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Abstract

Assessment of the volume status by blood pressure (BP) monitoring is diffi-

cult, since baroreflex control of BP makes it insensitive to blood loss up to

about one liter. We hypothesized that a machine learning model recognizes

the progression of central hypovolemia toward presyncope by extracting infor-

mation of the noninvasive blood pressure waveform parametrized through

principal component analysis. This was tested in healthy volunteers exposed

to simulated hemorrhage by lower body negative pressure (LBNP). Fifty-six

healthy volunteers were subjected to progressive central hypovolemia. A sup-

port vector machine was trained on the blood pressure waveform. Three

classes of progressive stages of hypovolemia were defined. The model was

optimized for the number of principal components and regularization param-

eter for penalizing misclassification (cost): C. Model performance was

expressed as accuracy, mean squared error (MSE), and kappa statistic (inter-

rater agreement). Forty-six subjects developed presyncope of which 41 showed

an increase in model classification severity from baseline to presyncope. In five

of the remaining nine subjects (1 was excluded) it stagnated. Classification of

samples during baseline and end-stage LBNP had the highest accuracy (95%

and 50%, respectively). Baseline and first stage of LBNP demonstrated the

lowest MSE (0.01 respectively 0.32). Model MSE and accuracy did not

improve for C values exceeding 0.01. Adding more than five principal compo-

nents did not further improve accuracy or MSE. Increment in kappa halted

after 10 principal components had been added. Automated feature extraction

of the blood pressure waveform allows modeling of progressive hypovolemia

with a support vector machine. The model distinguishes classes between base-

line and presyncope.

Introduction

The effective circulating blood volume refers to the part

of the volume within the arterial system effectively perfus-

ing the tissues (Schrier 1990; Abraham and Schrier 1994)

and is assumed to depend mainly on the central blood

volume (CBV), but clinical assessment of the CBV

continues to be difficult (Schrier 1990; Marik et al. 2011;

Bronzwaer et al. 2015; Secher and van Lieshout 2016).

As an example, during anesthesia volume treatment is

generally planned according to a somewhat arbitrary fixed

volume regime or guided by blood pressure (BP) and

heart rate (HR), focusing on maintaining fluid balance.

In contrast, in patients with end-stage kidney disease
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being treated with hemodialysis or hemodiafiltration

intravascular volume depletion is planned. With progres-

sion of the dialysis session, the preload of the heart decli-

nes and eventually may become too low to maintain a

sufficient cardiac output with the development of arterial

hypotension when the limits of vasomotor reserve avail-

able for vasoconstriction have been reached (Schondorf

and Wieling 2000; Fu et al. 2004; Schiller et al. 2017).

Volume treatment essentially has to balance the danger

of death in response to a serious reduction of CBV, the vol-

ume of blood directly available to the left ventricle, against

that of developing pulmonary and/or peripheral edema

(Secher and van Lieshout 2005; Godfrey et al. 2014). Con-

sidering the negative impact of either inadequate or overag-

gressive fluid therapy proper assessment of the volume

status would benefit patient care (Kalantari et al. 2013).

Therefore, early detection of a critical reduction of the CBV

within the effective treatment window would be a valuable

feat. Hypovolemic shock is characterized by a critically

reduced CBV but loss of ~1 L of blood or fluid is regularly

not reflected in blood pressure. This makes assessment of

the circulatory state complex (McMichael 1944; Wiggers

1950; Sander-Jensen et al. 1986; Harms et al. 2003; Marik

et al. 2009; Zhang et al. 2012).

The integral response of the cardiovascular system to

progressing central hypovolemia from rest to the stage

of hemodynamic instability and presyncope was quanti-

fied earlier with the use of either a support vector

machine or a neural network trained on features

assumed having a physiological and/or clinical meaning

(Bennis et al. 2017; van der Ster et al. 2018). By design,

the majority of these features – including blood pressure

and transcranial Doppler determined cerebral blood flow

velocity derivatives – are the result of considerable

down-sampling of potentially sensitive features of arterial

pressure and cerebral blood flow velocity waveforms.

However, both the arterial pressure and transcranial

cerebral blood flow velocity waveforms contain subtle

information on the cardio-cerebrovascular condition

(van der Ster et al. 2018). Principal component analysis

(PCA) is a mathematical technique to identify a reduced

number of uncorrelated features from a larger dataset. It

expresses the variation in the data in a set of orthogonal

(uncorrelated) vectors. We hypothesized that by auto-

mated parametrization through PCA (Pearson 1901)

these nuances enclosed within the BP waveform can be

expressed numerically and thus improve precision in

quantifying the cardiovascular state. This study tested in

healthy volunteers subjected to progressive reduction of

the CBV by lower body negative pressure (LBNP)

whether principal component analysis describes the pro-

gress toward critical central hypovolemia.
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Figure 1. Individual blood pressure waveform. Mean and 95% confidence interval of the blood pressure waveform in a single subject for the

four stages during the protocol: rest (class 0) and three stages of LBNP induced progressive hypovolemia (classes 1 through 3).
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Methods

The study protocol was approved by the Academic Medi-

cal Centre Amsterdam medical ethical committee (Study

no. #2014_310) and conform the standards set by the

Declaration of Helsinki. Written informed consent was

obtained from all subjects.

Subjects

Fifty-six healthy, nonsmoking volunteers (25 males) who

were physically active participated in the study (age: 24,

standard deviation (SD) 4 years; height: 176, SD 10 cm;

weight: 71, SD 11 kg). Exclusion criteria were a medical

history of cardio- and/or cerebrovascular disease, neuro-

logical disorders, diabetes mellitus, regular fainting, and

the use of medication. Prior to the experiment subjects

abstained from heavy exercise, alcohol, and caffeinated

beverages for at least 12 h.

Continuous beat-to-beat BP was measured noninva-

sively using finger plethysmography (Nexfin, Edwards

Lifesciences, Irvine, CA) (Martina et al. 2012). An appro-

priately sized finger cuff was applied to the mid-phalanx

of the middle finger of the left hand. The hand was main-

tained at heart level during for the duration of the

measurement.

Protocol

Lower body negative pressure (LBNP) was applied to sim-

ulate hemorrhage. Responses to LBNP and blood loss up

to 1000 mL follow a similar hemodynamic stimulus-

response pattern (Johnson et al. 2014; Rickards et al.

2015). The lower part of the body was positioned inside a

lower body negative pressure (LBNP) box (Kaiser Mediz-

intechnik, Bad Hersfeld, Germany) and sealed at the level

of the iliac crest (Goswami et al. 2009; Bronzwaer et al.

2017). The LBNP box was equipped with a saddle to pre-

vent leg muscle pump activation during the application

of the subatmospheric pressure. Following 30 min of

supine rest, continuous negative pressure (50 mmHg

below atmospheric pressure) was applied to the lower

body. The pressure inside the box was manually con-

trolled and established within 20 sec.

The protocol continued until the subject developed

presyncope or tolerated LBNP for 30 min without devel-

oping presyncopal symptoms. In compliance with our

laboratory safety guidelines presyncopal symptoms

include sweating, light-headedness, nausea, blurred vision,

and/or signs meeting one or more of the following crite-

ria: systolic arterial pressure (SAP) below 80 mmHg, or

rapid drop in BP (SAP by ≥25 mmHg/min, diastolic arte-

rial pressure (DAP) by ≥15 mmHg/min), and drop in HR

by ≥15 bpm/min. The subjects were continuously moni-

tored by an investigator experienced in human studies

and unoccupied by experimental obligations (van der Ster

et al. 2018). To account for the uncertainty in the subset

of subjects that did not develop presyncope, these subjects

were not included in the training set. Instead their data

served as a check for false positive classification of hypov-

olemia.

Preprocessing and feature extraction

All BP waveforms were extracted from the continuous

200 Hz sampled tracing. Each wave was interpolated

(1-dimensional cubic (Cubic Hermite splines) interpolation)

to contain exactly 33 samples and subsequently labeled

with a class number (Fig. 1). Classes were defined as 0

(supine baseline rest, i.e., normovolemia), and 1 through
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Figure 2. Individual hemodynamic and model responses. (A) Mean

arterial pressure (MAP) and heart rate (HR) and their moving

averages (bold lines). (B) 4 defined classes: rest (0) and LBNP (1

through 3) (black, stepwise line) with advancing simulated

hemorrhage and the model responses following 20 sample moving

averaging for a model with regularization value C = 1 for 10

bootstraps (gray) and their mean (black) for one subject.
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3 (representing 0–33%, 34–67%, and 68–100% of the seg-

ment of LBNP, respectively). Samples containing Nexfin

Physiocal pressure calibrations were removed.

Modeling

The total feature matrix consisted of ~100.000 blood pres-

sure waves with 33 features. This matrix was converted to

principal components as a way of parametrizing the blood

pressure waveform which then served as input to a super-

vised support vector machine algorithm (libsvm software

package for Matlab [Chang and Lin 2011]). This machine

learning approach bases future decisions on previously

measured example data samples. We used a linear kernel

and tested for different regularization parameter values

(C: C = 0.001; C = 0.01; C = 0.1; C = 1; C = 10; and

C = 100. The parameter C is a regularization coefficient

controlling the trade-off between minimizing training

errors and controlling model complexity (Bishop 2006).

A lower value for C allows for a larger margin for the

decision boundary (hyperplane), potentially increasing

misclassification whereas a larger value for C attempts to

minimize misclassification by finding a smaller margin

hyperplane. The optimal value for C is used for a stepwise

addition of principal components to retrieve the mini-

mally required number of components for tackling this

learning task.

The model was trained using a leave one subject out

strategy (Shao et al. 2016). To limit computational time a

10-fold bootstrap approach was applied to select a random

subsample of 10% of the remaining training set data each

fold. Subsequently, these 10 acquired models were tested

on the integral set of the held-out data. The resulting clas-

sification represented by discrete values between 0 and 3

was then smoothed using a moving average over 20 beats

and averaged for the 10 models after bootstrapping. Model

performance was expressed in terms of accuracy, kappa

statistic (Cohen 1960) from the confusion matrix and

mean squared error (MSE) from the proposed classes.

Kappa can be used for sensitivity and specificity for more

than one class and compares observed accuracy (by the

model) versus expected accuracy (random chance). Thus

kappa describes how close the model matches the prede-

fined class labels while correcting for a model that would

randomly classify. Overall the measure is a value that

describes the performance of the model over all classes as

a single number. A perfect model would have a kappa of

0.81-1 and a poor one <0.20 (Landis and Koch 1977).

Results

Nine out of 56 subjects completed the full 30 min of

LBNP without developing presyncope and were excluded

from the training set. Data of one subject was excluded

because too few samples (<1 min of data) were available

from the segment during LBNP, leaving 72.500 blood

pressure waves originating from 46 subjects available for

training and testing the model.
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The moving average of the individually predicted sam-

ples increased in classified stages of hypovolemia (Fig. 2,

bottom panel) in 41 out of 46 subjects. The number of

times a class was correctly classified is visualized in Fig. 3,

which reveals that baseline can be distinguished from the

other classes (90% correct), while the other classes show

more overlap: class 1: 47% correct; class 2: 29% correct;

and class 3 (60% correct). In five out of nine subjects

who tolerated 30 min LBNP without development of

presyncope, classification number stagnated indicating

absence of progressive hypovolemia (Fig. 4).

Incremental values for regularization variable C did

not further improve model accuracy or lower MSE

beyond C = 0.01 (Fig. 5 and Table 1). As expected,

with further incremental values for C for classes 1

through 3 the error magnitude increased and accuracy

declined. A higher value for C followed the proposed

classes more strictly resulting in an artificial, stepwise

quantification of hypovolemia.

Accuracy and MSE improvement per added principal

component revealed that the trade-off between model

improvement (as reflected by increasing values for accu-

racy and kappa and decreasing values of MSE) and add-

ing more features was optimal after having added five

principal components. Kappa stopped increasing after

having added 10 principal components (Fig. 6).

Discussion

The novel finding of this study is that automated feature

extraction of the blood pressure waveform allows for

tracking of cardiovascular events in response to ongoing

depletion of the CBV up unto the point of cardiovascular

collapse. We created 3 subclasses during LBNP to add
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additional precision to the modeled response in compar-

ison with previous work (two classes during LBNP; van

der Ster et al. 2018). The achieved accuracy implies that

these subclasses are poorly defined, or may not exist from

a physiological point of view respectively vary between

subjects. This corresponds to distinct cardiovascular

response patterns to sympathetic stimulation by LBNP in

young healthy volunteers (Bronzwaer et al. 2016). The

model nevertheless detected a response toward cardiovas-

cular collapse in the majority of subjects. For most sub-

jects who did not experience pre-syncopal symptoms

within the time frame of 30 min the progress of model

classification from class 1 toward class 3 (presyncope)

stagnated prematurely. This indicates that the central

hypovolemia these subjects were exposed to was not pro-

gressive within that time frame. These results support that

the arterial pressure waveform contains subtleties that do

change with progressive hypovolemia. The pressure wave-

form contains information on reflection (Wilkinson et al.

2000; Dark et al. 2006), left ventricular stroke volume

(Broemser and Ranke 1930; Wesseling et al. 1993) and

volumetric state (Baruch et al. 2011; Convertino et al.

2011; Moulton et al. 2013). In the present study, we para-

metrized the arterial pressure waveform in an automated

way rather than manually thus including the relevant

parameters at the cost of losing a physiological meaning-

ful interpretation of the input waveform. The principal

components describe which component constitute a

Table 1. Model performance for all subjects experiencing presyncope.

Class 0 Class 1 Class 2 Class 3 Overall

C = 1e-3

Mean squared error 0.04 [0.12] 0.37 [0.70] 0.30 [0.24] 0.49 [0.89] 0.26 [0.30]

Accuracy 92 [18] % 36 [38] % 12 [9] % 56 [34] % 57 [18] %

j 0.4650

C = 1e-2

Mean squared error 0.01 [0.10] 0.32 [0.62] 0.33 [0.23] 0.46 [0.79] 0.25 [0.35]

Accuracy 95 [16] % 34 [31] % 13 [12] % 50 [37] % 57 [18] %

j 0.4816

C = 1e-1

Mean squared error 0.01 [0.17] 0.41 [0.54] 0.30 [0.26] 0.41 [0.73] 0.26 [0.40]

Accuracy 95 [20] % 28 [31] % 12 [15] % 46 [45] % 54 [16] %

j 0.4869

C = 1

Mean squared error 0.01 [0.20] 0.47 [0.48] 0.29 [0.20] 0.35 [0.91] 0.40 [0.36]

Accuracy 93 [27] % 26 [27] % 10 [10] % 42 [49] % 46 [19] %

j 0.4047

C = 10

Mean squared error 0.01 [0.17] 0.48 [0.61] 0.28 [0.18] 0.38 [0.92] 0.39 [0.37]

Accuracy 91 [28] % 24 [27] % 8 [8] % 38 [46] % 45 [18] %

j 0.3964

C = 100

Mean squared error 0.03 [0.36] 0.46 [0.45] 0.30 [0.23] 0.42 [0.82] 0.37 [0.43]

Accuracy 91 [36] % 21 [20] % 7 [5] % 39 [39] % 45 [15] %

j 0.4456

Median [IQR] of accuracy, mean squared error per class and kappa for different values of C.
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waveform and changes in principal components can be

detected which indicates an alteration in waveform with-

out specifying exactly what has changed. These changes in

the added components appear sufficiently sensitive to

classify hypovolemia and distinguish between the prede-

fined classes. Making use of principal components exposes

new sensitive information and improves identification of

the degree of central hypovolemia compared to multi-

parameter monitoring (van der Ster et al. 2018).

In the present study, in contrast to the majority of

LBNP studies, a single step of LBNP chamber pressure

was applied until the onset of presyncope. This implies

that instead of training the model to stepwise LBNP, the

model recognizes labeled classes that were defined on

time, meaning that there is no distinction between classes

1, 2, and 3 except time. This was performed to ensure

that the algorithm was trained toward a gradual response

of hypovolemia without potential induced bias set by

sequential incremental levels of LBNP chamber pressure.

Subjects typically suffer from a circulatory collapse follow-

ing a transition from one step of LBNP to the next (Con-

vertino et al. 2013). In this study, we made an attempt to

avoid that the model would be affected and thus possibly

trained by undesired rapid changes in hemodynamics.

Here, the model has no knowledge about the waveform

at different levels of LBNP but merely on how it changes

over time. We envision a model that recognizes the subtle

changes in BP waveform moving toward presyncope with-

out being triggered by such steps. Especially when keeping

generalization and the fact that these types of models are

prone to overfitting in mind (notable in Fig. 5 for the

higher values of C), it is undesirable to exhaustively train

a model on these predefined classes which do not follow

any physiological paradigm. We recognize that the adap-

tive behavior to environmental stress of the cardiovascular

system more likely follows a nonlinear, nonclassified

response pattern, and that this classification is an over-

simplification of a highly complex dynamic system. This

discrete approach may not do this system justice but is a

prerequisite to develop a classifier. The low accuracy in

class 2 indicates that there is considerable intersubject

variation within this specific class. Given the results of

our previous work we considered that adding a new class

would allow more precision by training the model to

detect more subclasses during the LBNP challenge. In the

present study, this was not the case supporting that the

stratification into 3 classes: rest, successfully compen-

satory, and close to failure was indeed sufficient. The

moving averaging of the classification smooths these dis-

crete classifications, revealing a nonlinear response in

most subjects.

Limitations and Criticism

The study population consisted of young, mostly Cau-

casian, healthy adults. Orthostatic differences exist for

0

0.5

1

1.5

2

2.5

3

0

10

20

30

40

50

60

0 11 22 33
0

0.1

0.2

0.3

0.4

0.5

Number of principal components

K
ap

pa
A

cc
ur

ac
y 

(%
)

M
ea

n 
sq

ua
re

d 
er

ro
r (

M
SE

)

Figure 6. Effect of stepwise feature addition on model

improvement. Model mean squared error (MSE, left) and overall

accuracy (center) and kappa statistic for the model with C value:

C = 1e-2.

ª 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society.

2018 | Vol. 6 | Iss. 22 | e13895
Page 7

B. J. P. van der Ster et al. Detecting Hypovolemia



race, (Franke et al. 2004; Hinds and Stachenfeld 2010) sex

(White et al. 1996; Convertino 1998; Grenon et al. 2006),

and age (Wallace et al. 2010) which renders this data not

directly applicable to another population such as an

elderly patient population admitted to emergency care or

listed for major surgery. Whether the model will track the

circulatory volume state in patients is unsettled. Valida-

tion of these findings requires collection of a labeled data

set with blood pressure waves from new populations dur-

ing volume shifts. If the current findings hold true in a

larger population of patients, it would support a wider

application of this model for clinical monitoring.

Principal component analysis obscures which physio-

logical processes determine the shape of the blood pres-

sure waveform and thus what actually enters the model as

training data, making it difficult to describe what this

model is actually trained on.

Conclusion

Progression toward syncope is tracked by a model that

uses principal components of noninvasively measured

continuous blood pressure waveform in healthy volun-

teers. Further studies should address whether the model

predicts hemodynamic collapse in a real-life setting.
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