The genetic risk score for a target (Table S4) is calculated

as the sum of the inverse rank for each of the following evidence

categories, scaled to a total of three points: number of GWAS stud-

ies, minimum GWAS p value across studies, mean rank of minimum

GWAS p value across studies, number of QTL studies, minimum QTL

false discovery rate (FDR) across studies, mean rank of minimum QTL

FDR across studies, coding variant summary, non-coding variant sum-

mary, human phenotype score, model organism phenotype score, and

MODEL-AD strain and correlation.

2.2.2 Multi-omic risk score component

A ratio of means meta-analysis with a random effects model13 was

applied separately to both transcriptomics (Table S5) and proteomics

(Table S6) datasets; modality-specific weights were subsequently gen-

erated (see supplemental methods for details). To harness weights into

a single value, a weighted adjustment by modality was applied (Table

S7). Beyond collapsing the weight values into a single statistic, the

omicsharness is designed toweightproteomicsmoreheavily than tran-

scriptomics to account for the practicality of therapeutic intervention

strategies at the protein level rather than the transcript level. Genes

were ranked by their harness value and ranks were converted to 0–1

decimal. A binomialmodelwas fit to predict the0–1 adjusted rank from

the second-degree polynomial of the log harness values. This model

was used to compute a multi-omic weight from zero to one, where

one corresponds to a greater harness value. For genes with no statisti-

cally significant RNA or protein values, this weight was set to zero and
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the weight was then multiplied by 2 to attain the points value of the

multi-omic risk score component (Table S8).

2.3 GSEA analysis using the biological domains

To assess the enrichment of GO terms subordinate to any of the bio-

logical domains, Gene Set Enrichment Analysis (GSEA) was performed

using the gseGO function from the clusterProfiler R package,14 and

the results were then categorized into biological domains based on

the GO ID of enriched terms. The input for each enrichment analysis

were non-zero target scores, in descending order. We performed this

analysis separately for each component score: genetics, multi-omics,

and combined target risk. The displayed results include the normalized

enrichment score (NES) as well as the Benjamini-Hochberg corrected

p value (p adj) for GO terms annotated to each biological domain. For

clinical trial target enrichment analyses, the identities of genes and

proteins in each set were used for GO term overrepresentation anal-

ysis using the “enrich GO” function in the clusterProfiler package, and

the results were then categorized into biological domains based on

the GO ID of enriched terms. A graphical model of the analysis path-

way demonstrates how the pipeline processes are integrated into one

workflow (Figure S3).

2.4 Other data

Several other datasets are used in this work. The list of AD GWAS

hits is derived from integrating genes identified from three sources:

the supplementary table that accompanies Neuner et al. (2020),15

Table S5 from Bellenguez et al. (2022), which identifies all genome-

wide significant loci,6 and the list of AD loci with genetic evi-

dence compiled by the ADSP Gene Verification Committee (adsp.

niagads.org/index.php/gvc-top-hits-list/). The Open Targets16 disease

association scores for AD (https://platform.opentargets.org/disease/

MONDO_0004975/associations), including data type scores, were

accessed using the Open Targets application programming interface

(API). For our investigation of clinical trial target genes, we obtained

the list of “known drugs” from the Open Targets API (Table S9).

Open Targets considers known drugs to be those drugs for which

there is clinical precedence for investigation or approved for use

in AD with a curated mechanism of action. The identities of cur-

rently nominated targets from the AMP-AD consortium, listed on the

Agora site (agora.adknowledgeportal.org/genes/nominated-targets),

were accessed using the synapseR R client.17

3 RESULTS

3.1 AD biological domains

The primary goal of defining a structured set of biological domains

is to standardize areas of disease-associated biology to serve as a

common reference point for the analysis of large datasets. Leveraging

the CADRO ontology, with augmentation through literature curation

and biological alignment with the employed multi-omic datasets (see

methods), we established 19 biological domains that covered the AD

endophenotypic space (Table S1). We used 7127 unique GO terms

(16.4% of all terms in the ontology) to annotate the biological domains.

The number of terms annotated to each domain varies enormously

(Figure 1A, Table S2); the Synapse domain requires 1379 terms to

define, while Tau Homeostasis only requires 10 terms. The two small-

est biological domains (Tau Homeostasis and APP Metabolism) focus

on gene-centric processes, requiring fewer terms to annotate than

larger domains with broader biological focus, such as LipidMetabolism

or Proteostasis. Each biological domain was designed to be discrete,

which is reflected in the sparse overlap of shared GO terms between

domains (Figure 1A). The shared terms are truly inextricable; for exam-

ple, the term “mitophagy,” defined as the “selective autophagy process

in which a mitochondrion is degraded by macroautophagy,” legiti-

mately resides in both the Mitochondrial Metabolism and Autophagy

domains. In these cases, the repetition of a term between domains was

allowed, as it represents ameaningful intersection of biological areas.

There is a greateroverlapbetweengenes annotated todifferentbio-

logical domains compared to the terms that overlap (Figure 1B). The

number of genes annotated to each domain is roughly proportional to

the number of GO terms per domain, with almost two orders of magni-

tude separating the largest domain (Proteostasis) and the smallest (Tau

Homeostasis). Many genes are annotated to multiple GO terms subor-

dinate to distinct biological domains, which may represent pleiotropic

functions, a convergenceof relatedprocesses, or both.While aplurality

of annotated genes (30%) are annotated to a single biological domain,

manyparticipate inmultiple domains each (Figure 1C), and genes anno-

tated to more biological domains tend to have higher overall TRSs (see

following discussion) (Pearson r= 0.158, p= 2.8× 10−80).

3.2 TRS overview

The TREAT-AD TRS is a metric designed to rank potential disease

involvement of genes based on multiple independent lines of evidence

to objectify the prioritization of potential targets and disease-linked

biology. The TRS has two components, genetic risk andmulti-omic risk,

each derived from a meta-analysis harmonizing multiple datasets. The

genetic risk component is weightedmore heavily, receiving up to three

points, while multi-omic risk has a maximum of two points. The ratio-

nale for providing more weight to the genetic component reflects the

greater success in clinical trials for targets with genetic support.18

3.2.1 Genetic risk score component

The genetic risk score component is a summary of genetic evidence

supporting the target gene’s association with late-onset AD (LOAD),

drawing from GWAS and quantitative trait locus (QTL) studies.19–21

In total, 27 different association studies were queried (Table S3,

https://adsp.niagads.org/index.php/gvc-top-hits-list/
https://adsp.niagads.org/index.php/gvc-top-hits-list/
https://platform.opentargets.org/disease/MONDO_0004975/associations
https://platform.opentargets.org/disease/MONDO_0004975/associations
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(A)

(B)

(C)

F IGURE 1 Biological domain demographics. (A) Number of GO
terms employed to define each biological domain, shown as an
interaction plot, with total number of terms per domain along diagonal
and number of terms shared between domains arranged in external
rows and columns. (B) Number of genes in each biological domain,
organized as in (A), with total genes within each domain along diagonal
and pairwise genes shared between domains heatmappedwithin rows
and columns. (C) The top histogram shows the frequency of a gene

Figure S4). We also assessed the predicted severity of identified vari-

ants (Figure S5) and phenotype overlap (Figure S6) between each gene

and disease-relevant terms. Gene-level results for all evidence sources

were summed to generate the genetic risk score (Figure 2A, Table S4).

Genes contained within known ADGWAS loci are enriched among the

top scores, as are gene targets identified by Open Targets (https://

www.opentargets.org/),16,22 a large-scale effort to rank genes based

on genetic support for translational relevance (Figure 2A). The TREAT-

AD genetics score has a weak positive correlation (Pearson r = 0.23,

p = 8.4 × 10−6) with the Open Targets genetic association score for

AD (Figure 2B), which is stronger when restricted to known ADGWAS

genes (Pearson r= 0.29, p= 1.7× 10−2).

GSEA using the genetics score to rank genes identifies signifi-

cant GO terms from 17 biological domains; the biological domains

with the largest number of enriched GO terms are Synapse, Lipid

Metabolism, and Structural Stabilization (Figure 2C,D, Table S10). The

OpenTargets genetic association scoreenrichesGOterms from10bio-

logical domains, with terms in the APP Metabolism domain by far the

most significantly enriched and Synapse, Immune Response, and Lipid

Metabolism being the domains with the most enriched terms (Figure

S7C). The relative emphasis of APP Metabolism from the Open Tar-

gets score likely reflects the inclusion of evidence from early-onset

dominantly inheritedAD,whereas theTREAT-ADgenetics score draws

primarily from genetic associations of LOAD, the predominant and

sporadic form of the disease. Notably, Synapse, Lipid Metabolism,

Structural Stabilization, and Immune Response are among the biolog-

ical domains with the largest number of enriched GO terms for both

scores.

3.2.2 Multi-omic risk score component

The multi-omic risk score is a summary metric encapsulating available

evidence supporting whether gene expression is altered in the brains

of AD patients. The score makes use of proteomic and transcriptomic

datasets generated as part of AMP-AD consortium efforts (Tables

S5 and S6). For each data modality (ie, transcriptomic or proteomic),

a meta-analysis of samples is used to generate weights for signifi-

cantly differentially expressed genes based on observed fold changes

(Figure 3A,B). Analyzing the directionality of expression change using

GSEA, we find that, for both transcriptomics (Figure 3C, Figure S8C)

and proteomics (Figure 3D, Figure S8D), Synapse and Mitochon-

drial Metabolism are the biological domains with the largest number

of downregulated GO terms, and Immune Response and Structural

annotation across the 19 biological domains for genes annotated to at
least one biological domain. The histogram shows a decline in the
number of genes annotated tomultiple biological domains, with genes
mapping to a single biological domain being themost numerous
(4258). The lower plot shows the positive correlation between gene
annotation inmultiple biological domains and its target risk score, with
higher scoring genes participating in multiple biological domains.

https://www.opentargets.org/
https://www.opentargets.org/
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(B)

(D)(C)

(A)

F IGURE 2 Genetic risk score. (A) Distribution of all genetic scores (gray), subset of targets evaluated byOpen Targets platform (blue), and set
of defined ADGWAS loci derived from various sources (green). Dashed blue line indicates the 95th percentile score. (B) Comparison of TREAT-AD
genetic risk score andOpen Targets genetic association score. Plotted in green are the set of all genes within known ADGWAS loci scored by both
metrics, several of which are labeled. The dashed line represents an equivalent score on eachmetric, and the solid color lines are the linear fit to
each set. (C) Top GO terms significantly enriched using the TREAT-AD target genetics score, arranged by normalized enrichment score (NES). For
each GO term, the associated biological domains are indicated by the filled square and abbreviations (biological domain colors and abbreviations
can be referenced from panel D). (D) Enrichment statistics for all biological domain terms. Each point is a GO termwithin the indicated biological
domain and the size of the point is scaled by the GSEA normalized enrichment score (NES). The GO terms identified in panel (C) are indicated as
square points with bold borders. The biological domains are ordered on the y-axis by the number of significantly enriched GO terms identified
from each domain.

Stabilization are the biological domains with the largest number of

upregulated GO terms.

The calculated weights for each modality are combined using a

scoring harness (Table S7) that yields a higher score for targets with

evidence for both, followed by targets with evidence for protein only,

followed lastly by targets with evidence for RNA only (Figure 3E).

The rationale for this harness is twofold: first, concordant evidence

from multiple data modalities leads to higher confidence that a target

gene’s expression is altered in AD brains, and second, that protein lev-

elsmore accurately reflect the biological state of an in vivo system.11,23

The effect of the harness is tuned to impose this hierarchy without

disregarding results specific to a single modality, striking a balance

between the relevance of proteomic evidence to disease state versus

the increased sensitivity of detection for transcriptomics.

We compare the distribution of all scored targets (Table S8) to those

scored by the Open Targets platform16,22 and those nominated for

follow-up by the AMP-AD consortium.5,24 The AMP-AD nominated

targets tend to have higher multi-omic scores than the population of

all targets (Figure 3F), and there is a very weak correlation between

the multi-omic score and the number of nominations received by a

given target (r=0.153; Figure S8E). Numerous targets receive only one

nomination, yet are ranked among the highest multi-omic scores, while

there are many targets that received several nominations with a low

multi-omic score. AMP-AD investigators used diversemethods beyond

differential expression analysis to identify targets, and some modali-

ties (eg, metabolomics) are not included within the current multi-omic

score. Future efforts will include work to integrate additional data

modalities into the score.
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F IGURE 3 Themulti-omic score component of target risk score (TRS). Assignedweights as a function of log(effect size) of significantly
differentially expressed (A) transcripts and (B) proteins. Labeled points in (A) and (B) represent example genes where the color indicates
significantly differential expression in only RNA-seq (blue), only proteomics (green), or both RNA-seq and proteomics (red). Enrichment statistics
for all biological domain GO terms based on proteomics (C) and transcriptomics (D) meta-analysis treatment effect. Each point is a GO termwithin
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Using the multi-omic score to rank genes for GSEA results in the

enrichment of GO terms from 18 biological domains. The domains

with the largest number of enriched terms include Synapse, Immune

Response, Structural Stabilization, and Mitochondrial Metabolism

(Figure 3G,H, Table S11). The downregulated terms from the Mito-

chondrial Metabolism domain are the most significantly enriched

(Figure 3H) and have the highest NES (Figure 3G). Interestingly, the

top terms within Mitochondrial Metabolism focus upon mitochondrial

translation and complex I of the electron transport chain (Figure 3G),

showing these terms are themost significantly downregulated biologi-

cal processes associated with AD.

3.2.3 Composite target risk score (TRS)

The TRS is derived by summing the component risk scores (ie, genetic

andmulti-omic), and thehighest ranked target scores4.74outof amax-

imumpossible scoreof5 (Table S12). Aswith the component scores, the

top TRSs are enriched for GWAS loci, AMP-AD nominated targets, and

targets consideredby theOpenTargetsplatform (Figure4A).Consider-

ing both the genetic and multi-omic scores for each target (Figure 4B),

the targets with the top TRSs tend to have relatively higher genetic

scores. When we compare the TREAT-AD TRS with the Open Targets

target score (Figure S7A), we see that many targets receive a relatively

higher score from the TRS, likely due to the unique inclusion of disease-

relevant omic datasets from the AMP-AD consortium in the TRS. AD

GWAS loci are generally scored highly by both the TREAT-AD TRS and

theOpen Targets target scoremetrics.

GSEA using the overall TRS enriches 3142 GO terms, including

1358 (43.5%) annotated to at least one of the 19 biological domains

(Table S13). Thebiological domainswith the largest numberof enriched

GO terms are Synapse, Immune Response, and Lipid Metabolism

(Figure 4D). In comparison, the Open Targets target score enriches

terms from 16 biological domains, and the domains with the largest

number of enriched terms are also Synapse, Lipid Metabolism, and

Immune Response (Figure S7B).

GO terms enriched using the TRS have different enrichment

strengths when using the component scores (Figure 5A, Tables S10,

S11, and S13). For example, the Lipid Metabolism term “fatty acid

metabolic process” is enriched using all scores, but the enrichment is

more significant for the genetics (adjusted p value 5.9 × 10−6) than for

the omics score (adjusted p value 7.9 × 10−3). The inverse is true for

the “membrane raft” term, which is more significant using the multi-

omic (adjusted p value = 1.3 × 10−5) compared to the genetic scores

(adjusted p value = 1.8 × 10−2). There is a similar pattern for terms

related to developmental processes in the Immune Response domain.

For instance, “myeloid leukocyte differentiation” shows a stronger

enrichment from the genetic score, while terms related to mature

structures and processes like “leukocyte degranulation” are more sig-

nificantly enriched by the multi-omic score (Figure 5B). Considering

terms from the Synapse biological domain, more postsynaptic terms

are enriched (40 terms) and are more significant relative to presynap-

tic terms (nine terms) with the cumulative TRS and the component

scores (Figure 5C). The optimal targets should reflect a parity of rank-

ing between score components, with evidence of both genetic and

multi-omic risk. Evidence of genetic risk without multi-omic risk could

indicate developmental processes that are less relevant in later stages,

whereas enrichmentofmulti-omic riskwithout genetic risk could impli-

cate processes that change in response to disease pathology but are

not causal in the underlying etiology.18,25–29 Moreover, processes that

are risk-enriched across distinct measures increase the confidence of

disease association.While themulti-omic score enriches terms related

to mitochondrial electron transport chain complexes I and III, the

genetic score only enriches terms related to complex I (Figure 5D),

yet both measures point to the centrality of electron transport chain

relevant genes in our scored AD risk. GO terms close to the diago-

nal dashed line (Figure 5A) suggest that the risk associated with genes

in these terms are embedded equivalently in each modality and merit

consideration for further resource development. GO terms that are

significantly enriched but do not fall into any biological domain (ie,

Figure 5A, “none”) reflect either a categorization that is too general to

be mapped into endophenotypic space, such as “ATP Metabolic Pro-

cess,” or terms that map to high-order positions within the ontology,

such as “Cell Leading Edge” (Figure 5A).

3.3 Assessment of clinical trial targets

These resources are intended to facilitate target prioritization and

therapeutic hypothesis development for AD. As an example use case,

we characterize the gene targets of therapeutics under clinical inves-

tigation. We obtained data for 526 trials (1995 to 2025, Figure S9A),

for 192 agents targeting 187 genes (Table S9). The 173 targets that

are scored by our processes have a higher distribution of TRSs than do

the indicated biological domain, the size of the point is scaled by the GSEA adjusted p value, and the NES indicates if the GO term is up- or
downregulated. The biological domains are ordered on the y-axis by the number of significantly enriched GO terms identified from each domain.
(E) Assignedweights as a function of log(effect size) of significantly differentially expressed combinedweight values as a function of log10 (harness
adjusted scaled values), scaled to 2. (F) The distribution of multi-omic scores for all scored genes (gray), those scored by theOpen Targets platform
(blue), and genes nominated by a team from the AMP-AD consortium (pink). Dashed blue line indicates 95th percentile score. (G) Top GO terms
significantly enriched using TREAT-AD target multi-omic score, arranged by normalized enrichment score (NES). For each GO term, the associated
biological domains are indicated by the filled square and abbreviations (biological domain colors and abbreviations can be referenced from panel
H). (H) Enrichment statistics for all biological domain terms. Each point is a GO termwithin the indicated biological domain, and the size of the
point is scaled by the GSEANES. The GO terms identified in panel (G) are indicated as square points with bold borders. The biological domains are
ordered on the y-axis by the number of significantly enriched GO terms identified from each domain.
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F IGURE 4 Composite TREAT-AD target risk score (TRS). (A) Distribution of TRS for all scored targets (gray), those scored by theOpen Targets
platform (blue), those nominated by a team from the AMP-AD consortium (pink), and the set of defined ADGWAS loci derived from various
sources (green). Dashed blue line indicates the 95th percentile score. (B) Comparison of genetics score andmulti-omic score for all targets. Point
color indicates the composite TRS for the target. Labeled genes represent a subset of either GWAS genes (green), AMP-AD nominated genes
(pink), or both (white). (C) Top GO terms significantly enriched using the TRS, arranged by normalized enrichment score (NES). For each term, the
resident biological domains are indicated by the filled square (biological domain colors can be referenced from panel D). (D) Enrichment statistics
for all biological domain GO terms. Each point is a GO termwithin the indicated biological domain, and the size of the point is scaled by the GSEA
NES. The terms identified in panel (C) are indicated as square points with bold borders. The biological domain terms are ordered on the y-axis by
the number of significantly enriched terms identified from each domain.

non-targets (Figure 6A, Kolmogorov–Smirnov p = 3.7 × 10−8). Targets

of agents that have entered phase 4 trials tend to have higher genetic

risk scores than do targets in earlier phases (Figure 6B, Kolmogorov–

Smirnov p values from .04 to .0066). This observation echoes previous

reports regarding clinical trials in general, specifically that agents that

progress to later phases are those that have stronger genetic evi-

dence supporting disease involvement.30 Overrepresentations tests

using these targets show that terms from the Synapse, Vasculature,

Tau Homeostasis, and APP Metabolism domains are the most signifi-

cantly enriched (Figure 6C). Contrasting this to terms enriched from

a similarly sized list of genes pulled from the top of the TRS distribu-

tion, we note larger p values overall but a relative emphasis on terms

from theMitochondrialMetabolism, ImmuneResponse,Cell Cycle, and

Proteostasis domains (Figure 6C). We also note the change in empha-

sis over time (Figure S9B), with a decreased representation of APP

Metabolism and an increase in Autophagy and Immune Response, and

that thesemore recent areasof emphasis are reflected in earlier phases

of the development pipeline (Figure S9C).

4 DISCUSSION

We have developed an integrated system-level assessment of AD risk

across data modalities along with a systematic enumeration and func-

tionalization of AD endophenotypes. The risk scoring paradigm ranks

genes genome-wide drawing from multiple genetic association stud-

ies as well as large transcriptomic and proteomic datasets comprising

data from thousands of post mortem samples drawn frommultiple large
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F IGURE 5 Comparing biological domain enrichments across risk modalities. (A) Relative significance of biological domain term enrichment
using genetics score component (x-axis), multi-omic score component (y-axis), and the overall TRS (point size). (B) Term enrichments from Immune
Response biological domain, subset by immune cell development terms (blue), other immune cell terms (yellow), and other terms from the Immune
Response biological domain (gray). (C) Term enrichments from Synapse biological domain, subset by postsynaptic terms (yellow), presynaptic
terms (blue), and other terms from the Synapse biological domain (gray). (D) Term enrichments fromMitochondrial Metabolism biological domain,
subset bymitochondrial electron transport chain complex I (yellow), complex III (blue), complex V (green), and other terms from theMitochondrial
Metabolism biological domain (gray). Complexes II and IVwere not significantly enriched in these analyses.
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F IGURE 6 Evaluation of targets of agents in clinical trials for AD. (A) Empirical cumulative distribution functions (ECDFs) of overall target risk
score (TRS) for genes identified as targets of agents in clinical trials (red line) and genes that are not targeted by any trial therapeutic (blue line). (B)
ECDFs of the TRSs and component risk scores for targets of agents in clinical trial, broken out bymaximum clinical trial phase for each agent. For
each plot the gray line represents the distribution of non-targeted genes. The distribution of genetics scores for targets of agents that have
reached phase 4 trials is significantly higher than the distributions of targets of agents in other phases of development (Kolmogorov–Smirnov p
values from .04 to .0066). (C) Significantly enrichedGO terms for targets of agents in clinical trials and a comparably sized set of genes from the top
of the TRS distribution. Each point is a termwithin the indicated biological domain, the position on the x-axis shows the significance of the term
enrichment, and the size of the point is scaled by the number of genes in that term in the lists. The name and size of each list is indicated above each
plot.

brain bank studies. We have also developed 19 biological domains

that align with known AD endophenotypes, defining each with sets

of GO terms and annotated gene sets. The goal is to provide the sci-

entific community with an evaluative resource that can be employed

across studies to integrate knowledge about candidates for further

investigation as well as provide a unified framework for defining AD

endophenotypes. The biological domains described in this work have

already been adopted by several groups as a common organizational

reference. The expanding utilization of these biological domains will

provide the opportunity for increased interoperability and harmoniza-

tion across research efforts. Both methodologies are easily updated

as new information becomes available as they draw from open-source

resources central to AD investigations.

There are several limitations to the methodology we employed.

Ourmeta-analysis approach prioritizes signatures of disease that span

study populations and tissues of origin, and as such any pathological

changes that are limited to specific tissues or study populations

will be underemphasized. Furthermore, the metrics we developed
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to encapsulate risk rely on standard case-control contrasts, while

AD is heterogeneous with reported molecular sand pathological

subtypes.31,32 We have not addressed other contributors of risk, such

as the impacts of age, sex, APOE allele or environmental exposures on

pathogenesis. While these aspects of disease risk will be investigated

independently in future work, their absence does not detract from the

power of the integrative approach utilized here, creating an objective

risk assessment and endophenotypic characterization strategy that

can be employed to better illuminate the AD risk factors and subtypes

that were not explored in the present work.

Gene set enrichment using the quantitative scores enables us to

identify GO terms significantly enriched for specific biological areas of

risk across and between data modalities. These analyses (Figures 2–4)

demonstrate that different modalities emphasize independent aspects

of disease risk but together are a powerful tool for automated map-

ping of risk into specific biological areas within disease-associated

endophenotypes (eg, Figure 5A, Tables S10, S11, and S13).

We investigated which biological domains were the most up- and

downregulated based on post mortem differential expression analyses.

The top two downregulated domains are Mitochondrial Metabolism

and Synapse (Figure 3C,D). The downregulation of synaptic genes span

both pre- and postsynaptic gene sets; however, there are three to

four times as many postsynaptic GO terms enriched, and postsynaptic

terms are more significantly enriched across all component risk scores

(Figure 5C). This aligns with previous research into the role postsy-

naptic mechanisms play in the maintenance of dendrites and synaptic

plasticity, lost during the cognitivedeclineofAD.33–35 Likewise, numer-

ous studies have demonstrated elements of mitochondrial dysfunction

andhypometabolism inAD.1,36–40 Furthermore, these twodomains are

associatedwith cognitive stability in aging41,42 andmay progress coor-

dinately in AD.37,42 While these analyses only identify the independent

contributions of mitochondrial hypometabolism and synaptic dysfunc-

tion or loss, future work may be able to highlight aspects of biology at

the intersection of these domains.

Multiple biological domains are upregulated in our analyses, most

notably Immune Response, Structural Stabilization, Lipid Metabolism,

and Proteostasis (Figure 3C,D). Immune involvement in the progres-

sion of AD pathology has attracted attention recently, particularly

regarding the Janus faces of microglia: the homeostatic and degen-

erative roles. A meaningful discussion of these areas is beyond the

scope of this work, but the topic has been extensively reviewed.43–45

Structural stabilization has been highlighted by recent proteomics

studies, suggesting roles for heparin binding, extracellular matrix,

and cytoskeleton-associated proteins in either AD resilience or

progression.11,46 Dysfunctions in lipid metabolism have been central

to the findings of several recent ADmetabolomics studies.26,28,29,47–49

Proteostasis is also frequently implicated in AD, given the com-

plex linkages between autophagy and proteome stability, changes in

chaperone-mediated protein processing, and endoplasmic reticulum

stress responses, all of which may play a role.50–52 The upregulated

processes from these domains delineate areas of biology that merit

further exploration for both mechanisms driving disease and compen-

satory processes that may facilitate future therapeutic development.

We assessed how the TREAT-AD risk score compared with cor-

responding rankings from the Open Targets platform.16,22 The two

methodologies share several features: both integrate results from

genetic association studies to implicate genes with variation that con-

tribute to disease risk, both capture expression differences relevant

to the disease, and both identify animal models with phenotypic rel-

evance to disease. These similarities are reflected in the correlation

observed between the two scores (eg, Figure S7A). The TRS is distinct

in the inclusion of both omic datasets from numerous brain banks via

AMP-AD Consortium investigations and information from emerging

AD mouse models via the MODEL-AD Consortium. We benchmarked

the scores from Open Targets and the TRS and observed very sim-

ilar patterns of biological domain term enrichment (eg, Figure S7B),

with the Synapse, Lipid Metabolism, and Immune Response domains

among the strongest enrichments for both. However, the enrichments

using the TRS also implicate Mitochondrial Metabolism (120 enriched

terms) and Tau Homeostasis (two enriched terms) more strongly than

the enrichments based on the Open Targets score (one enriched term

and no enriched terms, respectively).

Finally, we used the TRS and biological domain framework to assess

the targets of therapeutic agents under clinical investigation for AD.

We find that while these targets tend to be higher scoring than

non-targets, they emphasize different biological domains than those

implicated by the measures of risk utilized here. In particular, the clin-

ical trial targets strongly enrich terms from the Synapse, Vasculature,

and APP Metabolism domains. A comparably sized list of genes from

the top of the TRS distribution has a relatively stronger emphasis

on Mitochondrial Metabolism and Immune Response domains. These

results suggest that the underwhelming performance of trial therapeu-

tics may be due, in part, to targeting disease endophenotypes that are

misalignedwith risk.

5 CONCLUSION

This work is the largest integrated effort to combine genetic and

multi-omic AD risk scoring with an automatable system of endophe-

notypic genetic characterization. The dual processes of ranking genes

by risk and assembling the risk areas into biological domains points

to consistency between our analyses and observations made across

the field, which further supports our approach to identifying focal

areas of AD risk. The advantage of our system is that we can uti-

lize the comprehensive representation of AD risk genes organized

into specific areas of biology to expand the study of disease domain

transitions by identifying potential points of convergence between

interacting domains and examining the genetic entities at those

crossroads. The Emory-Sage-SGC TREAT-AD Center utilizes these

foundational resources alongwith other analytical approaches to nom-

inate specific dark targets for potential future therapeutic evaluation.

These approaches will continue to be expanded and refined with

newly emerging data, analytical approaches, and community feedback.

Informatic and material resources developed for each nominated tar-

get, which will include endophenotype-aligned cell-based assays and
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validated experimental reagents, are openly available to the scientific

community (treatad.org/data-tools/target-dashboard). We anticipate

that these resources will help the field foster current efforts lead-

ing to the growth of novel translational approaches, to identify new

targets and sets of targets, and additionally to the repurposing of

therapeutics developed in divergent fields for use as standalone or

combination therapies in the treatment of AD. The objective identi-

fication of the ranked areas of disease risk scored genome-wide and

organized into defined biological domains highlight the significance of

multiple aspects of disease biology for translational development that

current resources can help hone into specific subdomains – such as

mitochondrial complex I related factors and postsynaptic targets and

upregulated targets in the Immune Response and Structural Stabiliza-

tion biological domains. Application to the development of therapeutic

approaches in combination with recently approved drugs is an attrac-

tive concept basedon theseefforts, be they repurposedagents or novel

therapeutic entities.
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