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Abstract: Pertraction of Co(II) through novel supported liquid membranes prepared by ultrasound,
using bis-2-ethylhexyl phosphoric acid as carrier, sulfuric acid as stripping agent and a
counter-transport mechanism, is studied in this paper. Supported liquid membrane characterization
through scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform
infrared spectroscopy shows the impregnation of the microporous polymer support by the membrane
phase by the action of ultrasound. The effect on the initial flux of Co(II) of different experimental
conditions is analyzed to optimize the transport process. At these optimal experimental conditions
(feed phase pH 6, 0.5 M sulfuric acid in product phase, carrier concentration 0.65 M in membrane
phase and stirring speed of 300 rpm in both phases) supported liquid membrane shows great
stability. From the relation between the inverse of Co(II) initial permeability and the inverse
of the square of carrier concentration in the membrane phase, in the optimized experimental
conditions, the transport resistance due to diffusion through both the aqueous feed boundary layer
(3.7576 × 104 s·m−1) and the membrane phase (1.1434 × 1010 s·m−1), the thickness of the aqueous
feed boundary layer (4.0206 × 10−6 m) and the diffusion coefficient of the Co(II)-carrier in the bulk
membrane (4.0490 × 10−14 m2

·s−1), have been determined.

Keywords: cobalt(II); supported liquid membranes; ultrasound; D2EHPA; counter-transport;
transport parameters

1. Introduction

Cobalt is associated with many industrial and technological activities such as mining,
hydrometallurgy, medicine and the manufacture of batteries, steels, magnetic alloys, catalysts, glass,
ceramics, paints, lacquers, etc. [1]. Due to its industrial significance, cobalt production has grown
steadily over the last two decades, from 56,635 tonsin 2005 [2] to 124,344 tonsin 2018 [3], leading to
both the decrease of primary cobalt resources and the increase in cobaltwaste.

Moreover, the presence of cobalt in the wastewater of the above industries is an important
environmental problem because, like other heavy metals, it is not biodegradable and tends to
accumulate in living organisms, causing diseases and disorders. The acute effects of cobalt on humans
affect cardiovascular, endocrine, hematological, respiratory and nervous systems [4].

All this makes the recovery of cobalt from raw materials and secondary sources very interesting
from both environmental and economic reasons.
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Different techniques have been described for cobalt removal from aqueous solutions,
including flocculation [5], adsorption [6–9], biosorption [10–12], phytoremediation [13],
solvent extraction [14,15], ion exchange [16] capacitive deionization [17], electrowinning [18],
micellar enhanced ultrafiltration [19], nanofiltration [20], reverse and forward osmosis [21,22],
membrane distillation [23], liquid membranes [24–27] and combined methods [28].

Liquid membranes are receiving great attention as a separation process because they combine
the extraction and the recovery processes in a single continuous stage [29]. In a liquid membrane,
two miscible phases (feed and product phases) are separated by an immiscible phase (membrane
phase). Supported liquid membranes (SLM) are obtained when the pores of a thin microporous solid
support are filled with the membrane phase [29].

Traditionally, the filling of these pores has been carried out by impregnation of the microporous
support by the liquid membrane solution under pressure or under vacuum. In this paper, we use a novel
method based on the effects of ultrasound. The application of ultrasound to a liquid medium causes
mechanical vibration and acoustic streaming. As the liquid medium usually contains dissolved gaseous
nuclei, ultrasound generates acoustic cavitation (expanding and collapsing them), releasing large
amounts of energy that generate, among other effects, shock waves and micro jets [30]. Polyvinylidene
fluoride (PVDF) has been selected as the microporous support, due to its greater resistance to the
ultrasound mechanical effects [31,32].

Transport in a liquid membrane system is usually improved by adding to the membrane phase a
complexing agent (carrier) to carry the diffusing species across the membrane to the product phase [33].
This process can be accompanied by the transport of other chemical species from the product to the
feed phase (coupled counter-transport mechanism), which offers the possibility of transporting a
component against its own concentration gradient [34].

In this paper we study the Co(II) pertraction from an acetate buffered aqueous feed phase to
an aqueous product phase which contains sulfuric acid as stripping agent (protons as counter ions),
through an ultrasound prepared supported liquid membrane containing D2EHPA in kerosene, by using
a coupled counter-transport mechanism.

To optimize the pertraction process, the effect on Co(II) initial flux of different experimental
conditions (pH of the feed phase, carrier concentration in the membrane phase, stripping agent
concentration in the product phase and stirring rate in both feed and product phases) is analyzed.
From the relation between the inverse of Co(II) initial permeability and the inverse of the square of
carrier concentration in the membrane phase, at the optimal experimental conditions, the transport
resistance due to diffusion through both the aqueous feed boundary layer and the membrane phase,
the thickness of the aqueous feed boundary layer and the diffusion coefficient of the Co(II)-carrier in
the bulk membrane phase are determined.

2. Theoretical Background

The coupled counter-transport of Co(II) ions through a liquid membrane using D2EHPA as carrier
and H+ as counter ion (sulfuric acid as a stripping agent) is illustrated in Figure 1. Dimerized molecules
of carrier (HR)2 [35] diffuse from the membrane phase to the feed/membrane interface where they
undergo reaction with Co(II). Each Co(II) ion is exchanged for two protons, according to the following
equation [36]:

Co2+
(aq) + 2(HR)2(org)⇔ CoR2(HR)2 (org) + 2H+

(aq)

The Co(II)-carrier complex, CoR2(HR)2, diffuses through the membrane phase to the membrane/

product interface where due to the high acidic conditions of product phase, the described reaction
is reversed and protons are exchanged for Co(II) ions, which are released into the product phase,
the carrier being regenerated to begin a new separation cycle. A coupled counter-transport mechanism
takes place, so that Co(II) and H+ travel in opposite directions.
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The equilibrium constant of the described reversible reaction (Ke) can be expressed by Equation (1).

Ke =
[CoR 2(HR)2]org × [H+

]2
aq

[Co 2+]aq × [(HR) 2]
2
org

(1)

Figure 1. Diagram of the coupled counter-transport of Co(II) ions using D2EHPA as carrier and H+

as counter-ion.

It can be considered that chemical reactions that take place at the feed/membrane and
membrane/product interfaces occur faster than the diffusion processes [37] and the Co(II) transport
rate is determined by the rate of diffusion of Co(II) through the feed diffusion layer and the rate of
diffusion of the Co(II)-carrier complex through the membrane. The Co(II) flux across the membrane
can be obtained by applying Fick’s first diffusion law to the diffusion layer on the feed side (Jfbl) and to
the membrane (Jm) through the following equations [38]:

J f bl =
[Co 2+]f − [Co 2+]i,f/m

∆ f bl
(2)

Jm =
[CoR 2(HR)2]i,f/m − [CoR 2(HR)2]i,m/p

∆m
(3)

where ∆fbl is the transport resistance due to diffusion through the aqueous feed boundary layer (δfbl/Daq)
(s·m−1), ∆m is the transport resistance due to diffusion through the membrane phase(δm/Dps(s·m−1),
[Co2+]f is the cobalt concentration in the feed phase, [Co2+]i,f/m is the cobalt concentration in the
feed/membrane interface, [CoR2(HR)2]i,f/m is the complex concentration in the feed/membrane interface,
[CoR2(HR)2]i,m/p is the complex concentration in the membrane/product interface, δfbl is the thickness
of the aqueous feed boundary layer (m), Daq is the average aqueous diffusion coefficient of the Co(II)
(m2
·s−1), δm is the thickness of the membrane phase (m) and Dps is the diffusion coefficient of the

Co(II)-carrier in the polymeric support.
Due to the different pH values of the feed and the product phases, the distribution coefficient of

Co(II) between the membrane phase and the product phase is much lower than that between the feed
phase and the membrane phase. Consequently, the concentration of the Co(II)-carrier complex at the
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membrane/product interface may be considered negligible compared to that at the feed/membrane
interface and Equation (3) can be rewritten as

Jm =
[CoR2 (HR)2]i,f/m

∆m
(4)

If, as assumed above, chemical reactions are fast compared with the diffusion rate, local equilibrium
is reached at the interface, where concentrations are related through Equation (1). Thus, in the steady
state, Jfbl = Jm= J, and by combining Equations (1), (2) and (4), the following flux expression can
be obtained:

J =
Ke · [(HR) 2]

2
· [Co 2+]f

∆m · [H
+
]2
+ ∆ f bl ·Ke · [(HR) 2]

2
(5)

Thus, the permeability coefficient, P = J/[Co(II)]f, can be written as [38]

P =
Ke · [(HR) 2]

2

∆m · [H
+
]2
+ ∆ f bl ·Ke · [(HR) 2]

2
(6)

From Equation (6), the following expression for 1/P is obtained

1
P
= ∆ f bl +

∆m · [H
+
]2

Ke · [(HR) 2]
2 (7)

By plotting 1/P as a function of 1/[(HR)2]2, at constant pH, a straight line should be obtained with
slope (∆m·[H+]2)/Ke and ordinate ∆fbl. Knowing Ke and the pH of the feed solution, ∆m can be obtained
from the slope.

Since ∆fbl = δfbl/Daq, the value of the thickness of the aqueous feed boundary layer can be calculated
if the average aqueous diffusion coefficient is known.

Similarly, since ∆m = δm/Dps, knowing the thickness of the supported liquid membrane, Dps can
be calculated, while the diffusion coefficient of the Co(II)-carrier in the bulk membrane phase (Dbm)
can be obtained by the following equation [39]:

Dbm =
Dps · τ

2

ε
(8)

The porosity of the membrane (ε) is usually given by the membrane supplier and the tortuosity of
the membrane (τ) can be calculated according to the relationship [40]:

τ =
1 + Vp

1−Vp
(9)

where the volume fraction of polymeric support (Vp) is 1 − ε [41].

3. Materials and Methods

3.1. Materials

Cobalt(II) chloride (98%), sodium acetate (99%), acetic acid (95%) and sulfuric acid (95–98%) were
purchased from Panreac. Bis-2-ethylhexyl phosphoric acid (97%) was obtained from Sigma-Aldrich,
Madrid, Spain. Kerosene (99%) was supplied by BDH Middle East, Dubai, UAE. A microporous
hydrophobic PVDF ultrafiltration membrane (Millipore Durapore GVHP 10, Merck, Madrid, Spain),
was utilized as support for the liquid membrane (geometrical area 20 cm2, porosity of 75%, pore size of
0.22 µm and thickness of 125 µm).
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3.2. Methods

3.2.1. Preparation of Supported Liquid Membrane

The liquid membrane phase was constituted by kerosene solutions of D2EHPA at concentrations
between 0.2 and 0.8 M. The pores of the microporous support were filled with the membrane solution
by applying ultrasound, using Labsonic M (Sartorius SA, Madrid, Spain) ultrasound equipment
(titanium probe 10 mm diameter, sound rating density 130 W/cm2), at 30 KHz, 150 µm, for 30 min
(three times for 10 min, with 5 min intervals between them), and the active layer of the polymeric
support at a distance of 16 mm from the ultrasound probe [24] (Figure 2a).

Figure 2. Schematic representations of: (a) sonication system; (b) experimental transport cell.

3.2.2. Supported Liquid Membrane Characterization

Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and infrared
spectrometry (IR) were used to study the impregnation of the pristine PVDF porous polymeric support
with the liquid membrane phase by the effect of ultrasound (PVDF-USLM).

The outer surface and elemental composition of both PVDF and PVDF-USLM were analyzed by
SEM using a HITACHI S-3500N apparatus, containing secondary and backscattered electron detectors
(Hitachi High-Technologies Corporation, Tokyo, Japan), equipped with an EDX XFlash 5010 analysis
system (Brukers AXS, Karlsruyhe, Germany). 15 kV, 10 mm work distance, samples sputtered with
a thin layer of platinum during 90 s by a sputter coater Polaron SC 7640 (Quorum Technologies,
Newhaven, UK) and 5000× magnification were used in SEM study, while 15 kV and 15 mm work
distance were used in EDX analysis.

The outer surface chemical functional groups of both PVDF and PVDF-USLM were analyzed
by using a NICOLET 5700 FTIR equipment (ThermoFischer Scientific, Waltham, MA, USA),
in transmittance mode from 400 cm−1 to 4000 cm−1.

3.2.3. Transport Experiments

Transport studies were carried out using a permeation cell consisting of two identical
compartments, containing 250 cm3 (V) of feed or product phase, separated by the supported liquid
membrane with an effective area (A) of 15 cm2 [24] (Figure 2b). As feed phase, aqueous solutions
of Co(II) between 0.010 M to 0.200 M (10 mol/m3 to 200 mol/m3) in 0.2 M acetate buffer, with pH
ranging from 3 to 7, were used, and aqueous sulfuric acid solutions between 0.005 and 1 M were
used as product phase. Both phases were mechanically stirred at speeds ranging from 50 to 400 rpm,
at room temperature.

3.2.4. Analytical Methods and Calculations

Samples from the product phase compartment were taken every 30 min and Co(II) concentrations
were determined by flame atomic absorption spectrophotometry at 240.7 nm usinga Shimadzu AA-2600
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apparatus (Duisburg, Germany). The experiments were carried out in duplicate and the results obtained
showed less than 3% deviation.

Initial Co(II) fluxes were determined, according to Equation (10) [42], from the slope of the straight
line obtained when plotting the Co(II) concentration in the product phase ([Co+2]pt) as a function of
time during the first four hours of the experiment, because of the linear relationship observed during
that time.

J =
V
A

d
[
Co2+

]
pt

dt
(10)

Initial Co(II) permeability values (P) were determined, according to Equation (11) [43], from the
straight line obtained when plotting ln[C0/(C0 − Cpt)] versus time during the first four hours of the
experiment, when a linear relationship was observed

ln

[
Co2+

]
f0[

Co2+
]
f0
−

[
Co2+

]
pt

=
A
V

P t (11)

where [Co2+]f0 is the initial Co(II) concentration in the feed phase.
The instability of the supported liquid membrane was determined from the decrease in Co(II)

flux through the membrane in four successive experiments using the same membrane at the optimal
experimental conditions.

4. Results

4.1. Membrane Characterization

Figure 3 shows SEM, EDX and FTIR of both PVDF and PVDF-USLM.

Figure 3. Membrane characterization of PVDF and PVDF-USLM by (a1,a2) SEM; (b1,b2) EDX; (c) FTIR.
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SEM shows that the surface microstructure, in terms of the surface morphology and porous
structure, was not significantly changed after sonification/impregnation process, though the surface
roughness of the impregnated support slightly decreased, which must be a consequence of filling the
pores with the liquid membrane phase.

EDX characterization results of the shell surface shows the absence of phosphorus in the original
PVDF support but its presence in the PVDF-USLM membrane. This confirms that the polymeric porous
support has been adequately impregnated with the liquid membrane phase through the application
of ultrasound.

The analysis of the FTIR of PVDF-USLM film shows the presence of several significant bands
which are not present in PVDF film. The bands between 2958 and 2859 cm−1 (corresponding to C-H
stretching) show the presence of methyl and ethyl groups and the band at 1027 cm−1 (corresponding
to P–O–C stretching) shows the presence of P–O–CH2– groups. This supports the incorporation of
the liquid membrane phase (D2EHPA in kerosene) into the PVDF microporous support during the
sonification process with the liquid membrane phase.

4.2. Optimization of Co(II) Transport Process

The influence on the Co(II) pertraction (expressed in terms of flux) of different parameters
such as feed phase Co(II) concentration and pH, sulfuric acid concentration in the product phase,
carrier concentration in the membrane phase and stirring speed in both feed and product phases,
is shown in Figure 4a–f.

Figure 4a shows the effect of Co(II) concentration in the feed phase on Co(II) flux. The flux
increased as the Co(II) concentration in the feed phase increased from 10 mol/m3 to 100 mol/m3 due to
the presence of a higher number of Co(II) ions in the feed/membrane interface, which facilitated
the formation of Co(II)-carrier complex leading to a higher transport. A further increase in Co(II)
concentration has no significant effect on flux due to saturation of the feed/membrane interface by the
Co(II) ions. A Co(II) concentration of 0.025 M (25 mol/m3) was selected for subsequent experiments
as it is the lowest concentration at which significant flux variations were observed with the other
parameters studied.

As shown in Figure 4b, the flux increased when feed pH increased between pH 3 and pH 6 and
then remained constant. At low feed pH (high [H+]), the equilibrium of the extraction reaction was
highly displaced to the left, and no Co(II)-carrier complex was formed. Moreover, the low proton
gradient between product and feed phases generated a low driving force. As the feed pH increased
([H+] decrease), both the equilibrium of the extraction reaction shifted towards the right (more Co(II)
carrier complex is formed) and the proton gradient between the product and the feed phases increased.
Consequently, Co(II) transport from the feed to the permeate phase increased. Above pH 6, the OH−

competes with the carrier to form a Co(II) complex and so its transport decreases. Thus, a pH of 6 in
the feed phase was maintained throughout the study.

The pertraction of Co(II) from aqueous feed phase across the membrane phase is dependent on the
concentration of the stripping agent (H2SO4) present in the product phase (Figure 4c). The results show
that the Co(II) flux increased sharply as the sulfuric acid concentrations raised from 0.005 to 0.100 M,
and then more slowly up to 0.5 M. At higher sulfuric acid concentrations, the Co(II) flux remained
practically constant. These results confirm that the presence of a proton gradient between the product
and the feed phases is essential for a high mass transfer. Therefore, a sulfuric acid concentration of
0.5 M in the permeate phase was chosen for further experiments.

The effect of the carrier concentration in the membrane phase on Co(II) flux is shown in Figure 4d.
As can be seen, Co(II) flux increased as the carrier concentration increased from 0.2 to 0.65 M, but further
increases in carrier concentration had no significant effect on Co(II) flux. According to the equilibrium
of the extraction reaction (reaction 1), the higher the carrier concentration in the membrane phase,
the more Co(II)-carrier complex is formed. Above 0.65 M, both the saturation of the feed/membrane
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interface by the carrier and the higher viscosity of the membrane phase led to the Co(II) flux remaining
constant. Therefore, a carrier concentration of 0.65 M was used in subsequent experiments.

Figure 4. Influence on Co(II) flux of: (a) initial feed pH; (b) sulfuric acid concentration in product phase;
(c) carrier concentration in membrane phase; (d) stirring rate in both aqueous and product phases;
(e) initial Co(II) concentration in feed phase; (f) successive runs with the same membrane.

The effect of stirring rate on Co(II) flux is shown in Figure 4e. The flux increased as the stirring
rate increased from 50 to 300 rpm, above which no appreciable variation was observed. This indicates
that the boundary layers thickness diminished continuously as the stirring rate increased and that
minimum values of these boundary layers (minimal diffusion resistance due to the boundary layers)
are reached at 300 rpm and above. Therefore, further experiments were carried out at 300 rpm.

The instability of the supported liquid membrane, measured as the decrease in Co(II) flux in
four successive runs, is shown in Figure 4f, where the variation of Co(II) concentration with time
in those four successive experiments with the same membraneis also shown. The flux in runs 2,
3 and 4, expressed as percentage with respect to the flux in run 1, were 94%, 83% and 71%, respectively.
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These flux decreases are lower than those found by other authors using similar supported liquid
membranes, but prepared by immersion of the polymeric support in the liquid membrane phase [44].

4.3. Determination of Transport Parameters

The effect of the carrier concentration in the membrane phase on Co(II) initial permeability
is shown in Figure 5a. As in the case of initial flux, initial permeability increased as the carrier
concentration increased from 200 to 650 mol·m−3, but further increases in carrier concentration had no
significant effect on Co(II) permeability.

Figure 5. (a) Effect of the carrier concentration in the membrane phase on Co(II) initial permeability;
(b) inverse of Co(II) initial permeability versus the inverse of the square of carrier concentration in the
membrane phase.

From data obtained when plotting the inverse of Co(II) initial permeability versus the inverse
of the square of carrier concentration in the membrane phase (Figure 5b, R2 = 0.9908), at constant
pH (pH = 6), knowing the value of Ke of D2EHPA (Ke = 1.1 × 10−7 [45]) and using Equation (7),
the transport resistance due to diffusion through the aqueous feed boundary layer (∆fbl) and due to
diffusion through the membrane (∆m) were calculated (Table 1). From these values and data for the
membrane polymeric support provided by the supplier (δm), the Daq value of 1.07 × 10−10 m2

·s−1 [46]
and the Equations (8) and (9), the thickness of the aqueous feed boundary layer (δfbl) and the diffusion
coefficient of the Co(II)-carrier complex in the bulk membrane phase (Dbm) were obtained (Table 1).

Table 1. Transport parameters of Co(II) pertraction through ultrasound prepared supported liquid
membranes containing D2EHPA as carrier.

∆fbl (sm−1) ∆m (sm−1) δfbl (m) Dbm (m2
·s−1)

3.7576 × 104 1.1434 × 1010 4.0206 × 10−6 4.0490 × 10−14

5. Conclusions

This paper has analyzed the optimization and the determination of transport parameters of the
Co(II) pertraction through novel ultrasound prepared supported liquid membranes by using a coupled
counter-transport mechanism, with D2EHPA as carrier in the membrane phase and sulfuric acid as
stripping agent (protons as counter-ions) in the product phase. SEM, EDX and FTIR characterization
of the supported liquid membrane show good impregnation of the microporous polymer support by
the membrane phase throughthe action of ultrasound. To optimize the pertraction process, the effect
of different experimental conditions on Co(II) initial fluxes was studied. The optimal experimental
conditions were: feed phase pH 6, 0.5 M sulfuric acid in product phase, carrier concentration 0.65 M in
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membrane phase and stirring speed of 300 rpm in both phases. Supported liquid membrane shows
great stability (71%) after four successive runs (four hours each run). From the relation between
the inverse of Co(II) initial permeability and the inverse of the square of carrier concentration in
the membrane phase, in the optimized conditions, transport resistance due to diffusion through the
aqueous feed boundary layer (∆fbl) and transport resistance due to diffusion through the membrane
(∆m) were calculated as being 3.7576 × 104 sm−1 and 1.1434 × 1010 sm−1, respectively. The thickness of
the aqueous feed boundary layer (δfbl) was 4.0206 × 10−6 m and the membrane diffusion coefficient of
the Co(II)-carrier complex through the membrane (Dbm) was 4.0490 × 10−14 m2

·s−1.
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