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Since the seminal discovery of dendritic cells (DCs) by Steinman and Cohn in 1973,

there has been an ongoing debate to what extent macrophages and DCs are related

and perform different functions. The current view is that macrophages and DCs originate

from different lineages and that only DCs have the capacity to initiate adaptive immunity.

Nevertheless, as we will discuss in this review, lymphoid tissue resident CD169+

macrophages have been shown to act in concert with DCs to promote or suppress

adaptive immune responses for pathogens and self-antigens, respectively. Accordingly,

we propose a functional alliance between CD169+ macrophages and DCs in which a

division of tasks is established. CD169+ macrophages are responsible for the capture

of pathogens and are frequently the first cell type infected and thereby provide a

confined source of antigen. Subsequently, cross-presenting DCs interact with these

antigen-containing CD169+ macrophages, pick up antigens and activate T cells. The

cross-priming of T cells by DCs is enhanced by the localized production of type I

interferons (IFN-I) derived from CD169+ macrophages and plasmacytoid DCs (pDCs)

that induces DC maturation. The interaction between CD169+ macrophages and DCs

appears not only to be essential for immune responses against pathogens, but also plays

a role in the induction of self-tolerance and immune responses against cancer. In this

review we will discuss the studies that demonstrate the collaboration between CD169+

macrophages and DCs in adaptive immunity.
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INTRODUCTION

While the first recognized characteristic of macrophages was their excellent capacity to
phagocytose, dendritic cells (DCs) were acknowledged for their superior ability to stimulate
naïve T cell responses. However, ever since tissue macrophages and DCs showed overlapping
expression of several markers and were both generated from monocytes in in vitro models, it
has been debated whether these cell types were closely related and had equivalent functions. The
introduction of unbiased single cell multi-parameter analyses on the protein and RNA level, and the
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generation of cell-type specific and inducible genetically modified
mousemodels has enabled a new understanding of the generation
and functions of both macrophages and DCs, and has even
led to a new nomenclature (1). The current view is that the
two cell types have very different functions in the immune
system. However, this viewpoint potentially overlooks functional
collaborations between the two cell types. In this review we
will focus on the interactions between lymphoid tissue resident
CD169+ macrophages and DCs and how these support the
activation of adaptive immune responses.

DCs and Macrophages Are Different Cell
Types With Different Functions
The generation of macrophages is dependent on the growth
factor M-CSF and occurs in three waves [reviewed by (2, 3)].
First, during early embryonic development, yolk sac-derived
progenitors seed several peripheral tissues, such as the brain and
the epidermis. A second wave of progenitors derive from the fetal
liver and seed lungs and liver. These two types of macrophages
are characterized by high expression of F4/80 and in general
reconstitute autonomously. Additionally, they are thought to
have a long half-life and exhibit local proliferation. After birth,
monocytes develop from hematopoietic stem cells in the bone
marrow and tissues, such as the intestines and the skin that
continuously receive monocytes to generate macrophages. The
latter macrophages generally express low levels of F4/80.

Macrophages form a very heterogeneous population of cells
and their diversity in phenotype and function is a reflection
of the variety of the tissues in which they reside [reviewed by
(4, 5)]. They are best known for their capacity to phagocytose
and eliminate pathogens and to alarm the immune system.
In addition to this important function in immunosurveillance,
they are essential for the clearance of apoptotic cells and
suppression of (auto) immune responses and mediate resolution
of inflammatory responses and tissue repair. Furthermore,
depending on their tissue of residence, macrophages have
important specialized functions in development, homeostasis
and metabolism [discussed in more detail in (4, 6)]. The general
view is that macrophages exert their functions locally in the
tissues and that in steady state tissue resident macrophages do
not migrate to secondary lymph nodes to activate naïve T cells.
This latter function is attributed to DCs that also reside in tissues,
but upon pathogen recognition, upregulate CCR7 and travel to
the lymphoid organs. However, upon inflammation monocyte-
derived macrophages or DCs may also acquire the capacity to
travel to the lymph nodes and stimulate T cells, which is a matter
that has to be further clarified (7).

Currently, three types of DCs are being recognized [reviewed
by (8, 9)]. Conventional or classical DCs (cDCs) are continuously
generated in the bone marrow and require Flt3L for their
generation. Pre-cDCs seed the tissues and the lymphoid organs
and have a half-life of 5–7 days. Upon activation and upregulation
of CCR7, tissue cDCs migrate to the lymph nodes and can
activate T cells. Within cDCs two subsets can be identified. The
cDC1 is more specialized in the uptake of dying cells, cross-
presentation and activation of CD8+ T cells, while cDC2 has

a more important role in CD4+ T cell activation and B cell
responses. The generation of these two subsets is dependent
on different transcription factors. While cDC1 requires Batf3,
Id2 and Irf8, cDC2 development depends on Irf4 and RelB and
requires additional Notch2 and vitamin A signals (10). With
regard to the surface phenotype, cDC1 can be identified by XCR1
and CLEC9A, and additionally by CD8α in lymphoid organs
and by CD103 in peripheral tissues. On the other hand, Sirpα,
CD11b and CD4 expression marks the cDC2 subset. Next to
cDCs, pDCs form another class of DCs that also develop in
a Flt3L-dependent manner. This lineage splits from the cDC
lineage before the separation in cDC1 and cDC2. They can be
identified by CD123, BDCA2, and BDCA4 in humans and by
high expression of BST2 and Siglec-H and by low expression of
CD11c and B220 in the mouse. Recent studies have indicated
further heterogeneity in CD123-expressing pDCs (11, 12). While
early studies indicate that pDCs can take up antigens and
stimulate T cells upon activation, recent studies suggest that
very pure pDC populations only produce IFN-I and are not able
to activate T cells unless they are pre-treated with CD40L and
IL-3 (13). This suggests a limited function for pDC in T cell
activation.

Next to these two Flt3L-dependent DC subsets, DCs can
differentiate from monocytes during inflammatory conditions
(7). The function of these DCs in the regulation of adaptive
immune responses remains to be elucidated.

Antigen Cross-Presentation by
Macrophages and Dendritic Cells
Both macrophages and DCs process antigens via the classical
endogenous and exogenous pathways and present these on their
MHC class I and II molecules, respectively, but they differ in
their capacity to cross-present exogenous antigens in MHC class
I and to cross-prime CD8+ T cells. Cross-presentation was first
described in 1976 by Bevan as the process in which CD8+ T
cell responses were initiated against donor antigens restricted by
recipient MHC molecules (14). This process is thought to be
essential in the activation of anti-viral and anti-tumor specific
CD8+ T cell responses. While a number of studies have shown
that exogenous antigens can be cross-presented by different
cell types including macrophages (15), the mouse cDC1 subset
exhibits a higher capacity to cross-present and is especially
equipped for the uptake of dead cells and the cross-presentation
of cell-associated antigens (16–19). However, depending on the
antigen and activation stimuli, mouse cDC2 and several human
DC subsets are also able to cross-present (17, 20). There are
two main routes of antigen processing exist that leads to cross-
presentation. In the cytosolic route, antigens are transported
from the endosomal/phagosomal pathway to the cytoplasm and
this pathway depends on proteasomes and TAP. In the vacuolar
route, antigens are degraded in the endosomal/phagosomal
pathway and bind to recycling MHC class I molecules. This
pathway relies on the activity of cathepsin S. DCs mainly
utilize the cytosolic route, while macrophages and monocyte-
derived DCs have been shown to use the vacuolar route of
cross-presentation (21, 22). Recent studies have identified a

Frontiers in Immunology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 2472

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Grabowska et al. The Interplay of CD169+ Macrophages and DCs

number of molecules involved in vesicular trafficking that play
a role in cross-presentation [see for more details reviews (15,
23, 24)]. One of the important factors for cross-presentation
is the rate of antigen degradation. Macrophages are more
proteolytically active than DCs, which impairs their capacity
to cross-present (25). DCs prevent the acidification of their
phagosomes and thereby inhibit proteolysis by the activity of
NADPH oxidase 2 (NOX2) enzyme [reviewed in (26)]. The
NOX2 enzyme may also contribute to the translocation of
antigens to the cytosol by disrupting the phagosomal membrane.
The longer preservation of antigens in DCs and stronger
phagosome-cytotosol translocation compared to macrophages
may be responsible for the more prominent role of DCs in
cross-priming.

Generation of CD169+ Macrophages and
Their Innate Functions
Macrophages expressing high levels of CD169, also known
as Siglec-1 or sialoadheasin, constitute a minor macrophage
population present in lymphoid tissues (27, 28). While several
macrophage populations in tissues have low levels of CD169,
which can be upregulated upon exposure to IFN-I, this lymphoid
resident population has a very high constitutive expression
of CD169. CD169+ macrophages are situated on top of
B cell follicles bordering the marginal sinus in the spleen
and the subcapsular sinus (SCS) in the lymph nodes and
are also known as metallophilic marginal zone macrophages
and SCS macrophages, respectively. The presence of B cells
is necessary for the generation of CD169+ macrophages,
which is mediated by their production of LTα1β2 (29, 30).
In addition, they require RANK, LXR, and M-CSF signals
and their survival is further promoted by TNF-α (31–34).
Currently it is unclear which precursor gives rise to CD169+

macrophages, although their low level of F4/80 expression would
suggest that they are not derived from yolk sac precursors.
After elimination, they are repopulated from monocytes
(34).

The strategic position of CD169+ macrophages at the entry
site of lymphoid tissues determines their function. CD169+

macrophages are the first cell type in the spleen and lymph nodes
to bind particulate antigens and pathogens and they function
as a filter to remove foreign particles from the lymph fluid and
blood. When these cells are deleted by clodronate liposomes
in an experimental setting, pathogens can disseminate to other
organs as has been demonstrated for several viral, bacterial and
parasitic infections (35–39). This particular observation coined
the term “gatekeeper” to describe CD169+ macrophages. This
first line of defense, capturing invading viruses and limiting their
spread to other organs, is not only mediated via the physical
binding and capture of pathogens. CD169+ macrophages also
exert their protective functions by the production of cytokines,
such as IFN-I, IL-1, and IL-18. This cytokine secretion not
only prevents subsequent infection of other cells and activates
innate lymphocytes that help to contain the early infection
(40–42), but also acts on DCs and stimulate adaptive immune
responses.

Model Systems to Study CD169+

Macrophages
Due to their low abundance and sensitivity to manipulation,
CD169+ macrophages are quite an enigmatic and technically
challenging subset to study. Although it is feasible to extract
these cells from spleen or lymph nodes by combination of
mechanistic dissociation and enzymatic digestion, they rapidly
die and form apoptotic blebs that bind to interacting cells (41,
43, 44). This feature greatly hampers the purification of CD169+

macrophages using fluorescence-activated cell sorting (FACS)
for in vitro analysis. Unfortunately, available in vitro models do
not offer a satisfactory method to investigate this macrophage
population. In vitro cultured macrophages can be treated with
IFN-α, which induces CD169 expression on the cell surface, but it
is not clear whether these cells exhibit other characteristics of the
CD169+ macrophages present in vivo. Most studies investigating
CD169+ macrophages take advantage of cell ablation tools,
either chemical using clodronate liposomes or genetic using
diphtheria toxin receptor (DTR) systems. Despite representing
a very effective method for transient depletion of macrophages,
clodronate liposomes lack specificity. This apoptosis-inducing
agent is toxic for all phagocytosing cells including monocytes
and DCs (45). Noteworthy, the treatment with clodronate
liposomes affects the anatomy of the surrounding tissue and
induces off-target effects on B cells (46). In comparison to
clodronate liposomes, DTR-mediated cell ablation allows for
conditional and targeted depletion of a cell subset engineered
to express DTR. CD11c-DTR and CD169-DTR are two DTR
transgenic mouse strains that deplete CD169+ macrophages
(47, 48). Although the CD11c-DTR model mainly depletes cells
with high expression of CD11c, thus DCs, it does not spare
macrophages that express low levels of this DC marker (49).
The CD169-DTR model, on the other hand provides a more
specific approach to study CD169+ macrophages, leaving the DC
population unaffected. The only other population affected by DT
treatment in CD169-DTR model, are SIGN-R1+ marginal zone
macrophages that express low levels of CD169 (47). Similarly, the
LXR-α KO lack both CD169+ and SIGNR1+ splenic marginal
zone macrophage subsets (34). More recently, CD169-Cre mice
have been generated and when crossed to the ROSA26-YFP mice
generate reporter mice (50). The CD169-Cre mice will allow
the generation of CD169-specific conditional KO mice and is
therefore expected to provide a wealth of new insights for this
macrophage population.

CD169+ MACROPHAGES AND IFN-I
PRODUCTION

Upon encounter with pathogens, such as viruses, CD169+

macrophages regulate pathogen spread and induce immune
responses by producing IFN-I. IFN-I consist of a single IFN-β
and several subtypes of IFN-α, that signal through IFN-I receptor,
a shared receptor expressed in almost all cell types (51). The
importance of IFN-I signaling is 2-fold: (1) IFN-I can induce
intracellular antiviral responses to suppress viral replication in
the infected cells (52), and (2) IFN-I can regulate both innate and
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adaptive immune responses that are required to clear pathogens.
However, depending on the type of pathogen, the outcome of
IFN-I actions can play both protective and detrimental roles to
the host (53, 54).

Viral Infection of CD169+ Macrophages
Results in IFN-I Production
CD169+ macrophages rapidly produce IFN-I after infection and
thereby restrict the spread of a variety of viruses including
mouse cytomegaloviruses (CMV), herpesvirus, and lymphocytic
choriomeningitis virus (LCMV) (55–58). Several studies using
neurotropic vesicular stomatitis virus (VSV) infection show
that IFN-I signaling is necessary for the survival of the
mice. Upon VSV infection, IFN-I was shown to be largely
produced by CD169+ macrophages and this prevented VSV
from entering the central nervous system (38). Similarly, during
experimental infection with recombinant modified vaccinia
virus Ankara (MVA), CD169+ macrophages were found to
be the main IFN-I producers (59). In this model, CD169+

macrophages recruited and activated NK cells upon MVA
infection, which was dependent on the production of IFN-
I by CD169+ macrophages. Additionally, MVA infection also
induced inflammasome activation by CD169+ macrophages that
led to pyroptotic cell death, cytokine burst, and recruitment of
inflammatory cells (60).

CD169+ Macrophages Recruit and Prime
IFN-I Production by pDCs
Next to CD169+ macrophages, pDCs are well-known for their
capacity to produce IFN-I. They express TLR7 and TLR9 and
high basal levels of IRF7 that allows them to detect intracellular
nucleic acids and to produce IFN-α immediately upon encounter
with pathogens (61). pDCs are located mainly in the lymphoid
organs, such as bone marrow, spleen, and lymph nodes, but not
in non-lymphoid tissues. In steady state, pDCs can be found in
the T cell zone and peri-follicular area of the lymph node. Upon
infection with pathogens, such as VSV, pDCs migrate to the SCS
and medulla, areas rich in CD169+ macrophages (38). pDCs
were reported to account for half of the IFN-I produced upon
VSV infection, which was dependent on the presence of CD169+

macrophages. In a another study, the migration of pDCs to SCS
was shown to be mediated by CXCR3, chemokine receptor of
CXCL9, CXCL10, amongst others (62). It was suggested that viral
particles from the infected CD169+ macrophages could activate
these migrating pDCs. However, the direct interaction between
SCS CD169+ macrophages and pDCs and its consequences are
still unclear.

In a malaria infectionmodel, pDCs accounted for the majority
of IFN-I produced which led to lethal outcomes of infected
mice (63). Spaulding et al. reported that after infection with
malaria, CD169+ macrophages sustained prolonged interaction
with pDCs in the bone marrow and primed them to produce
IFN-I. Thus, this study provides evidence of an active interaction
between CD169+ macrophages and pDCs that may also occur in
other lymphoid organs.

However, pDC-derived IFN-I may be dispensable in some
situations. In a study that exploited an MCMV footpad

infection model, pDC depletion using αBST2 antibodies led
to an increase in MCMV escape from SCS and spread to
other tissues (55). Nevertheless, this effect was moderate
when compared to blocking IFN-I using anti-IFN-I receptor
antibodies. In another MCMV model where MCMV was
administered intraperitoneally, depletion of pDCs also resulted
in an increase of viral spread and dissemination, but only
when a low dose was used (64). pDCs were also demonstrated
dispensable for survival of the mice upon infection with VSV
and Plasmodium (38, 63). Thus, upon pathogen encounter
by CD169+ macrophages, pDCs are recruited to amplify
IFN-I signaling, however this is not always essential for
pathogen clearance or mice survival. Nevertheless, pDC-
derived IFN-I may still contribute to other aspects of immune
responses.

IFN-I Augments cDCs to Initiate Adaptive
Immune Responses
The initiation of adaptive immune response by cDCs involves
multiple mechanisms including antigen presentation, co-
stimulatory/inhibitory molecules, and immunomodulation by
cytokines. Next to its role in inhibiting viral replication, IFN-I
has been demonstrated to augment NK cell function, B cell
isotype switching, and T cell survival and activation (65). IFN-I
is also critical for the function of cDCs to fully activate naïve T
cells as it stimulates the expression of co-stimulatory molecules,
enhances responses to TLR-ligands and increases antigen
presentation capacity (66–69). cDC1, in particular, require the
presence of IFN-I for antigen cross-presentation and subsequent
CD8+ T cell activation (70). Several reports have demonstrated
IFN-activated cDC1 to be important for generating CD8+ T cell
responses against tumor or viral infections (71–73). In fact, IFN-I
signaling induced by viruses could enhance the development of
CD8+ T cell-mediated anti-tumor responses as a vaccination
strategy (70, 74, 75).

Studies have been performed to identify the source of IFN-
I required for the maturation of cDCs. In a vaccination system
using tumor protein antigen and an iNKT cell ligand α-GalCer,
splenic pDCs produced high amounts of IFN-I (76). Importantly,
prior to cDC1 trafficking to the white pulp for T cell stimulation,
pDCs were found to cluster with cDC1s in the CD169+

macrophage-rich marginal zone and red pulp area of the spleen.
It was further shown that abolishing IFN-I signaling in CD11c+

cells led to an impairedmemory T cell formation. This was in line
with a previous study, where pDCs were reported to promote the
generation and survival of antigen-specific CD8+ T cells upon
VSV infection (64). More recently, Brewitz and colleagues have
demonstrated pDC-derived IFN-I to be important for CD8+ T
cell activation by cDC1 when mice were exposed to MVA (62).
After MVA infection, pDCs, cDC1s, and CD8+ T cells formed
superclusters in the interfollicular area of the lymph node. This
event was required for CD8+ T cell responses. Additionally,
in a vaccination strategy using TLR7 agonist as an adjuvant,
pDC-derived IFN-I was crucial for in vivo CD8+ T cell killing
(77). These observations suggest an important cross-talk between
IFN-I-producing pDCs and CD8+ XCR1+ cDC1 for an optimal
CD8+ T cell activation in vaccination or viral infection.
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The effect of IFN-I derived from CD169+ macrophages and
pDCs on the function of cDCs is not limited to CD8+ T cell
activation. Upon infection with S. mansoni eggs, IFN-I was
needed for an optimal cDC activation, migration and induction
of Th2 immune responses in vivo (78). In a DC-targeting
vaccination using HIV gag-protein and poly(I:C) as an adjuvant,
CD4+ Th1 responses were abolished upon interference with
IFN-I signaling (79). Next to T cells, IFN-I signaling on DCs
could alsomediate B cell function including antibody production,
isotype switching and the development of T follicular helper cells
(80, 81). Thus, IFN-I stimulated DCs have an enhanced capacity
to activate both humoral and cell-mediated adaptive immune
responses.

A similar priming effect of IFN-I on cross-presentation has
also been shown in human DCs (82, 83). In humans, the level of
IFN-I is highly elevated and has been suggested to contribute to
the break of tolerance in many autoimmune diseases (84). For
example in systemic lupus erythematosus (SLE), the increased
level of IFN-I produced by pDCs directly induced cDCs
maturation and CD4+ T cell activation (85). In psoriasis, pDC-
derived IFN-I was sufficient to drive T cells infiltration and
psoriatic plaque lesion formation (86). Interestingly, the numbers
of CD169-expressing monocytes/macrophages were increased in
the circulation and affected tissues of patients with systemic
sclerosis and multiple sclerosis (87, 88). More investigation is
needed to clarify the intricate cross-talk of CD169+ macrophage
and pDC-derived IFN-I, cDC1, and T cell immunity in human
diseases.

Suppressive Effects of IFN-I
Of note, the role of IFN-I during an infection is largely
context-dependent and can also result in immunosuppression. A
sustained IFN-I production can lead to increase of IL-10 and a
higher expression of PD-L1. In a model of a persistent infection
using LCMV strain Docile, upregulation of PD-L1 expression
by CD169+ macrophages was important to promote CD8+ T
cell exhaustion and prevented lethal immunopathology (58). The
increased expression of PD-L1 in CD169+ macrophages was
also observed in infection model with other LCMV strains (89).
In addition, chronic infection with LCMV led to a sustained
IFN-I production that prevented mice from mounting immune
responses to a secondary infection by VSV (90). This was due
to a reduced viral replication in CD169+ macrophages and
subsequent impaired antigen presentation and lack of adaptive
immune responses, rather than immunosuppression. However,
using a model of E. coli-induced septic shock and subsequent
systemic challenge with ovalbumin (OVA)-containing viruses,
Schwandt et al. demonstrated that mice with sepsis had reduced
antigen-specific CD8+ T cell responses. This suppression was
mediated by macrophage-derived IFN-I that hampered cDC1
function to activate CD8+ T cells (91). Together these studies
indicate that during chronic infections IFN-I production by
CD169+ macrophages inhibits activation of immune responses
toward secondary infections.

In conclusion, the production of IFN-I by CD169+

macrophages, potentially amplified by pDC-derived IFN-I,

can strongly stimulate cDC function and the activation of
immune responses, but may also result in immunosuppression.

CD169+ MACROPHAGES EFFICIENTLY
CAPTURE PATHOGENS AND MEDIATE
ANTIGEN TRANSFER

Their strategic location in spleen and in lymph nodes endows
CD169+ macrophages with the capacity to capture blood- and
lymph-borne pathogens. In fact, CD169+ macrophages appear
to be extremely efficient in this process, as showed by multiple
groups using various infectionmodels (37, 38, 40, 92–96). Having
acquired viral antigens, CD169+ macrophages were reported to
transfer antigen to DCs and B cells mainly contributing to the
infection control but also to virus dissemination in some cases.

CD169+ Macrophages Enable Containment
of Viral Infection and Localized Production
of Antigen
The role of CD169+ macrophages as efficient gatekeepers
has been demonstrated in a large number of viral infections,
such as adenovirus, vaccinia virus, West Nile virus, and
VSV (37, 92, 97). Additionally, experiments with human
immunodeficiency virus (HIV) and murine leukemia virus
(MLV) models confirmed prompt and potent virus capture by
these gatekeepingmacrophages (93). Deletion of splenic CD169+

macrophages was reported to cause rapid dissemination of
LCMV and herpes virus infection (35, 98). Along the same line,
local depletion of SCS macrophages resulted in higher viral titers
in the spleen and other organs providing direct evidence for the
protective role of CD169+ macrophages in systemic viral spread
(37, 38, 40) (99). This clearly demonstrated the importance of
CD169+ macrophages in infection containment.

Paradoxically, CD169+ macrophages can also support
virus replication (33, 38, 99). Enforced virus replication
within CD169+ macrophages endowed them with the distinct
feature of being a source of viral antigen that facilitated
activation of adaptive immune responses. Accordingly, increased
expression of inhibitory protein Usp18 rendered splenic
CD169+ macrophages unresponsive to IFN-I. As a consequence,
enhanced cytopathic VSV replication in these cells was facilitated
(94). CD169+ macrophage-mediated VSV replication mediated
a strong VSV-neutralizing antibody response that rescued
infected animals. Positive correlation between viral replication
in CD169+ macrophages and protective adaptive immune
responses was also shown in LCMV infection (100).

CD169+ Macrophages Transfer Antigens to
DCs in Viral Infections
Apart from effective viral capture and containment of the
infection, CD169+ macrophages have been previously reported
to directly present particulate antigens, immune complexes as
well as intact virus particles to non-cognate and cognate B cells
(37, 101–103). This process was shown to stimulate germinal
center responses and production of high affinity antibodies
(103, 104). While in these initial studies that used clodronate
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liposomes, B cells were still activated in the absence of SCS
macrophages (38), a recent study indicated that absence of SCS
macrophages led to defective B cell responses (105). This process
of intact virus presentation to B cells by CD169+ macrophages
has also been implicated in trans-infection of B cells, contributing
to the virus dissemination rather than to the virus containment
(discussed in more detail in section CD169 as a viral receptor that
mediates virus capture and trans-infection).

Despite robust evidence proving the importance of CD169+

macrophages in the induction of anti-viral B cell responses,
their role in the activation of T cell responses is still being
elucidated. While a number of studies demonstrate that CD169+

macrophages are dispensable for T cell priming (35–38, 94, 97),
interaction between CD169+ macrophages and cDC1s has been
shown to promote anti-viral T cell responses (44, 106, 107).
The study by Backer et al. indicated that CD169+ macrophages
could transfer antigens to cDC1s for the stimulation of CTL
responses (106). In line with this, Bernhard et al. showed
that antigen transfer between CD169+ macrophages and cDCs
also occurred in adenoviral infection. Interestingly, CD169+

macrophages were also able to directly present viral antigens
to T cells bypassing the need for cDCs for T cell priming.
While all epitopes, including low affinity peptides, were directly
presented by CD169+ macrophages, cDC1s only cross-presented
high affinity T cell epitopes (107).

Recently, the collaboration between CD169+ and cDC1s
was investigated in more detail (44). This study revealed that
the CD169 receptor enabled cell-cell contact with sialylated
ligands on cDCs and thereby facilitated transfer of antigen
to cDCs. In addition to mediating adhesion to DCs, CD169
has also been reported to support binding of innate-like
lymphocytes and neutrophils (41, 108, 109). Remarkably, even
upon disintegration, CD169+ SCSmacrophage cell-derived blebs
are able to bind to IL-17 lymphocytes and NK cells (41, 43).
Apparently, CD169 acts as an adhesion receptor that facilitates
the interaction of CD169+ macrophages with other innate
immune cells.

Interestingly, in vivo blockade of CD169 receptor resulted
in impaired MVA-specific, but not VSV-specific CD8+ T cell
responses (44). This observation could be explained by the
dispensability of the cross-presentation process during certain
viral infections, such as VSV in which DCs are likely to be directly
infected (94). Specifically, KLRG-1low CD8+ T cells withmemory
potential were negatively affected upon CD169 blocking inMVA-
infected animals, indicating that CD169+ macrophage-mediated
antigen transfer to cDC1s might facilitate memory responses as
well. In line with this, collaboration between splenic CD169+

macrophages and cDC1s was important for activation of memory
CD8+ T cell responses in VSV infection (33).

Van Dinther et al. showed that CLEC9A/DNGR-1 expressed
on cDC1 enhanced CD8+ T cell cross-priming of antigens
targeted to CD169+ macrophages (44). CLEC9A/DNGR-1 binds
to F-actin exposed on dying cells and while it does not increase
antigen transfer, it enhances T cell responses toward cell-
associated material and in viral infections (110–112). A number
of studies have indicated the disappearance or death of CD169+

macrophages induced by viral infection or other inflammatory

agents (44, 60, 105). This suggests that upon infection, CD169+

macrophages quickly die and thereby form a cellular substrate
for antigen transfer by the cross-presenting cDC1. This process
could be of particular importance in viral infections, such as
MVA, that solely depend on cross-presentation as opposed to
VSV where the virus directly infects DCs (44).

CD169 as a Viral Receptor That Mediates
Virus Capture and Trans-infection
A decade ago, CD169 expressed on monocyte-derived DCs
was found to promote HIV infection. This discovery brought
a paradigm shift in the HIV field with CD169 replacing DC-
SIGN as the main capture receptor responsible not only for
HIV adhesion, but also for trans-infection (113–116). Following
binding of CD169 to virus membrane-associated glycolipids
(GM3), HIV-1 and CD169 were demonstrated to travel
together to and accumulate at a non-lysosomal compartment.
Consequently, the concentration of HIV-1 and CD169 at the so
called infectious synapse enabled trans-infection of CD4+ T cells
(117). A similar trans-infection process was also shown to be
important for henipavirus infection (118).

In a study that focused on MLV and HIV infection in vivo,
CD169-mediated virus capture was also reported to occur via
CD169 binding to gangliosides on the viral membrane (93).
Interestingly, CD169+ macrophages that had captured MLV,
but were not infected themselves, were responsible for trans-
infection of permissive B cells which facilitated spread of the
infection. Accordingly, considerably lower numbers of virus-
infected cells were detected both in peripheral lymph nodes
and spleen upon blocking of CD169 and in CD169-deficient
mice. This clearly illustrated the importance of CD169 for
effective virus dissemination. In line with this, MLV was also
demonstrated to exploit CD169 expressed on primary mouse
bone marrow macrophages for trans-infection of proliferating B
cells (95). Apart from aforementioned retroviral models, a study
performed in a porcine reproductive and respiratory syndrome
virus (PRRSV) also experimentally addressed the role of CD169
in virus anchoring (119). The authors proved that the attachment
of the virus was dependent on the sialic acid binding activity
of the receptor that binds to sialylated viral glycoproteins on
PRRSV.

While substantial evidence from retroviral studies validates
CD169 as a viral receptor that is exploited by the pathogen
for its dissemination, numerous studies in viral models have
demonstrated the importance of CD169 expressing macrophages
for the containment of viral infection and localized production
of antigen. The latter suggests that these macrophages form a
reservoir of viral antigen for transfer to cDC1. A small number
of studies suggest that a similar process may take place in certain
bacterial infections.

CD169+ Macrophages Efficiently Trap
Bacteria and Allow Trans-infection of cDCs
Similar to what has been shown in viral infections, several studies
using the Listeria monocytogenes (Lm)model confirmed CD169+

macrophages as the initial cellular host that effectively traps the
bacteria (36, 120–122). While as early as 2 h post-infection, the
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majority of Lm was detected within macrophages in the marginal
zone, by 9 h CD11c+ DCs were the main cell type carrying
Lm (121). Two photon microscopy results showed clustering
of Lm-specific T cells that associated with CD11c+ DCs in
periarteriolar lymphoid sheath (PALS), which was indicative of
ongoing antigen presentation. At 24 h Lm-infection foci were
mainly localized to PALS where Lm was shown to replicate
extensively. Using a CD11c-DTR model that allows for CD11c
depletion upon DT injection, the authors confirmed that Lm
transport to the PALS and subsequent antigen presentation were
dependent on the presence of cDCs. However, as mentioned
already, CD11c-DTR model also abrogates CD11c- expressing
CD169+ macrophages. Therefore, only subsequent experiments
performed in the Batf3−/− model, formally established the role
of cross-presenting cDC1 in Lm delivery to the PALS (120, 122).

Recently, Perez et al. (122) also noted a shift in Lm distribution
from CD169+ macrophages to cDC1 over the course of infection
and showed that CD169+ macrophages mediate trans-infection
of cDC1. Accordingly, while in wild type animals cDC1 formed
clusters near Lm-infected CD169+ macrophages in the marginal
zone and efficiently delivered Lm to PALS, in CD169-DTR
mice such clusters were not present and transport to PALS
was impaired. Therefore, the presence of CD169+ macrophages
closely interacting with cDC1 promoted trans-infection and
enabled subsequent Lm entry to the PALS.

Similar to viral infections, CD169+ macrophages also control
the spread of bacteria. Perez and colleagues reported increased
bacterial titers in the spleen and blood of CD169-DTR mice,
suggesting that these macrophages impede Lm replication and
prevent Lm dissemination (122). Finally, using a CD169-DTR-
Batf3−/− model, that allows for conditional depletion of CD169+

macrophages in cDC1-deficient mice, it was demonstrated
that rapid Lm capture and clearance secured by CD169+

macrophages was instrumental for Lm control. Interestingly,
the authors showed that cytosolic replication within CD169+

macrophages due to phagosomal escape was necessary for
recruitment of cDC1.

While cDC1s have been identified as replication- permissive
cellular hosts for Lm, a recent study demonstrated that
CD169+ macrophages can have a similar role in pneumococcal
septicaemia (123). Upon infecting CD169+ macrophages,
Streptococcus pneumoniae evaded phagosomal clearance,
proliferated intracellularly and after causing cell lysis
disseminated to the bloodstream. The authors concluded
that intracellular replication within CD169+ macrophages is
crucial for resulting pneumococcal septicaemia.

Collectively, the findings from studies in bacterial infections,
albeit almost exclusively performed in the Lm model, illustrate
the importance of CD169+ macrophages as the initial cellular
host. By capturing the bacteria, CD169+ macrophages initially
mediate pathogen clearance and prevent systemic spread of
the infection. However, they also serve as a bacterial reservoir
that actually promotes propagation of the bacteria into the
bloodstream at a later stage in the case of Streptococcus
pneumonia or enable trans-infection of cDC1 by Lm. In addition
to these two bacterial infections, the CD169 molecule has
been shown to function as a receptor for bacterial uptake of

pathogens rich in sialylated polysaccharides, such as Neisseria
meningitidis, Campylobacter jejuni, and Trypanosoma cruzi
(124–126). It remains to be established whether CD169+

macrophages function as a bacterial and/or antigen reservoir in
these infections.

Uptake and Transfer of Apoptotic Cellular
Material by CD169+ Macrophages and the
Implications for Tolerance and Cancer
Immunity
The distinction between self and non-self is essential for the
proper function of the immune system. Next to their essential
role in initiating immune responses specific for pathogens,
CD169+ macrophages have also been shown to play a role in the
induction of tolerance and anti-cancer immune responses.

Role of CD169+ Macrophages in Tolerance
Continuous and non-inflammatory removal of apoptotic cell
material is essential for the maintenance of tolerance. Using a
transfer model of apoptotic cells, cDC1 cells were specifically
shown to take up and present these cell-associated antigens to
CD8+ T cells (16, 18, 19) and subsequently induce tolerance in
the steady state (127). One of the first observations indicating
a tolerogenic function for CD169+ macrophages was made by
Miyake et al., who generated CD169-DTR mice in which all
marginal zone macrophages were eliminated upon injection with
DT (47). Upon injection of apoptotic cells loaded with a fragment
of the myelin oligodendrocyte glycoprotein peptide (MOG
peptide), an accumulation of apoptotic cell content was observed
in the marginal zone in wild type mice, which prevented the
development of EAE. Depletion of marginal zone macrophages
via DT administration in CD169-DTR mice resulted in a failure
of induction of tolerance and a switch in the uptake of apoptotic
cells from CD8+ cDC1s to CD8− cDC2s (47).

Next to cDC2s, also red pulp macrophages, have been
accounted for the defective uptake of apoptotic cells and
the abrogation of tolerance in the absence of marginal zone
macrophages. When marginal zone macrophages were depleted
by means of clodronate liposomes, an accumulation of apoptotic
cells was detected in F4/80+ macrophages. This was correlated
with the production of inflammatory cytokines and loss of
tolerance induction (128).

In subsequent studies by McGaha et al. the interaction
between CD169+ macrophages and DCs was investigated. In
their system, intravenous injection of apoptotic cells induced the
expression of CCL22 on CD169+ macrophages, which resulted
in a coordinated clustering of CCR4-expressing cDC1s and
regulatory T cells within the white pulp. The induction of
tolerance was dependent on both CD169+ macrophages and
CCR4 (129). In contrast, another study reported that CCL22
is produced by the cDC1s upon injection with apoptotic cells,
showing that the role of the cell type that produces CCL22
remains to be clarified (130). However, together these studies
indicate thatmarginal zone CD169+ macrophages and cDC1s are
essential in the induction of tolerance via the uptake of apoptotic
cells and suggest a functional collaboration in this process.
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Uptake of Tumor Cell Material and
Exosomes by CD169+ Macrophages
Stimulate Anti-cancer Immunity
The previously discussed role of CD169+ macrophages in
mediating the removal of dying cells from the circulation to
induce tolerance suggests that a similar process could potentially
be involved in anti-tumor immunity. In this sense, a number
of factors have been proposed to shift the balance of tolerance
toward immunity. Whether DCs induce immunity is a context-
dependent process, influenced by environmentally provided
stimuli, stage and type of cell death as well as the location
where it takes place (131, 132). An example of this has been
provided by Lorenzi and colleagues, who demonstrated enhanced
intracellular persistence of antigenic particles in cDC1 upon
injection of tumor apoptotic cells in combination with IFN-
I. After exposure to IFN-I, cDC1 not only contributed to the
induction of OT-I proliferation, but also exhibited an enhanced
lifespan and expression of co-stimulatory molecules (133). Since
CD169+ macrophages can produce high amounts of IFN-I,
in combination with antigen this could provide the optimal
stimulus for DCs to be able to cross-present cell-associated tumor
antigens and to induce T cell activation.

However, the question remains whether CD169+

macrophages have the capacity to cross-present tumor
antigens autonomously. One of the first studies exploiting
subcutaneously-injected dead cells showed these cells being
transported throughout the lymphatic system to the lymph
nodes, where SCS macrophages cross-presented dead cell-
associated antigens to CD8+ T cells. Mice that were lacking
SCS macrophages at the moment of vaccination did not reject
the tumors successfully (134). Interestingly, in this model the
CD169+ macrophages, and not cDC1, were thought to directly
cross-prime CD8+ T cells. This is reminiscent of the direct
presentation of adenoviral antigens in the study of Bernhard
et al., although the latter cannot be formally referred to as cross-
presentation (107). Further studies are necessary to determine
whether CD169+ macrophages can cross-prime CD8+ T cells
independently or always require the collaboration with cDC1s.

In a model in which apoptotic cells were injected in vivo and
induced CD4+ T cell activation, again macrophages were shown
to be the main cells involved in the uptake and in their absence or
the absence of cDC1 the CD4+ T cell activation was significantly
decreased (135). Of note, an exosomal pathway was indicated to
play a role in the cell-associated antigen transfer of macrophages
to DCs. Exosomes are produced by many cell types and consist of
small membrane vesicles that contain proteins, lipids, and nucleic
acids. These vesicles can mediate transfer of such encapsulated
molecules and thereby facilitate communication between cells
(136). Exosomes have been found to be efficiently taken up by
CD169+ macrophages and cDC1 in the spleen (137). McLellan
and colleagues demonstrated that exosomes can express high
levels of α2,3-linked sialic acids and bind abundantly to CD169+

macrophages in the spleen. Interestingly, CD169-deficient mice
raised stronger CD8+ T cell responses toward antigen-pulsed
exosomes than wild type mice (138). A similar suppressive role of
CD169+ macrophages was observed in the T cell response toward
tumor-derived apoptotic vesicles (139).

These studies suggest that CD169+ macrophages scavenge
exosomes and thereby prevent their uptake by other cell types.
Proof of that concept was provided by Pittet and colleagues in
a mice model bearing genetically modified B16F10 melanoma
tumors. The authors observed that tumor-derived exosomes
drained to the lymph node and bound to CD169+ macrophages,
which prevented the interaction with B cells that produce
tumor promoting IgG. Elimination of CD169+ macrophages by
clodronate liposomes or by DT injection in the CD169-DTRmice
promoted tumor growth. In the same study, melanoma-derived
material was found in macrophages residing in the cancer-free
sentinel lymph node of human biopsies, hinting to the potential
relevance of these findings for human cancer research (140).

Several groups have reported association of the presence
of CD169+ macrophages in lymph nodes with good tumor
prognosis in human. Ohnishi and colleagues showed a
correlation between CD169+ macrophages and CD8+ T cell
infiltration in colorectal cancer, improving overall survival rates.
Furthermore, they observed co-localization of CD8+ T cells
and CD169+ macrophages in regional lymph node section
stainings (141). Similarly, more recent work from the same
group demonstrated that the presence of CD169+ macrophages
in the lymph nodes was also correlated to CD8+ T cell
infiltration in malignant melanoma, endometrial carcinoma
(where higher numbers of NK cells were also found), breast
cancer and bladder cancer (142–145), all leading to a better
prognosis and increased survival rates. Quite remarkably, in
the study in malignant melanoma, IFN-α producing cells were
detected around CD169+ macrophages in the lymph node sinus
area. Based on their morphology and marker expression, the
authors hypothesized that the source of IFN-α, supporting the
action of CD169+ macrophages, could be CD68+ macrophages
and pDCs (142). Altogether, these studies present robust data
illustrating the importance of CD169+ macrophages in lymph
nodes in proficient anti-tumor responses, characterized by a
consistent CD8+ T cell infiltration that benefits patient prognosis
and survival. However, while CD169+ macrophages where
shown to co-localize with CD8+ T cells, no direct evidence of
antigen presentation by CD169+ macrophages was provided at
a functional level. Therefore, there might be room for other
more specialized immune cells, such as cDC1 to cooperate in the
process of T cell priming.

Vaccination Strategies That Target to
CD169+ Macrophages
The presence of CD169+ macrophages in lymph nodes draining
different tumor types and their correlation with a better patient
survival, their unique capacity to screen the lymphatic and blood
circulation and, finally, their capacity to collaborate with DCs,
all point to CD169+ macrophages as appealing targets for the
design of anti-cancer vaccines. Until now, several vaccination
strategies targeting CD169+ macrophages have been evaluated
experimentally.

Due to their high specificity and the restricted expression
pattern of CD169, monoclonal antibodies have been tested for
antigen delivery to CD169+ macrophages. Upon anti-CD169-
specific antibody targeting of OVA, strong CTL responses were
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FIGURE 1 | The different functions of CD169+ macrophages and their cross-talk with cDC1. (1) Uptake: CD169+ macrophages capture and phagocytose

pathogens, including bacteria and viruses, as well as dead cells. The CD169 molecule also directly binds to exosomes and specific pathogens, such as HIV. (2)

Antigen transfer: CD169+ macrophages directly interact and present antigens to cDC1s for the generation of antigen-specific CD8+ T cell responses. While HIV

particles are transferred via CD169, other components of bacteria and viruses can be transferred to cDC1s from the macrophages. Dead cells can stimulate cDC1s

via CLEC9A expressed on the cDC1. The interaction between CD169+ macrophages and cDC1s is dependent on binding of CD169 to sialic acid structures on

cDC1s. (3) IFN-I priming: after encounter with bacteria, dead cells, or viruses, CD169+ macrophages secrete IFN-I that is required for optimal activation of cDC1s and

T cells. Subsequently, pDCs are recruited and their IFN-I production further amplifies the signal. (4) Trans-infection: in the case of HIV and MLV, CD169+ macrophages

can also mediate viral trans-infection to CD4T cells and B cells.

generated mediated by antigen transfer to cDC1 (106). This
effect was lost upon depletion of CD169+ macrophages by the
administration of clodronate liposomes and was shown to be
mediated by BATF3-dependent cDC1s (44). Antibody-mediated
targeting of OVA to CD169+ macrophages also led to an isotype-
switched and high affinity antibody production due to germinal
center activity. CD169+ macrophages retained intact antigen on
their surface for days and upregulated costimulatory molecules
for B cell interaction upon activation (103). This feature
of CD169+ macrophages to retain intact molecules on their
membrane has been correlated with low expression of proteolytic
enzymes (104).

On a different note, Delputte et al. demonstrated that

monoclonal antibodies against CD169 were not only binding,

but also being efficiently internalized in a clathrin-dependent
manner. Immunotoxins or antigens could be delivered to

CD169+ macrophages via antibody targeting, leading to killing

of primary porcine macrophages and the generation of anti-

HSA humoral responses, respectively (146, 147). It is not clear
why certain studies report internalization and others long-
term presence on the cell surface with antibody targeting. Both
processes could occur simultaneously, but these divergent results
could also be due to antibodies binding to different regions of the
CD169 molecule.

In addition, liposomes have been used to target antigens to
CD169+ macrophages. Chen and colleagues generated OVA-
containing liposomes decorated with 3′-BPCNeuAc, a synthetic
ligand of CD169, and showed that targeting of IFN-α stimulated

bone marrow-derived mouse macrophages with 3′-BPCNeuAc-
liposomes induced OVA specific T cell proliferation (148).
Moreover, the same authors could also accomplish activation
of iNKT cells by including the lipid antigen αGalCer in the 3′-
BPCNeuAc-liposomes (149). CD169+ macrophages seem well
equipped in stimulating NKT cells via CD1d, which subsequently
help B cell responses (42, 150). Liposomes with the endogenous
ligand for CD169, ganglioside GM3, have also been shown to
bind to CD169+ monocyte-derived DCs (151). These studies
indicate that also liposomal strategies could be employed to target
antigens and activating agents to CD169+ macrophages.

CONCLUDING REMARKS

In recent years a considerable number of studies have focused
on the role that CD169+ macrophages play in the SCS of the
lymph node and the marginal zone of the spleen (summarized
in Figure 1). These studies, as discussed in this review, point to
CD169+ macrophages as the main cell type to capture viruses,
bacteria, dead cells and exosomes from the lymph fluid and
the blood. This filtering capacity prevents further dissemination
and enables a localized contained production of antigen that is
efficiently transferred to DCs and B cells for the activation of
adaptive immune responses. The collaboration between CD169+

macrophages and cDC1s is especially important in the activation
of CD8+ T cell responses toward viral or tumor antigens. In
this context, IFN-I derived from CD169+ macrophages and
pDCs plays a crucial role for an appropriate cDC1 activation.

Frontiers in Immunology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 2472

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Grabowska et al. The Interplay of CD169+ Macrophages and DCs

However, a number of pathogens have exploited this pathway
and utilize CD169+ macrophages as a niche to replicate and to
mediate trans-infection of other cell types. In the coming years,
the role of the human equivalent of this cell type will hopefully
be elucidated and the development of treatment strategies to
boost or down-regulate immune responses via the actions of the
CD169+ macrophages may well be expected.
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