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The importance of diversity and cellular specialization is clear for many reasons, from
population-level diversification, to improved resiliency to unforeseen stresses, to unique
functions within metazoan organisms during development and differentiation. However,
the level of cellular heterogeneity is just now becoming clear through the integration
of genome-wide analyses and more cost effective Next Generation Sequencing
(NGS). With easy access to single-cell NGS (scNGS), new opportunities exist to
examine different levels of gene expression and somatic mutational heterogeneity, but
these assays can generate yottabyte scale data. Here, we model the importance of
heterogeneity for large-scale analysis of scNGS data, with a focus on the utilization
in oncology and other diseases, providing a guide to aid in sample size and
experimental design.
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INTRODUCTION

It has been well-documented, both theoretically (Elsasser, 1984) and experimentally, that nearly all
cellular systems are heterogenous (Altschuler and Wu, 2010). Heterogeneity may arise for a number
of different reasons, and at many different levels, in order to improve survival and functionality.
Both single-celled and multicellular organisms employ population-level survival strategies such
as bet-hedging in order to achieve a better chance of survival when faced with new stresses
though having a diverse population (Grimbergen et al., 2015). At a single-organism level, diversity
further enables the existence of specialization and, within metazoan organisms, differentiation
(Hadjantonakis and Arias, 2016).

Cellular heterogeneity can be measured in several different ways, most commonly via genomic,
epigenomic, transcriptomic, and proteomic studies. However, the level of heterogeneity at one level
of expression or regulation may not be the same at another level. Cells within a given person
have nearly identical genomes, yet through specific modifications throughout development and
disease, may generate many distinct cell types with unique expression profiles. Even the genome
itself may be specifically rewired to generate increased genetic diversity within specific cell types,
most notably B- and T-cells through V(D)J recombination. Uncovering the true diversity of cells
is crucial to better understand cellular communication and responsibility within both healthy and
disease states. It is now well understood that differentiation throughout development allows for
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the necessary cellular specialization required for complex
multicellular system function. Further, specific epigenomic
modifications allow for this precise differentiation which
inevitably results in the cascade of cellular diversity present in
humans, and also is important in cancer (Li et al., 2014, 2016).

Next generation sequencing (NGS) is continuously being used
more and more due to its rapidly decreased costs and ability to
generate a large amount of data (Mason et al., 2014), with new
data sets even being generated in zero gravity (McIntyre et al.,
2016; Castro-Wallace et al., 2017). Within bulk-NGS analyses,
many, typically hundreds of thousands to millions, of cells are
analyzed at once. This generates an averaged picture of a given
population of cells, and thus majority of our understanding of
different cell and tissue types comes from the analysis of bulk
experimentation which may underestimate the true heterogeneity
of cells. Bulk-NGS is simply ill-equipped to address some
important questions revolving around cellular heterogeneity.
Single-cell NGS (scNGS) attempts to resolve issues facing bulk-
NGS through the ability to relate sequences to a given cell, across
the genetic, transcriptomic, epigenomic, and proteomic levels.
This approach reduces the issue of data generalization which
is prevalent in some bulk-NGS studies. However, scNGS is not
without its faults. One of the main issues with scNGS is its cost
and, though it has considerably decreased in recent years, it is
still a large factor when designing experimentations, as well as
technical issues and challenges in sensitivity. Here, we will outline
the importance of cellular heterogeneity, assess factors of scNGS
heterogeneity, and provide a practical sample size guide to aid in
experimental design.

THE IMPORTANCE OF CELLULAR
HETEROGENEITY

Having a heterogeneous (i.e., diverse) population is beneficial
for cellular systems for the same reason why it is beneficial
for there to be variation among many organisms in a single
species – bet-hedging (Beaumont et al., 2009). Bet-hedging is a
population-level survival strategy in which less-fit individuals are
maintained in a population as a precaution; if the environment
were to drastically change, the originally less-fit organisms may
be adapted to the new environment, thereby assuring the survival
of the population (Grimbergen et al., 2015). In an ever-changing
environment, a population has a greater overall fitness if there
is greater diversity. In this way, the evolution adaptation of all
cellular systems can be modeled in terms of Darwinian evolution.

There are many causes of cellular heterogeneity. Firstly,
populations of cells will naturally contain individuals that
develop random mutations. These unique subclones can
become significant portions of the population if that mutation
confers a selective advantage and proliferates. However, not all
cellular heterogeneity is genetic. Rather, much heterogeneity
is phenotypic, and is frequently expressed in transcriptomes
that vary from cell to cell. This heterogeneity can arise via
external or internal factors. Extrinsic heterogeneity can lead to
phenotypic plasticity in response to an environmental change,
and only affects the part of the population that is exposed to

the causative environment (Huang, 2009). It can also include
variables such as cell-cycle stage and cell size (Singh and Soltani,
2013). Intrinsic heterogeneity is a more nuanced phenomenon,
and is a result of stochastic events, such as gene expression noise
(Huang, 2009), rather than a changing intracellular environment
(Elowitz et al., 2002).

Because of stochastic gene fluctuation, there are varying
levels of protein abundance in different cells in a population
at any given time. This is most easily visualized via flow
cytometry, which yields a bell-shaped curve (Brock et al.,
2009). Stochastic gene expression may have its evolutionary
advantages, as well. In the same way that populations of
cells maintain random mutations in bet-hedging, populations
of clonal, unicellular organisms may maintain variation via
stochastic gene expression to ensure overall survival (Raj and van
Oudenaarden, 2008). Although stochastic gene expression is a
significant contributor to heterogeneity, it is not the only cause.
The sub-state of any given genome/cell depends on a number
of factors, including epigenetics, alternative splicing sites, post-
translational modifications, and sometimes even microbial
interactions (Shabaan et al., 2018). These processes are not always
stochastic, and can therefore lead to “directed” heterogeneity,
instead of the more random “non-directed” heterogeneity of
stochastic gene expression (Chang and Marshall, 2017).

Interestingly, non-genetic, cellular heterogeneity also
plays an important role in development. Early in the
developmental process, before the small population of cells
is beginning to differentiate, these cells are theoretically
identical. However, as the cells begin to differentiate, they
display non-genetic heterogeneity. The body of research on
the role of heterogeneity in development is largely focused
on transcriptional heterogeneity (Griffiths et al., 2018), which
is a driver of differentiation of pluripotent stem cells. More
recent work has also shown that RNA modifications, called
the epitranscriptome (Saletore et al., 2012), can also lead to
differential response of human cells to both disease and infection
(Gokhale et al., 2016; Vu et al., 2017). Also, some transcriptional
sub-states are heritable through several generations of cell
divisions. Signaling factors, developmental regulators, and
chromatin regulators contribute to transcriptional heterogeneity
in stem cells (Kumar et al., 2014). “Directed” heterogeneity has
been shown to lead the process behind the development of a body
plan in Drosophila melanogaster (Chang and Marshall, 2017).

Even after development, all human tissue systems experience
some level of differentiation. This allows cells to specialize,
leading to a more flexible biological system. This principle
has been most notably studied in the nervous and immune
systems. In the central nervous system, for instance, there are
dozens of different types of neurons. Subsets of these neurons
form the myriad different regions within the brain (Emery
and Barres, 2008). One phenotypic hallmark of heterogeneity
in the nervous system, for example, is the distribution of
mitochondria within the neuron. This heterogeneity is exhibited
both regionally within the brain (e.g., brain regions that
require more energy are composed of neurons with more
mitochondria) (Dubinsky, 2009) and within individual neurons.
This distribution differs greatly depending on the immediate
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and current needs of the neuron, and is regulated by a complex
system of proteins (Course and Wang, 2016). In the immune
system, monocytes, macrophages (Gordon and Taylor, 2005),
B-cells, and T-cells show heterogeneity. As an example, T-cell
heterogeneity is essential for an effective immune response,
since subtle differences in T-cell receptors (TCRs) enable the
identification and elimination of foreign invaders (Durlanik
and Thiel, 2015). However, in autoimmune disease, faulty TCR
diversification can result in the improper identification of “self ”
as an invader resulting in normal tissue destruction.

Different diseases leverage heterogeneity to their advantage.
A “survival of the fittest” model for cellular heterogeneity can
be applied not only to populations of single-celled organisms,
but also to tumors. Cancer cells continuously acquire and
pass down genetic and epigenetic modifications to subsequent
generations of cancer cells resulting in heterogeneity. These
genetic mutations and epigenetic shifts may further lead to
changes in fitness (Li et al., 2016). Cancer cells are often exposed
to hostile environments, such as chemotherapy and radiation,
during treatment (Afshinnekoo and Mason, 2016). Through
bet-hedging, and therefore maintenance of a heterogeneous
population, the chance of resistance or relapse from treatment is
dramatically increased. As these cancer cells are all in the same
small environment and are all competing for the same limited
resources, there are complex interactions between different
subclones that further reinforce these Darwinian relationships
(Tabassum and Polyak, 2015). Cancer cells can be further driven
into a “survival of the fittest” scenario via treatment with a
chemotherapeutic drug, as this may lead to the selection for
cancer-variants that are resistant to the drug. Over time, this
could lead to chemotherapeutic resistance within the whole
tumor (Dagogo-Jack and Shaw, 2017), as well as tumor sub-
types (Shih et al., 2017). Indeed, it has been shown that a
single tumor biopsy dramatically underrepresents the genetic
diversity present within an entire tumor (Gerlinger et al.,
2012). However, heterogeneity is not only clinically relevant
in regards to chemotherapy. Immunotherapies can also be
profoundly impacted by heterogeneity. Liver cancer-targeted
immunotherapy is designed around tumor-infiltrating T-cells.
Through the use of single-cell RNA sequencing, 11 tumor-
infiltrating T-cell sub-states have been identified. Each of these
sub-states has a unique profile of up- and downregulated
genes, which may impact the efficacy of any immunotherapies
(Zheng et al., 2017).

Intratumoral heterogeneity has been extensively studied
through single-cell sequencing methods. For example, single-
cell RNA sequencing has revealed significant heterogeneity in
primary glioblastomas (Patel et al., 2014). Additionally, increased
levels of heterogeneity in these tumors was inversely correlated
with survival, indicating that intratumor heterogeneity should
be an essential clinical factor, including events from DNA
transposition (Henssen et al., 2017). Metastatic melanoma is also
highly transcriptionally heterogeneous, and this heterogeneity is
multifaceted; it is associated with a number of factors, including
cell cycle stage, location, and chemotherapeutic resistance (Tirosh
et al., 2016). The use of RNA sequencing here is key, as
transcriptomics captures fine details of non-genetic heterogeneity

that other sequencing methods may have missed. Shifting of
cellular heterogeneity is not just a hallmark of cancer, but of many
other diseases, but here we will focus on the relevance for cancer.

ASSESSING HETEROGENEITY

Heterogeneity itself is a gradient which may be based on variable
changes in the transcriptome or more permanent changes within
the genome. Differences seen between cells may be temporal due
to cell-cycle states, or spatial due to external stimuli (Dagogo-Jack
and Shaw, 2017). Also, differences between cells may exist at any
processing level of the cell, from the genome to transcriptome
to proteome, or due to any additional modifications which may
exist. With this in mind, it could be possible to define all cells
as heterogeneous. However, two disparate cells might not behave
functionally different, and their heterogeneity would therefore
not be considered impactful (Altschuler and Wu, 2010). The
overall assessment of cellular heterogeneity is therefore context-
specific and the technologies used to assess cellular differences
need to be considered carefully.

Proteomic and cell-marker classification has been historically
used to discern cell types. Immunohistochemistry (IHC) can be
used to distinguish immune cell types within healthy systems
(Reuben et al., 2017b) or even the cancer subtyping such as
HER2 expression within breast cancer (Potts et al., 2012). Surface
markers help to distinguish cell types into broad classification, but
this type of analysis required prior gene expression knowledge
and specific antibody usage. Other approaches, such as whole
genome sequencing (WGS), bisulfite sequencing, and RNA
sequencing, allow for genome-wide analysis (Mason et al.,
2017). Historically these techniques are done on heterogeneous
tissue samples, generating an averaged picture of the tissue
of interest (bulk-NGS). Although bulk-NGS has a tendency to
generalize heterogeneity, certain biological understanding and
computational modeling can mitigate this effect within genomic
and epigenomic analyses.

Bulk-WGS can be directly used to assess the existence of
subclonal mutations through the use of variant allele frequencies
(VAFs). Through the modeling of VAFs and copy number
changes, an understanding of the clonal architecture may be
inferred from such bulk-NGS data. One such method, Canopy,
uses a Bayesian analysis to identify subpopulations and build a
phylogenetic tree detailing their likely evolutionary history (Jiang
et al., 2016). Long read bulk TCR sequencing can also be used
directly to assess clonal structures under the assumption that
there is a unique V(D)J recombination per subclone. As such,
the quantity of a given TCR gene can be directly related to the
abundance of that subclone and the number of different TCR
genes relates to the overall heterogeneity and diversity of the
T-cell population. TCR sequencing has also been used, and has
shown intratumoral heterogeneity in localized lung carcinomas,
which may confer post-surgical recurrence (Reuben et al., 2017a).
As epigenetics also plays a significant role in heterogeneity,
bisulfite sequencing can be used to study patterns of DNA
methylation and estimate clonality, such as with the algorithm
methclone (Li et al., 2014). Bisulfite sequencing has also been
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used to reveal heterogeneity in DNA methylation of the MLH1
(a mismatch repair gene) promoter across several endometrial
tumors (Varley et al., 2009).

While many bulk-NGS methods rely on mixture models of
the VAFs to analyze small indels and point mutations, these
methods often rely on the copy number of the gene in question,
which can be altered in cancers, and are unable to relate multiple
mutations which exist at low frequencies (Jiang et al., 2016).
Additionally, bulk sequencing has a tendency to report what an
“average” cell in a population would look like and for that reason
would not be usable in the analysis of an all-or-nothing response
(Altschuler and Wu, 2010). For example, Xenopus oocytes, have
a binary response when signaled by progesterone to begin a
process of maturation; they either mature or they do not (Ferrell
and Machleder, 1998). In this case, looking at an average of
two distinct oocyte subpopulations – one that has been signaled
to mature and one that has not – would artificially yield a
biologically impossible “mean oocyte” that has committed to
maturation half-way (Altschuler and Wu, 2010).

There has been a significant effort within the field to
quantitatively measure heterogeneity and relate it to a functional
change. One approach to this is to quantify stochastic gene
expression. This has been done through dividing stochastic
gene expression into its intrinsic and extrinsic components
via a two-color reporter experiment and deriving analytical
formulas to measure each component of noise (Singh and
Soltani, 2013). Systems have also been developed to quantify
the individual contribution of unique processes to stochastic
gene expression, and therefore to heterogeneity. For example,
experimentally generated models have been used to quantify
the individual contribution to chromatin dynamics in isogenic
chicken-cell populations (Viñuelas et al., 2013). Also, shifted gene
expression dynamics have been shown to drive cell fate choice
for hematopoietic progenitors (Kleppe et al., 2017), induced
pluripotent stem cells (iPSCs), and the mouse inner-cell mass
during embryogenesis (Mojtahedi et al., 2016; Bargaje et al., 2017;
Mohammed et al., 2017).

UTILIZATION OF scNGS

To best understand cellular heterogeneity, single cells must be
studied individually through the use of scNGS. Since assessing
cellular co-occurrence is the main drawback of bulk-NGS,
many studies have also been conducted to further elucidate
clonal structures using single-cell DNAseq [including whole
exome sequencing (WES) or WGS], bisulfite sequencing, and
ATACseq (assay for transposable accessible chromatin, ATAC).
Given the variability and importance of gene expression, sc-
RNAseq is one of the most used single-cell sequencing techniques
(Supplementary Table S1). Single-cell multi-omic analyses are
also possible to uncover the true level of heterogeneity across
expression levels within cells (Macaulay et al., 2017), which enable
examination of the genome, transcriptome, and epigenome at
once. scNGS has the ability to resolve noise in bulk-NGS through
the additional ability to trace generated reads back to their cell
of origin. Though, this added benefit comes at a steep monetary

cost, as single-cell sequencing is still much more expensive than
more traditional bulk NGS given the need to sequence more
(Supplementary Table S2). Also, subpopulations of cancer cells
can be found by scATAC-seq, which has the power to identify
specific chromatin motifs. Indeed, when combined with RNA-
seq, it has been used to identify epigenetic plasticity between two
cell subpopulations (Litzenburger et al., 2017).

There are currently dozens of variations of techniques to study
the genome, epigenome, transcriptome, and epitranscriptome
of cells, and here, we focus on those most commonly in
use (Supplementary Table S1). Each of these technologies
has had a significant impact on numerous fields, including
immunology, oncology, and microbiology. Because the scope of
the benefits of single-cell analysis is so wide, there is tremendous
pressure to advance the technologies in the field. This is
evident in the dramatic increase in recent years in publications
referencing single-cell technologies (Wang and Navin, 2015).
These techniques are highly varied, from manual manipulation
(Pan et al., 2013) to droplet microfluidics used for sc-WGS
(Hosokawa et al., 2017) to the creation of an RNA-library
(Hedlund and Deng, 2018), such as bisulfite sequencing, can
also be used on the single-cell level (Clark et al., 2017). A novel
approach that combines Raman spectroscopy with an algorithmic
biomolecular component analysis (microRaman-BCA) allows
for the profiling of single organelles from a cell. Because this
technique does not destroy the cell during analysis, the study can
be performed multiple times on the same cell, providing a better
picture of heterogeneity over time (Kuzmin et al., 2017).

While much of the current knowledge of cellular heterogeneity
is transcriptional, newer techniques such as single-cell
epigenomics have tremendous potential to study heterogeneity
(Hassan et al., 2017) and may be able to provide further insights
into the characterization and mechanisms of heterogeneity (Clark
et al., 2016). Several topics in epigenomics are best suited to study
with single-cell methods, including the relationship between
transcriptional heterogeneity and epigenetic heterogeneity,
which may vary greatly from cell to cell. Another application
of single-cell sequencing is to study tumor resistance and
therapeutic response to decrease the chance of resistance or
relapse. scNGS can be used to not only detect heterogenous
subclones within a tumor, but also to characterize these cells.
Additionally, it can be used to characterize metastases and to
create an effective treatment plan that minimizes the chance
of chemotherapeutic resistance of specific subclones (Liang
and Fu, 2017). In one study, analysis via deep whole-exome
sequencing revealed that 75% of relapsed tumors in pediatric
B-acute lymphoblastic leukemia were descendants of originally
rare subclones (Ma et al., 2015). Given technical and sampling
limitations, it is possible that resistant subclones existed within
more patients. Although scNGS is currently expensive, treatment
for cancer is often much more expensive. For this reason, any
possible technique that could lead to a more effective therapy
(even an expensive one like scRNA-seq) has clinical potential
(Shalek and Benson, 2017).

Additionally, subclones can communicate and interact with
each other, leading to complex relationships that may only
be fully elucidated via scNGS. Although some of these
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interactions are neutral, they can also be positive (leading
to a commensalistic/mutualistic relationships in which one
or both of the subclones benefit), or negative (leading to
competition between subclones, e.g.), and can contribute to the
chemotherapeutic resistance of one or more subclones within
a tumor (Tabassum and Polyak, 2015). For instance, one study
demonstrated that various clonal lineages in a case of colorectal
cancer responded differently to treatment with chemotherapy
(Kreso et al., 2013). Additionally, there is evidence that parallel
evolution of various subclones within a tumor can lead to

polyclonal resistance (Gerlinger et al., 2014). Additionally, intra-
tumor heterogeneity makes it more difficult to precisely identify
either histologically or genetically a tumor via a traditional biopsy
(Tellez-Gabriel et al., 2016).

The implications of tumor heterogeneity in cancer evolution,
clinical treatment, and tumoral spatial organization are not yet
fully understood (Alizadeh et al., 2015), but scNGS provides
a mechanism for beginning to unravel these relationships.
Although heterogeneity makes the histological and genetic
identity of a tumor more ambiguous, if the mechanisms

FIGURE 1 | Model of cells required for detection of variants. Minimum number of cells to sample to capture at least one (A) or three (B) subclone with varying
probabilities (lines) across varying concentrations in a tissue with 1 billion cells. Hypergeometric calculations were done using R’s phyper() function with lower.tail = F
and q = 0 (A) or two (B) across varying sample sizes and clonal frequencies such that m+n = 1,000,000,000.
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driving heterogeneity are further elucidated, they may lead
to a better understanding of carcinogenesis (Gay et al.,
2016). Moreover, data gathered from single-cell sequencing
may help to clarify the methods of cancer progression
and subclone resistance to chemotherapeutic treatment by
sequencing both smaller transcripts and whole genomes in
single cellular representatives of heterogeneous populations
(Baslan and Hicks, 2017).

Interestingly, scNGS also has implications in lineage tracking
in the development of differentiated tissues, as it may help
to further clarify the developmental pathways involved in
tissue differentiation (Kester and van Oudenaarden, 2018).
As discussed, the nervous and immune systems are both
well-studied examples of cellular systems that display cellular
heterogeneity. For example, this technique can be used to study
the central nervous system, and has the potential to not only
molecularly classify various neurons or groups of neurons, but
also to further study the molecular mechanisms behind, and
possible therapies for, neurological diseases (Ofengeim et al.,
2017). Indeed, this application can also be utilized to type sperm
and oocytes, allowing for the confirmation and subsequent study
of recombination events and polymorphisms in these haploids
(Zhang et al., 1992).

DESIGN OF scNGS EXPERIMENTS

One of the key questions in planning the methodology of a single-
cell study is how many cells to sequence. Sequencing more cells
enables a greater representation of the cells in a population, giving
a more accurate model of the diversity of subclones. The number
of single-cells sequenced in a study has scaled exponentially
with the development of new technologies. In 2009, for example,
only one cell could be sequenced at a time. By 2017, however,
the technology has advanced enough to permit the analysis of
hundreds of thousands of cells at once (Svensson et al., 2018) and
the possibility to generate exobytes and even yottabytes of data in
the future.

Many complexities exist with scNGS analyses and need to
be carefully considered. Other work have covered the specific
differences, benefits, and drawbacks between the various scNGS
protocols (Kanter and Kalisky, 2015; Clark et al., 2016; Haque
et al., 2017; Liang and Fu, 2017). Previous data have shown that
the best scNGS technology should be used for a given hypothesis,
in tandem with a proper experimental design for the number
of cells. Due to this, the required number of cells necessary
to address a given question or tissue model will largely vary
depending on the overall hypothesis. However, the question of
“how many cells should I sequence” can be simplified to how
many cells do you need to sample in order to capture at least
one subclonal cell. The chance of sampling a subclone from a
tissue of interest depending on the subclonal prevalence, the
size of the tissue, and the size of the sample. Therefore, this
question can be modeled using the hypergeometric distribution
with varying degrees of probability (Figure 1A). It is common
within sc-NGS analysis to require multiple cells to contain a given
phenotype, and therefore may be more appropriate to ask the

question of “how many cells should I sample to capture at least
three subclonal cells” (Figure 1B).

We have built a model to demonstrate the number of cells
required for a sampling design can widely vary. As an example,
if the goal was to sample a tissue which has 1 billion cells for
a previously undefined stem-cell which exist at a population of
0.01%, you would have a 99% chance of sampling at least one
stem-cell if you analyzed approximately 46,000 cells. However,
to truly characterize and identify this subclonal population or
to detect a lower threshold, the number of cells required could
easily reach, or even surpass, 100,000 depending on tissue size
(Figure 1B). Given the recent advances in scNGS and decreases in
costs, this is now possible to do. Such a design – while completely
impossible 5 years ago – should be strongly considered when
designing experimentations today.

THE FUTURE OF SINGLE-CELL
ANALYSES

While single-cell sequencing has many advantages, it certainly
is not a perfect technique. There are many different techniques
for obtaining single-cell sequencing data and single-cell whole
genome sequencing (sc-WGS), and each of these methods
presents its own unique strengths and weaknesses. Multiple
displacement amplification (MDA) and other PCR-based
sequencing techniques often experience significant amplification
bias (de Bourcy et al., 2014; Ahsanuddin et al., 2017). This could
lead to incorrect interpretation of the prevalence and diversity
of certain genes. Nonetheless, thanks to the breakthroughs
in scNGS, the long-sought goal of sequencing of single cells
is possible. This has created significant opportunities for
advancement in the study of heterogeneity, especially as it applies
to cancer. While it may be necessary to sample thousands or
even millions of cells to encounter a unique subclone at low
prevalence within a large tissue, sequencing continues to get
cheaper, and thus scNGS will continue to open up many new
research directions into the mechanisms of heterogeneity study
variation on cell-by-cell resolution.
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